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ABSTRACT

There is an increase rise in the usage of mobile health seisor
wearable devices and smartphones. These embedded sysiens h
tight limits on storage, computation power, network cotivéy

and battery usage making it important to ensure efficienmags
communication of sensor readings to centralized node£sefve-
qguency Transform or Entropy encoding schemes such as atithm
or Huffman coding can be used for compression, but they incur
high computational cost in some scenarios or are oblivioufe
higher level redundancies in signal. To this end, we usegrtbp-
erty of periodicity in these naturally occurring signalsisas heart
rate or gait measurements to design a simple low cost scheme f
data compression. First, a modified Chi-square periodognatric

is used to adaptively determine the exact time-varyingogkcity

of the signal. Next, the time-series signal is folded intarfes

of length equal to a pre-determined period value. We haveesise
fully tested the scheme for good compression performanE€ia,
motion accelerometer data and Parkinson patients saniggéekng

to 8-14X compression in large sample sizes (6-8K sampled) an
2-3X in small sample sizes (200 samples). The proposed shem
can be used stand-alone or as pre-processing step fongxisth-
niques in literature.

Categories and Subject Descriptors
1.4.2 [Compression (coding): approximate methods, exact coding

General Terms
Performance
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1. INTRODUCTION

There is an increasing rise in the usage of mobile health sen-
sors in wearable devices, Body Area Networks (BANs) and smar
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phones. Wearable devices such as Nike+ Fuethafitbit> and
the rumored iWatch monitor personal fitness of an individisag
accelerometer and other passive sensors. A number of $roagp
apps use phone inertial sensors and GPS for fitness-tragking-
bile users, although they achieve lower accuracy than destic
wearable devices. Body sensors such as Wahoo heart-raie mon
tor® and Nike+ shoe sensdrare also gaining significant market.
The LifeWatch-V Android phone can monitor body temperature
ECG, body fat, stress, blood glucose and saturatidncreasing
overall cost of medical care and advances in wireless téogyo
has also paved way for cost-effective remote monitoringaigmts
using wireless devices. These devices, the stand-aloripregut

or body-sensors or smartphone sensors, are typical embeagide
tems with tight limits on storage, computation power, net@n-
nectivity and battery usage. Although newer smartphonesiaw
equipped with Quad or Oct core processors, battery life &siass
concern in these devices. Continuous streaming of sendata’
must be done in a cost-effective manner, in order to avoitehat
drainage. Apart from this, efficient compression is helpéute-
duce the transmission cost of data-uploads in cellular ordsv A
number of healthcare researchers are using these sens@s fo
lot health intervention programs that study the impact ddlte
monitoring on patient health. A wide variety of patient plapu
tion suffering from obesity [21], cardiac rehabilitatio?] fand di-
abetes [22] have benefitted. Locomotion monitoring is Usefu
gait analysis, early diagnosis of cognitive impairmerke llemen-
tia [18], Alzheimer®@Zs disease [1], ParkinsoAds disease [15]
and detection of autistic disorders in infants. Frequenagsform
such as Fourier series or DWT or Entropy encoding schemés suc
as arithmetic or Huffman coding or codebook based LZW coding
schemes are efficient for data compression, however, tlepatr
suitable for mobile medical data for two reasons:

1. The computational complexity of these schemes may be stil
high for many scenarios. For example, the arithmetic coding
scheme requires a multiplication operation per encoded bit

. These hit-level schemes may fail to capture the highel lev
redundancies in human signals. For example, the heartbeat
pattern and human walking pattern are periodic by nature.

In this paper, we develop a simple, cost-efficient schemedar-
pressing such sensor measurements. A modified Chi-square pe
odogram metric is used to adaptively determine exact tierging
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periodicity of the signal. This scheme is found to be more-cos

effective than auto-correlation-based or Fourier-baggmaaches
to periodicity detection. Next, the time-series signalalsléd into
‘Frames’ of length equal to pre-determined period value.eAd$
consecutive ‘Frames’ are group together (we call them Gafup

analysis. This is, by far, most popular approach for pecibgide-
tection. Plus, a Kalman filter is used to track changes iropésity
with time. Elfeky et al. [7] model this problem as an approatm
string matching algorithm. Indyk et al. [10] uses a dimenaiae-
duction technique. These techniques have high computdtiost.

Frames (GOF)). The first Frame in a GOF is intra-coded (Pgmar Auto-correlation and frequency analysis is also inacejradth in
or P frame) while remaining frames are matched to P-Frame and terms of resolution offered by frequency transforms andeaperi-

residual frames are then constructed by subtracting dufirame

mental results. We use a modifigd-periodogram based approach,

from P Frame. This frame is called as Secondary (S) frame. The adapted from the approach presented in [19, 8] to reduceiits ¢

residue is then quantized. The residue and P-frame can theeifur
compressed using other procedures reported in existiaigtiire,
or skipped (in case of low computational capacity of deviodk
have successfully tested the scheme for good compressitor-pe

mance in ECG data, EMG data, accelerometer data from Parkins

patients and healthy individuals.

The paper is organized as follows: Section 2 gives a brigeévev
of existing work. Section 3 gives details of proposed altponi
Section 4 gives an overall discussion of proposed appraescép-
plications and limitations and directions for future work.

2. RELATED WORK

Lots of research in bio-medical data compression has facuse
on ECG signal. AZTEC [5] achieves a high compression ratio bu

loses a lot of signal fine-grain information. Discrete Ceslinans-
form [3, 4], Discrete Legendre Transform [17] and Waveléfs P]
based techniques have been proposed which transposerbétsig
frequency domain followed by quantization and entropy eimap

procedures. Many schemes also depend on accurate QRS detec-

tion (peak in ECG signals). Philips [16] model ECG signahgsa

polynomial of ordem. However, all these scheme do not consider

the computational complexity of the base algorithm.

The transform domain approaches (such as DCT or DWT) use

the fact that higher frequency components are insignifiaadtcan
be truncated without loss in major information conveyed hg t
signal. This assumption is generally true, however the tgetion
threshold for high frequency content should be carefullsived.
The entropy coding techniques are lossless schemes whith tr
assign shorter (even fractional) codewords to symbols énbil
stream to approach Shannon’s limit for information comgi@s

Nabar et al. [12] uses a model driven approach to compress ECG

signals. This approach is template-driven and restriacteHGG
signals. The computation cost of generating the signalnpara
ters can be high for low power sensors. Quite different froese

approaches, we model this problem as a generic problem of com

pression a generic quasi-periodic signal (not limited tacH{ata).
We determine the period of available sensor output, dividietd
‘Frames’ and obtain the residues, as will be discussed rieée

DCT, DLT or DWT based approaches can be used to encode the
residues. Our work draws analogy from video compression- sta
dards such as MPEG [20] where video is divided into Frameshwhi

are then matched and a residue is formed.

putational overheads.

3. ALGORITHM

In this section, we give an overview of our compression s@&em
We introduce the term ‘Frame’ which refers to one period ofeti
series data under consideration. The scheme is dividedttieto
following steps:

1. Frame segregation: The periodicity of the given timeeser
is determined from the peak of computed modifigd pe-
riodogram. The period is updated periodically using a local
update mechanism.

. Frame packaging: The input signal is split into a Group of

Frames. The first frame in each group is chosen as reference
and called as P-frame. The later frames are called S-frames
and are predicted from P-frame. They are first aligned to P-
frame and then subtracted from it to obtain a residue.

3. Residue coding (optional): The residue and P-frame can be

encoded further using standard data compression teclmique
First, a frequency transform operation (such as Discrete Co
sine or Wavelet Transform) can be used to transform the sig-
nal into frequency domain. It has been observed that most
natural occuring signals have significant low frequency-com
ponent. This property has been used in signal, image and
video processing algorithms to truncate or quantize thiedrig
frequency terms from the frequency transform coefficients,
obtaining significant compression ratios with insignificiasses.
Entropy coding procedures such as arithmetic and Huffman
coding can be used to compress the quantized coefficients
to the Shannon’s compression limit. These stages may incur
high computational cost and have been well established for
image, videos and ECG signals (see literature review). We
don’t make any contribution to this stage, thus we skip the
description in this paper. We use direct quantization (@tith
frequency transform or entropy encoding schemes) which re-
quires no computations.

3.1 Frame segregation

Figure 1 shows sample output from health and medical sensors
for ECG, diseased EMG and gait signals. The EMG and Parkin-

tion and estimation procedure on block X 8 pixel group within
a video frame) level and is quite cumbersome. Plus, intchrgp
or residue coding is done using frequency transform (Disdt®-
sine Transform) followed by quantization and entropy emugd

However, the frame matching procedure in our case is differe

and much simpler. Unlike video frames which have consta, si
our frames have variable size (depending on human activigy}
they are simple 1-dimensional signals and no block-matrisime-
quired.

Periodicity detection is the first step in our approach. Hantthy
et al. [14] use a combination of time-frequency and autaetation

The main idea behind this illustration is to show that manysse
readings from human subjects and behavior are periodic teat g
extent. Thus, we need an algorithm for automatic detectiqgreo
riod of the signal. Autocorrelation function is the most plaw
approach to estimate the periodicity of a given signal. Caretake
a segment of signalX) and obtain its autocorrelation as follows:

E[(Xm — 1) (Xmip — p)]

o2

Rp =

) @
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Figure 1: lllustration of data collected from (a) EMG signals from neuropathy patients, (b) ECG signals from normal persn, (c)
Gait (accelerometer) of Parkinson patient, and (d) Normal grson walking. The x and y axes are not normalized.

Table 1: Relative computational performance of Period detetion algorithms in Matlab (ms)

Signal X1 X2 X3 X4
AutocorrelationR p 193.74+2.1 [ 2325+£2.1 | 33+£.22 | 33.25+£1.2
Discret Cosine Transfor@@p | 62.3+.04 | 124.1+2.5 | 3.6 .09 | 3.7+ .09
x>-Periodogramy » 52.1+.1 90 + 6.1 44.09 4.1+ .08
Modified x*-Periodogrank, | 46.9 + .06 | 83.8 +1.1 | 3.7+ .16 | 3.7+ .08

wherey is mean of the signak ando? is the variance. The func-
tion Rp is maximum at the point corresponding to the period of in-
put signal. This approaches, however, requires compugngrsl
order statistics (both numerator and denominator of eguat).
Fourier analysis can also be used to obtain the period ofkign
however the output signal is a complex number. Discreten@osi
Transform is therefore preferred, as it produces real aeffis
from real valued inputs. It can be computed as follows:

N—-1 . 1
Cp = nE::Ochos {N (n—l— 5) P]
The peak in DCT frequency diagram corresponds to major har-
monic of the
signal, which can be converted to obtain the period of signal
However, we encountered some practical difficulties in #ys
proach:

1. Signal noise leads to inaccuracies in detection of copesk.

2. Frequency domain representation is quantized in ineofa
sampling frequency, thereby blurring the time-domain reso
lution of determined period.

Implementing the cosine term requires time-series expanghich
may be slow in embedded devices. If we divide sighainto K
Frames of an arbitrary peridé, they?-periodogram approach [19,
8] uses the following metrig p to calculate the period.

xp = KN 25:1(/“1 - /1')2
Sohe (X — p)?
wherey is the mean of signaX; andy, is the mean of K values
under each time unit of the period lengthr is maximum for the

period P of the sequence. Since we are interestel torrespond-
ing to the maximum value of p over range of values, we modify
this metric to ease the computations:

P
Xp=K Z(Hh —p)?
h=1

This approach leads to lesser computations than the abave me
tioned approach without affecting accuracy. The relativmpu-
tational requirements of these algorithms on a Desktom@u2i8
GHz single core on core-i7 processor) are given in Table 1. Va
ues are reported for all the four test signals mentioned ebde
use samples of length 1000, 2000, 200 and 200 for EMG, ECG,
Parkinson and normal walk signals. Average values overidstr
is reported for all 4 test signals. We expect an orders of imagn
tude improvements in the results using low-level C impletaton
(on an iPhone), which will remove overheads of functionscatd
interpretation.

We ran our experiments over all the four types of signals (ECG
EMG, Parkinson and normal gait) and observed that modified
periodogram scheme gives accurate detection of signabgpas
compared to other two schemes. Figure 2 illustrates theaeffiof
using modifiedy? periodogram¥ ) over DCT and auto-correlation
function. The DCT coefficients are plotted in frequency doma
and the peak in frequency domain can be back-translatedn® ti
domain. The peak for EMG and ECG signals and Parkinson gait
don’t correspond to visible periodicity in the time-serigfich we
desire to obtain for compression purposes. We attribugetthihe
fact that these signals are not exactly sinusoidal and regteetion
of sinusoidal frequency component is difficult. Normal wallg-
nal, in this case is sinusoidal and peak is correctly dedeat®CT
domain. The auto-correlation function also performs wallydor



Table 2: Energy of compressed coefficients (Percentage ofigr
inal signal energy

Signal X1 | X2 X3 | X4
With Frame Packaging 7.06 | 0.23| 12.18] .69
With Frame Packaging+Quanf.3.27 | 0.10 | 6.85 | .25

normal gait. There is no distinct peak observed for othenaig
types. It can be seen that our scheme gives correct perigthlen
for these signals. There is a distinct peak for each of thedigumal
types.

3.2 Frame Packaging

Table 3: Compression Efficiency of proposed approach. ( file
size is reported in bytes)

Signal X1 X2 X3 X4
Original signal 39619 | 43334 2381 | 2563
With Frame Packaging (FR) 6971 | 9735 | 1336 | 1360
With FP+ Quantization | 4922 | 3182 | 839 | 822

which were short length. We obtain 8-14x compression fog joe-
riodic sequences such as EMG and ECG signal. The signahlengt
for the four signals were 6000, 8000, 200 and 200 samples.
When no quantization is done, there is no loss in signal galue
(lossless coding). We reconstructed the signal in case aftqa-

Once the period is determined, frames can be segregated fromtion and the values are plotted in Figure 4 for a small samfédl o

the original signal and grouped together into ‘GOF’ or Graip

four signals. It can be seen that quantization leads tonifsignt

Frames. The first frame is used as a reference and called as Piosses in compression efficiency (less than 3% in all cases).

frame or Primary Frames, while other frames are predigtieel
coded with reference to P frame by subtraction operationeyTh
are called as Secondary or S-frames. However, frame stibtrac
is not always trivial, because of time-varying periodicityd noise

of these signals. There are a number of sequence alignnamnt te
niques for bioinformatics and other sequences [6], but theyr
significant computational costEpisodic Data: Data from hu-
man subjects is periodic but the period may vary with timer Fo
example, while walking a person takes rhythmic steps whieh a
recorded as quasi-periodic time-series from accelerarsetesors
but depends on walking speed. This is the same for hearanate
Electromyograms (not always though, due to added noiseg Th
rhythmicity or periodicity varies with time. For example,par-
son may be walking or running which will change the period for
accelerometer or ECG readings. Whenever needed, we aliggn mu
tiple frames using a simple heuristic - matching their maxind
minima, instead of matching the entire frame. The lag isestor
and transmitted separately (if it exist). To update theqakof a
time-varying signal, [14] propose using an adaptive Kalriker.
We run the period detection algorithm in the local neighlbordhof
past values to minimize our computation time.

After frame matching, the current frame is subtracted from P
Frame to obtain S-residue frame. The Frame packaging dperat
is straight-forward as it involve subtraction of S-framesnfi P-
frames, and doesn’t involve much computational complexity

3.3 Residue Coding

The residue thus obtained can be quantized to remove the non-

significant values and obtain further compression. It isithes-
sible to terminate the operation, or use existing appraaésach
as DCT, DWT, arithmetic or Huffman encoding; discussed i re
lated works section) to achieve further compression. Thaae
depends on the availability of computational resourcefiénsen-
sor. Figure 3 shows sample residues from the four test sigiial
can be seen that the residues have significantly lower erteagy
original signal. Most of the residues are zero values raugiino
value for transmission. Thus, the mean energy of residuaishm
less than the original signal. This can be seen in Table 2whic
gives energy of output signals as a percentage of inputlsigna

In this paper, we quantized the coefficients from residueseho
magnitude was less than 1% of maximum signal value. We have
not used any post-processing technique like wavelets thmaetic
coding. Using them will complement our approach and imptbee
compression efficiency, at the cost of computational corifyle

Table 3 gives the compression performance of the proposed ap
proach. The EMG and ECG traces were of long duration, andehenc
we obtain much higher compression ratio than with gait sace

4. DISCUSSION & FUTURE WORK

In this paper, we presented an algorithm to achieve high com-
pression of health sensors’ time series data in mobile dsvithe
algorithm is low-cost, making it suitable for low-power eedaed
devices. It achieves 8-14X compression for long datasetsiin
experiments done using Matlab platform on Windows workstat

The algorithm is compatible with existing Wavelets, Foyrgith-
metic or Huffman based approach and complements their iperfo
mance. Thus, as needs permits, these approaches can batedeg
to yield further compression.

As a future work, we would like to implement this scheme in our
portable wearable sensors such as Shimmer platform anditise w
ECG/ Accelerometer sensors to measure savings in reathivorl
plementation. We would also like to investigate the use aft-co
effective Wavelet Transform implementations [13] to farthre-
duce our computational cost of period detection using ibperty
of multi-resolution analysis.
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