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ABSTRACT
There is an increase rise in the usage of mobile health sensors in
wearable devices and smartphones. These embedded systems have
tight limits on storage, computation power, network connectivity
and battery usage making it important to ensure efficient storage/
communication of sensor readings to centralized node/ server. Fre-
quency Transform or Entropy encoding schemes such as arithmetic
or Huffman coding can be used for compression, but they incur
high computational cost in some scenarios or are oblivious to the
higher level redundancies in signal. To this end, we used theprop-
erty of periodicity in these naturally occurring signals such as heart
rate or gait measurements to design a simple low cost scheme for
data compression. First, a modified Chi-square periodogrammetric
is used to adaptively determine the exact time-varying periodicity
of the signal. Next, the time-series signal is folded into Frames
of length equal to a pre-determined period value. We have success-
fully tested the scheme for good compression performance inECG,
motion accelerometer data and Parkinson patients samples,leading
to 8-14X compression in large sample sizes (6-8K samples) and
2-3X in small sample sizes (200 samples). The proposed scheme
can be used stand-alone or as pre-processing step for existing tech-
niques in literature.

Categories and Subject Descriptors
I.4.2 [Compression (coding)]: approximate methods, exact coding

General Terms
Performance
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1. INTRODUCTION
There is an increasing rise in the usage of mobile health sen-

sors in wearable devices, Body Area Networks (BANs) and smart-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this workowned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MobileHealth’13, July 29, 2013, Bangalore, India.
Copyright 2013 ACM 978-1-4503-2207-2/13/07 ...$15.00.

phones. Wearable devices such as Nike+ Fuelband1, Fitbit2 and
the rumored iWatch monitor personal fitness of an individualusing
accelerometer and other passive sensors. A number of smartphone
apps use phone inertial sensors and GPS for fitness-trackingof mo-
bile users, although they achieve lower accuracy than dedicated
wearable devices. Body sensors such as Wahoo heart-rate moni-
tor3 and Nike+ shoe sensors4 are also gaining significant market.
The LifeWatch-V Android phone can monitor body temperature,
ECG, body fat, stress, blood glucose and saturation5. Increasing
overall cost of medical care and advances in wireless technology
has also paved way for cost-effective remote monitoring of patients
using wireless devices. These devices, the stand-alone equipment
or body-sensors or smartphone sensors, are typical embedded sys-
tems with tight limits on storage, computation power, network con-
nectivity and battery usage. Although newer smartphones are now
equipped with Quad or Oct core processors, battery life is a serious
concern in these devices. Continuous streaming of sensors’data
must be done in a cost-effective manner, in order to avoid battery
drainage. Apart from this, efficient compression is helpfulto re-
duce the transmission cost of data-uploads in cellular networks. A
number of healthcare researchers are using these sensors for pi-
lot health intervention programs that study the impact of health
monitoring on patient health. A wide variety of patient popula-
tion suffering from obesity [21], cardiac rehabilitation [2] and di-
abetes [22] have benefitted. Locomotion monitoring is useful in
gait analysis, early diagnosis of cognitive impairments like demen-
tia [18], Alzheimerâ̆AŹs disease [1], ParkinsonâĂŹs disease [15]
and detection of autistic disorders in infants. Frequency transform
such as Fourier series or DWT or Entropy encoding schemes such
as arithmetic or Huffman coding or codebook based LZW coding
schemes are efficient for data compression, however, they are not
suitable for mobile medical data for two reasons:

1. The computational complexity of these schemes may be still
high for many scenarios. For example, the arithmetic coding
scheme requires a multiplication operation per encoded bit.

2. These bit-level schemes may fail to capture the higher level
redundancies in human signals. For example, the heartbeat
pattern and human walking pattern are periodic by nature.

In this paper, we develop a simple, cost-efficient scheme forcom-
pressing such sensor measurements. A modified Chi-square peri-
odogram metric is used to adaptively determine exact time-varying
1http://www.nike.com/us/en_us/c/
nikeplus-fuelband
2http://www.fitbit.com
3http://www.wahoofitness.com/Products/
4http://store.nike.com
5http://www.lifewatchv.com/



periodicity of the signal. This scheme is found to be more cost-
effective than auto-correlation-based or Fourier-based approaches
to periodicity detection. Next, the time-series signal is folded into
‘Frames’ of length equal to pre-determined period value. A set of
consecutive ‘Frames’ are group together (we call them Groupof
Frames (GOF)). The first Frame in a GOF is intra-coded (Primary
or P frame) while remaining frames are matched to P-Frame and
residual frames are then constructed by subtracting current frame
from P Frame. This frame is called as Secondary (S) frame. The
residue is then quantized. The residue and P-frame can be further
compressed using other procedures reported in existing literature,
or skipped (in case of low computational capacity of device). We
have successfully tested the scheme for good compression perfor-
mance in ECG data, EMG data, accelerometer data from Parkinson
patients and healthy individuals.

The paper is organized as follows: Section 2 gives a brief review
of existing work. Section 3 gives details of proposed algorithm.
Section 4 gives an overall discussion of proposed approach,its ap-
plications and limitations and directions for future work.

2. RELATED WORK
Lots of research in bio-medical data compression has focused

on ECG signal. AZTEC [5] achieves a high compression ratio but
loses a lot of signal fine-grain information. Discrete Cosine Trans-
form [3, 4], Discrete Legendre Transform [17] and Wavelets [11, 9]
based techniques have been proposed which transpose the signal to
frequency domain followed by quantization and entropy encoding
procedures. Many schemes also depend on accurate QRS detec-
tion (peak in ECG signals). Philips [16] model ECG signal using a
polynomial of ordern. However, all these scheme do not consider
the computational complexity of the base algorithm.

The transform domain approaches (such as DCT or DWT) use
the fact that higher frequency components are insignificantand can
be truncated without loss in major information conveyed by the
signal. This assumption is generally true, however the quantization
threshold for high frequency content should be carefully derived.
The entropy coding techniques are lossless schemes which try to
assign shorter (even fractional) codewords to symbols in the bit-
stream to approach Shannon’s limit for information compression.
Nabar et al. [12] uses a model driven approach to compress ECG
signals. This approach is template-driven and restricted to ECG
signals. The computation cost of generating the signal parame-
ters can be high for low power sensors. Quite different from these
approaches, we model this problem as a generic problem of com-
pression a generic quasi-periodic signal (not limited to ECG data).
We determine the period of available sensor output, divide it into
‘Frames’ and obtain the residues, as will be discussed next.The
DCT, DLT or DWT based approaches can be used to encode the
residues. Our work draws analogy from video compression stan-
dards such as MPEG [20] where video is divided into Frames which
are then matched and a residue is formed.

In case of a video, frames are matched using motion compensa-
tion and estimation procedure on block (8 × 8 pixel group within
a video frame) level and is quite cumbersome. Plus, intra-coding
or residue coding is done using frequency transform (Discrete Co-
sine Transform) followed by quantization and entropy encoding.
However, the frame matching procedure in our case is different
and much simpler. Unlike video frames which have constant size,
our frames have variable size (depending on human activity). But
they are simple 1-dimensional signals and no block-matching is re-
quired.

Periodicity detection is the first step in our approach. Parthsarthy
et al. [14] use a combination of time-frequency and auto-correlation

analysis. This is, by far, most popular approach for periodicity de-
tection. Plus, a Kalman filter is used to track changes in periodicity
with time. Elfeky et al. [7] model this problem as an approximate
string matching algorithm. Indyk et al. [10] uses a dimensional re-
duction technique. These techniques have high computational cost.
Auto-correlation and frequency analysis is also inaccurate, both in
terms of resolution offered by frequency transforms and ourexperi-
mental results. We use a modifiedχ2-periodogram based approach,
adapted from the approach presented in [19, 8] to reduce its com-
putational overheads.

3. ALGORITHM
In this section, we give an overview of our compression scheme.

We introduce the term ‘Frame’ which refers to one period of time-
series data under consideration. The scheme is divided intothe
following steps:

1. Frame segregation: The periodicity of the given time-series
is determined from the peak of computed modifiedχ2- pe-
riodogram. The period is updated periodically using a local
update mechanism.

2. Frame packaging: The input signal is split into a Group of
Frames. The first frame in each group is chosen as reference
and called as P-frame. The later frames are called S-frames
and are predicted from P-frame. They are first aligned to P-
frame and then subtracted from it to obtain a residue.

3. Residue coding (optional): The residue and P-frame can be
encoded further using standard data compression techniques.
First, a frequency transform operation (such as Discrete Co-
sine or Wavelet Transform) can be used to transform the sig-
nal into frequency domain. It has been observed that most
natural occuring signals have significant low frequency com-
ponent. This property has been used in signal, image and
video processing algorithms to truncate or quantize the higher
frequency terms from the frequency transform coefficients,
obtaining significant compression ratios with insignificant losses.
Entropy coding procedures such as arithmetic and Huffman
coding can be used to compress the quantized coefficients
to the Shannon’s compression limit. These stages may incur
high computational cost and have been well established for
image, videos and ECG signals (see literature review). We
don’t make any contribution to this stage, thus we skip the
description in this paper. We use direct quantization (without
frequency transform or entropy encoding schemes) which re-
quires no computations.

3.1 Frame segregation
Figure 1 shows sample output from health and medical sensors

for ECG, diseased EMG and gait signals. The EMG and Parkin-
son disease gait samples were obtained from Physionet6 database.
The main idea behind this illustration is to show that many sensor
readings from human subjects and behavior are periodic to a great
extent. Thus, we need an algorithm for automatic detection of pe-
riod of the signal. Autocorrelation function is the most popular
approach to estimate the periodicity of a given signal. One can take
a segment of signal (X) and obtain its autocorrelation as follows:

RP =
E[(Xm − µ)(Xm+P − µ)]

σ2
, (1)

6http://www.physionet.org/physiobank/
database/
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Figure 1: Illustration of data collected from (a) EMG signals from neuropathy patients, (b) ECG signals from normal person, (c)
Gait (accelerometer) of Parkinson patient, and (d) Normal person walking. The x and y axes are not normalized.

Table 1: Relative computational performance of Period detection algorithms in Matlab (ms)
Signal X1 X2 X3 X4

AutocorrelationRP 193.7 ± 2.1 232.5 ± 2.1 33± .22 33.25 ± 1.2
Discret Cosine TransformCP 62.3± .04 124.1 ± 2.5 3.6± .09 3.7± .09

χ2-PeriodogramχP 52.1 ± .1 90± 6.1 4± .09 4.1± .08

Modifiedχ2-Periodogramχ
P

46.9± .06 83.8± 1.1 3.7± .16 3.7± .08

whereµ is mean of the signalX andσ2 is the variance. The func-
tionRP is maximum at the point corresponding to the period of in-
put signal. This approaches, however, requires computing second
order statistics (both numerator and denominator of equation 1).
Fourier analysis can also be used to obtain the period of signal X,
however the output signal is a complex number. Discrete Cosine
Transform is therefore preferred, as it produces real coefficients
from real valued inputs. It can be computed as follows:

CP =

N−1
∑

n=0

Xn cos

[

π

N

(

n+
1

2

)

P

]

P = 0, . . . , N − 1

The peak in DCT frequency diagram corresponds to major har-
monic of the

signal, which can be converted to obtain the period of signal.
However, we encountered some practical difficulties in thisap-
proach:

1. Signal noise leads to inaccuracies in detection of correct peak.

2. Frequency domain representation is quantized in intervals of
sampling frequency, thereby blurring the time-domain reso-
lution of determined period.

Implementing the cosine term requires time-series expansion which
may be slow in embedded devices. If we divide signalX into K

Frames of an arbitrary periodP , theχ2-periodogram approach [19,
8] uses the following metricχP to calculate the period.

χP =
KN

∑

P

h=1
(µh − µ)2

∑

N

h=1
(Xi − µ)2

whereµ is the mean of signalXi andµh is the mean of K values
under each time unit of the period length.χP is maximum for the

periodP of the sequence. Since we are interested inP correspond-
ing to the maximum value ofχP over range of values, we modify
this metric to ease the computations:

χ
P
= K

P
∑

h=1

(µh − µ)2

This approach leads to lesser computations than the above men-
tioned approach without affecting accuracy. The relative compu-
tational requirements of these algorithms on a Desktop (using 2.8
GHz single core on core-i7 processor) are given in Table 1. Val-
ues are reported for all the four test signals mentioned above. We
use samples of length 1000, 2000, 200 and 200 for EMG, ECG,
Parkinson and normal walk signals. Average values over 25 trials
is reported for all 4 test signals. We expect an orders of magni-
tude improvements in the results using low-level C implementation
(on an iPhone), which will remove overheads of function calls and
interpretation.

We ran our experiments over all the four types of signals (ECG,
EMG, Parkinson and normal gait) and observed that modifiedχ2

periodogram scheme gives accurate detection of signal period as
compared to other two schemes. Figure 2 illustrates the efficacy of
using modifiedχ2 periodogram (χP ) over DCT and auto-correlation
function. The DCT coefficients are plotted in frequency domain
and the peak in frequency domain can be back-translated to time
domain. The peak for EMG and ECG signals and Parkinson gait
don’t correspond to visible periodicity in the time-series, which we
desire to obtain for compression purposes. We attribute this to the
fact that these signals are not exactly sinusoidal and hencedetection
of sinusoidal frequency component is difficult. Normal walksig-
nal, in this case is sinusoidal and peak is correctly detected in DCT
domain. The auto-correlation function also performs well only for



Table 2: Energy of compressed coefficients (Percentage of orig-
inal signal energy

Signal X1 X2 X3 X4
With Frame Packaging 7.06 0.23 12.18 .69

With Frame Packaging+Quant.3.27 0.10 6.85 .25

normal gait. There is no distinct peak observed for other signal
types. It can be seen that our scheme gives correct period length
for these signals. There is a distinct peak for each of the four signal
types.

3.2 Frame Packaging
Once the period is determined, frames can be segregated from

the original signal and grouped together into ‘GOF’ or Groupof
Frames. The first frame is used as a reference and called as P-
frame or Primary Frames, while other frames are predictively en-
coded with reference to P frame by subtraction operation. They
are called as Secondary or S-frames. However, frame subtraction
is not always trivial, because of time-varying periodicityand noise
of these signals. There are a number of sequence alignment tech-
niques for bioinformatics and other sequences [6], but theyincur
significant computational cost.Episodic Data: Data from hu-
man subjects is periodic but the period may vary with time. For
example, while walking a person takes rhythmic steps which are
recorded as quasi-periodic time-series from accelerometer sensors
but depends on walking speed. This is the same for heart-rateand
Electromyograms (not always though, due to added noise). The
rhythmicity or periodicity varies with time. For example, aper-
son may be walking or running which will change the period for
accelerometer or ECG readings. Whenever needed, we align mul-
tiple frames using a simple heuristic - matching their maxima and
minima, instead of matching the entire frame. The lag is stored
and transmitted separately (if it exist). To update the period of a
time-varying signal, [14] propose using an adaptive Kalmanfilter.
We run the period detection algorithm in the local neighborhood of
past values to minimize our computation time.

After frame matching, the current frame is subtracted from P
Frame to obtain S-residue frame. The Frame packaging operation
is straight-forward as it involve subtraction of S-frames from P-
frames, and doesn’t involve much computational complexity.

3.3 Residue Coding
The residue thus obtained can be quantized to remove the non-

significant values and obtain further compression. It is then pos-
sible to terminate the operation, or use existing approaches (such
as DCT, DWT, arithmetic or Huffman encoding; discussed in re-
lated works section) to achieve further compression. This choice
depends on the availability of computational resources in the sen-
sor. Figure 3 shows sample residues from the four test signals. It
can be seen that the residues have significantly lower energythan
original signal. Most of the residues are zero values requiring no
value for transmission. Thus, the mean energy of residue is much
less than the original signal. This can be seen in Table 2 which
gives energy of output signals as a percentage of input signals.

In this paper, we quantized the coefficients from residue whose
magnitude was less than 1% of maximum signal value. We have
not used any post-processing technique like wavelets or arithmetic
coding. Using them will complement our approach and improvethe
compression efficiency, at the cost of computational complexity.

Table 3 gives the compression performance of the proposed ap-
proach. The EMG and ECG traces were of long duration, and hence
we obtain much higher compression ratio than with gait traces,

Table 3: Compression Efficiency of proposed approach. ( file
size is reported in bytes)

Signal X1 X2 X3 X4
Original signal 39619 43334 2381 2563

With Frame Packaging (FP) 6971 9735 1336 1360
With FP+ Quantization 4922 3182 839 822

which were short length. We obtain 8-14x compression for long pe-
riodic sequences such as EMG and ECG signal. The signal length
for the four signals were 6000, 8000, 200 and 200 samples.

When no quantization is done, there is no loss in signal values
(lossless coding). We reconstructed the signal in case of quantiza-
tion and the values are plotted in Figure 4 for a small sample of all
four signals. It can be seen that quantization leads to insignificant
losses in compression efficiency (less than 3% in all cases).

4. DISCUSSION & FUTURE WORK
In this paper, we presented an algorithm to achieve high com-

pression of health sensors’ time series data in mobile devices. The
algorithm is low-cost, making it suitable for low-power embedded
devices. It achieves 8-14X compression for long datasets inour
experiments done using Matlab platform on Windows workstation.

The algorithm is compatible with existing Wavelets, Fourier, Arith-
metic or Huffman based approach and complements their perfor-
mance. Thus, as needs permits, these approaches can be integrated
to yield further compression.

As a future work, we would like to implement this scheme in our
portable wearable sensors such as Shimmer platform and use with
ECG/ Accelerometer sensors to measure savings in real-world im-
plementation. We would also like to investigate the use of cost-
effective Wavelet Transform implementations [13] to further re-
duce our computational cost of period detection using its property
of multi-resolution analysis.

5. REFERENCES
[1] AVVENUTI , M., BAKER, C., LIGHT, J., TULPAN, D., AND

VECCHIO, A. Non-intrusive patient monitoring of
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