
1

Federated Learning Hyper-Parameter Tuning From
A System Perspective

Huanle Zhang, Lei Fu, Mi Zhang, Pengfei Hu, Xiuzhen Cheng, Fellow, IEEE, Prasant Mohapatra, Fellow, IEEE,
and Xin Liu, Fellow, IEEE,

Abstract—Federated learning (FL) is a distributed model
training paradigm that preserves clients’ data privacy. It has
gained tremendous attention from both academia and industry.
FL hyper-parameters (e.g., the number of selected clients and
the number of training passes) significantly affect the training
overhead in terms of computation time, transmission time,
computation load, and transmission load. However, the current
practice of manually selecting FL hyper-parameters imposes a
heavy burden on FL practitioners because applications have
different training preferences. In this paper, we propose FedTune,
an automatic FL hyper-parameter tuning algorithm tailored to
applications’ diverse system requirements in FL training. Fed-
Tune iteratively adjusts FL hyper-parameters during FL training
and can be easily integrated into existing FL systems. Through
extensive evaluations of FedTune for diverse applications and FL
aggregation algorithms, we show that FedTune is lightweight and
effective, achieving 8.48%-26.75% system overhead reduction
compared to using fixed FL hyper-parameters. This paper assists
FL practitioners in designing high-performance FL training
solutions. The source code of FedTune is available at https:
//github.com/DataSysTech/FedTune.

Index Terms—Federated Learning, Hyper-parameter Tuning,
System Overhead, Training Preference, Optimization

I. INTRODUCTION

FEDERATED Learning (FL) has been applied to a wide
range of applications such as mobile keyboard [1], speech

recognition [2], and human stroke prevention [3] on top of
mobile devices and Internet of Things (IoT) [4], [5]. Compared
to other model training paradigms (e.g., centralized machine
learning [6], conventional distributed machine learning [7]),
FL has unique properties with regards to (1) Massively Dis-
tributed: the number of clients is much larger than the clients’
average number of data points; (2) Unbalanced Data: clients
have a different amount of data points; and (3) Non-IID Data:
each client’s data may not represent the overall distribution [8].
In addition to the common hyper-parameters of model training
such as learning rates, optimizers, and mini-batch sizes, FL
has unique hyper-parameters, including aggregation methods
and participant selection [9], [10]. Nonetheless, many FL
algorithms, e.g., FedAvg [8], have been proved to converge
to the global optimum even different FL hyper-parameters are

Huanle Zhang, Pengfei Hu, and Xiuzhen Cheng are with the School of
Computer Science and Technology, Shandong University, China. E-mail:
{dtczhang, phu, xzcheng}@sdu.edu.cn; Lei Fu is with the Bank of Jiangsu
and Fudan University, China. E-mail: leileifu@163.sufe.edu; Mi Zhang is with
the Department of Computer Science and Engineering, Ohio State University,
USA. E-mail: mizhang.1@osu.edu; Prasant Mohapatra and Xin Liu are with
the Department of Computer Science, University of California, Davis, USA.
E-mail: {pmohapatra,xinliu}@ucdavis.edu.

Pengfei Hu is the corresponding author.

Fig. 1. FL practitioners have various constraints in determining FL hyper-
parameters for different applications.

adopted [11] [12].
Although FL hyper-parameters do not affect FL conver-

gence (i.e., the same final global model accuracy), they
significantly affect the training overheads of reaching the
final model. Specifically, Computation Time (CompT), Trans-
mission Time (TransT), Computation Load (CompL), and
Transmission Load (TransL) are the four most crucial system
overhead:

• Computation Time (CompT). It measures how long an FL
system spends in model training. Overall model training
time must be short for applications that require fast
adaptation to environments (e.g., security problems).

• Transmission Time (TransT). It represents how long an FL
system spends in model parameter transmission between
clients and servers. Without a high-speed transmission
solution, transmission time can overwhelm the overall FL
training since models are generally large and multiple
rounds of model parameter transmissions are required.

• Computation Load (CompL). It is the number of Floating-
Point Operation (FLOP) that an FL system consumes. For
low-profile devices such as IoT nodes, the computation
load must be small as these devices are equipped with
low computational resources.

• Transmission Load (TransL). It is the total data size
transmitted between the clients and the server. This is
critical when data transmission is expensive or its power
consumption is a concern. For example, outdoor appli-
cations usually rely on cellular communications, which
need to pay a considerable price for transmitting a large
amount of data.

Fig. 1 summarizes the different application scenarios faced
by FL practitioners in determining FL hyper-parameters.
Application scenarios have different training preferences in
terms of CompT, TransT, CompL, and TransL. Consider the

2

following examples: (1) attack and anomaly detection in
computer networks [13] is time-sensitive (CompT and TransT)
as it needs to adapt to malicious traffic rapidly; (2) smart
home control systems for indoor environment automation [14],
e.g., heating, ventilation, and air conditioning (HVAC), are
sensitive to computation (CompT and CompL) because sensor
devices are limited in computation capabilities; (3) traffic
monitoring systems for vehicles [15] are communication-
sensitive (TransT and TransL) because cellular communica-
tions are usually adopted to provide city-scale connectivity;
(4) precision agriculture based on IoT sensing [16] is not
time-urgent but requires energy-efficient solutions (CompL
and TransL); (5) healthcare systems, e.g., fall detection for
elderly people [17], require both fast response and small
energy consumption (CompT, TransT, CompL, and TransL);
and (6) human stampedes detection/prevention [18] require
time, computation, and communication efficient systems.

A few approaches have studied FL training performance
under different hyper-parameters [19]. However, they do not
consider CompT, TransT, CompL, and TransL together, which
is essential from a system’s perspective. Besides, they almost
all use the number of training rounds for comparison, i.e.,
round-to-accuracy [12], [20] and convergence rate [8], [11].
The corresponding observations cannot be directly applied to
guide FL system design in our context. This is because clients
in FL are heterogeneous in terms of their different amounts of
local training data (i.e., unbalanced data), computation speeds,
and transmission rates, and thus each training round has a
different time length, computation cost, and transmission cost.
For example, selecting more clients in each training round
results in a better round-to-accuracy performance [8], [11].
But it does not necessarily mean a better time-efficiency as the
time length of each training round increases with the number
of selected clients, nor a better transmission-efficiency as more
clients need to transmit model parameters in each training
round. In addition, it is challenging to tune multiple hyper-
parameters in order to achieve diverse training preferences,
especially when we need to optimize multiple system aspects.
For example, it is unclear how to select hyper-parameters to
build an FL training solution that is both CompT and TransL-
efficient.

This paper targets a new research problem of optimizing
the hyper-parameters for FL from a system perspective. To do
so, we formulate the system overheads of FL training and
conduct extensive measurements to understand FL training
performance. Our measurement results illustrate how to tune
hyper-parameters for simple application scenarios and are
the basis of our tuning algorithm. To avoid manual hyper-
parameter selection, we propose FedTune, an algorithm that
automatically tunes FL hyper-parameters during model train-
ing, respecting application training preferences. In summary,
we make the following contributions:

1) To the best of our knowledge, FedTune is the first FL
hyper-parameter tuning algorithm that jointly considers
applications’ training preferences for CompT, TransT,
CompL, and CompL. We conduct measurements to
understand system training overhead and design an
automatic tuning algorithm based on our measurement

TABLE I
RELATED WORK ON FL HYPER-PARAMETER OPTIMIZATION. WE TAG IF

(1) THE WORK CAN RUN IN AN ONLINE AND SINGLE TRAIL MANNER AND
(2) THE WORK TARGETS SYSTEM OVERHEADS OF FL TRAINING.

Work Description Single trial System

FTS [22] optimize client models ✗ ✗
Zhiyuan et al. [23] PSO-based optimization ✗ ✗
DP-FTS-DE [24] trade-off privacy and utility ✗ ✗
Auto-FedRL [25] improve model accuracy ✓ ✗

[26] improve training robustness ✓ ✗
FedEx [27] NAS based framework ✗ ✗
FLoRA [28] NAS based framework ✓ ✗

FedTune (Ours) a lightweight framework ✓ ✓

results.
2) FedTune is a general framework that applies to various

FL hyper-parameters. In this paper, we take the number
of participants, the number of training passes, and the
model complexity as examples to illustrate FL hyper-
parameter tuning.

3) We extensively evaluate FedTune by various appli-
cations/datasets (e.g., command detection, handwrit-
ing recognition) and aggregation methods (e.g., Fed-
Nova and FedAdagrad). FedTune reduces an average
of 8.48%-26.75% system overhead compared to using
fixed FL hyper-parameters for different applications
and aggregation methods. In addition, FedTune reduces
some application scenarios by up to 70.51%, showing
that FedTune greatly benefits application scenarios that
common hyper-parameters perform poorly.

4) We release our code at https://github.com/DataSysTech/
FedTune to facilitate the research of FL hyper-parameter
tuning.

A preliminary version of this work was published in MIL-
COM 2022 [21]. In comparison, this paper makes the follow-
ing extensions. (1) We conduct more experiments to illustrate
the FL training, which helps readers to understand the nature
of FL training when different hyper-parameters are used. For
example, Fig. 3 shows the properties of FL training from
different aspects. (2) We highlight the measurement results and
provide intuitive explanations to aid FL practitioners in deter-
mining hyper-parameters when only a single system overhead
is concerned. The results are depicted in Fig. 6, which guide
FL practitioners to select hyper-parameters. (3) We conduct
significantly more experiments to evaluate FedTune, e.g., the
study of the penalty mechanism (Fig. 8 and Fig. 9). (4) We
thoroughly revise the whole paper to make it more readable
and concise, and extend our 6-page conference paper to this
12-page extension version.

II. RELATED WORK

Hyper-Parameter Optimization (HPO) is a field that has
been extensively studied [29]. Many classical HPO algo-
rithms, e.g., Bayesian Optimization (BO) [30], successive
halving [31], and hyperband [32], are designed to optimize
hyper-parameters of machine learning models. However, they
cannot be directly applied to FL because FL has unique hyper-
parameters such as the client-side and server-side aggregation

3

(a) User distribution (b) Class distribution (c) Example spectrograms
Fig. 2. Google speech-to-command dataset used in measurements.

TABLE II
NOTATIONS USED IN THIS PAPER.

Notation Meaning

K the total number of clients
M the number of participants in each training round
E the number of training passes over its local data
R the number of training rounds to reach final model
bk,r whether client k participates in training round r

t, q, z, v system overheads of computation time, transmission
time, computation load, and transmission load

α, β, γ, δ preference for omputation time, transmission time, com-
putation load, and transmission load

methods, and FL is a different training paradigm from central-
ized machine learning and conventional distributed machine
learning.

Designing HPO methods for FL is a new research area. Only
a few approaches have touched FL HPO problems. Table I lists
several representative approaches, where we highlight whether
the work can execute in an online and single trial manner
and whether the work targets system overhead in FL training.
For example, BO has been integrated with FL to improve
different client models [22] and strength client privacy [24];
Zhiyuan et al. apply Particle Swarm Optimization (PSO) to
accelerate the search speed of FL hyper-parameters [23], but
without the support for the single-trial and system overhead.
Several approaches apply reinforcement learning to adjust FL
hyper-parameters [25], [26], which introduces extra complex-
ity and loss of generality. FedEx is a general framework to
optimize the round-to-accuracy of FL by exploiting the Neu-
ral Architecture Search (NAS) techniques of weight-sharing,
which improves the baseline by several percentage points [27];
FLoRA determines the global hyper-parameters by selecting
the hyper-parameters that have good performances in local
clients [28]. Recently, a benchmark suite for federated hyper-
parameter optimization [33] is designed, whose effectiveness
remains to be investigated.

For two reasons, existing approaches cannot be directly
applied to our scenario of optimizing FL hyper-parameter for
different FL training preferences. First, CompT (in seconds),
TransL (in seconds), CompL (in FLOPs), and TransL (in
bytes) are not comparable with each other. Incorporating
training preferences in HPO is not trivial. Second, hyper-
parameter tuning needs to be done during the FL training. No
“comeback” is allowed as the FL model keeps training until
its final model accuracy. Otherwise, it will cause significantly
more system overhead.

TABLE III
DIFFERENT MODELS USED FOR THE MEASUREMENT STUDY.

Model ResNet-10 ResNet-18 ResNet-26 ResNet-34

#BasicBlock [1, 1, 1, 1] [2, 2, 2, 2] [3, 3, 3, 3] [3, 4, 6, 3]
#FLOP (×106) 12.5 26.8 41.1 60.1
#Params (×103) 79.7 177.2 274.6 515.6

Accuracy 0.88 0.90 0.90 0.92

III. UNDERSTANDING THE PROBLEM

We first quantify the system overhead of FedAvg to illustrate
the problem. Table II tabulates the notations that are used
in this paper for quick reference. FedAvg minimizes the
following objective

f(w) =

K∑
k=1

nk

n
Fk(w) where Fk(w) =

1

nk

∑
i∈Pk

fi(w)

(1)
where fi(w) is the loss of the model on data point (xi, yi),
that is, fi(w) = ℓ(xi, yi;w), K is the total number of clients,
Pk is the set of indexes of data points on client k, with nk =
|Pk|, and n is the total number of data points from all clients,
i.e., n =

∑K
k=1 nk. Due to the large number of clients in a

typical FL application (e.g., millions of clients in the Google
Gboard project [1]), a common practice is to randomly select
a small fraction of clients in each training round. In the rest of
this paper, we refer to the selected clients as participants and
denote M as the number of participants in each training round.
Each participant makes E training passes over its local data
in each round before uploading its model parameters to the
server for aggregation. Afterward, participants wait to receive
an updated global model from the server, and a new training
round starts.

A. System Model

Assume that clients are homogeneous regarding hard-
ware (e.g., CPU/GPU) and network (e.g., transmission speeds).
Let bk,r indicate whether client k participates at the training
round r. Then, we have

∑K
k=1 bk,r = M , i.e., each round

selects M participants. The number of training rounds to reach
the final model accuracy is denoted by R, which is unknown
a priori and varies when different sets of FL hyper-parameters
are used in FL training. CompT, TransT, CompL, and TransL
can be formulated as follows.

• Computation Time (CompT). If client k is selected in
a training round, its training time can be represented by
C1 · E · nk, where C1 is a constant. It is proportional to
its number of data points (i.e., nk) because nk decides

4

(a) Accuracy vs training rounds (b) Accuracy vs computation time (c) Time length of round

(d) Accuracy vs computation load (e) Accuracy vs transmission time (f) Accuracy vs transmission load
Fig. 3. Illustration of FL training when a different number of participants are used in the measurement.

the number of local updates (number of mini-batches) for
one epoch, and each local update includes one forward-
pass and one backward-pass. The computation time of the
training round r is determined by the slowest participant
and thus is represented by C1 · E ·maxKk=1 bk,r · nk. In
total, the computation time of an FL model training can
be formulated as

CompT = C1 · E ·
R∑

r=1

K
max
k=1

bk,r · nk (2)

• Transmission Time (TransT). Each participant in a
training round needs one download and one upload of
model parameters from and to the server [19]. Thus, the
transmission time is the same for all participants in any
training round, i.e., a constant C2. The total transmission
time is represented by

TransT = C2 ·R (3)

• Computation Load (CompL). Client k has C3 · E · nk

computation load if it is selected in a training round,
where C3 is a constant. The computation load of the
training round r is the summation of each participant’s
computation load and thus is C3 ·E ·

∑K
k=1 bk,r ·nk. We

can formulate the overall computation load as

CompL = C3 · E ·
R∑

r=1

K∑
k=1

bk,r · nk (4)

• Transmission Load (TransL). Since each training round
selects M participants, the transmission load for a train-
ing round is C4 · M where C4 is a constant. The total
number of training rounds is R, and thus, the total
transmission load of an FL training is represented by

TransL = C4 ·R ·M (5)

As we assume that clients have homogeneous hardware and
network, clients have the same C1, C2, C3, and C4. Thus, these
constants do not affect the comparison of training overhead
under different hyper-parameters when the same model is
used. In the experiments, we assign the model’s number of
FLOPs for one input to C1 and C3, and the model’s number
of parameters to C2 and C4.

B. Measurement Setup

We conduct measurements to study the system overheads
when different FL hyper-parameters are used for training. The
measurements aim to help us better understand FL training
and are the basis of our automatic tuning algorithm. We use
the Google speech-to-command dataset [34], which classifies
one second’s audio clip into 35 commands such as yes, no,
right, and up. The dataset includes audio clips that are crowd-
sourced from 2618 clients. As officially suggested in [34],
we use 2112 clients’ data for training and the remaining 506
clients’ data for testing. Fig. 2a shows the distribution of
the number of clients versus the number of data points. It is
clear that clients’ data are heterogeneous: many clients have
only one data point, while others can have up to 316 data
points. Fig. 2b plots the histogram of each class’s number of
data points, which shows that the overall data distribution is
unbalanced. The speech-to-command dataset demonstrates the
three data properties of FL: massively distributed, unbalanced,
and non-IID. Thus, the measurement observations from the
Google speech-to-command dataset apply to other practical FL
applications/datasets. In the measurement study, we investigate
the FL training overhead in terms of the following three hyper-
parameters.

• The number of participants (i.e., M). It is well-known
that more participants in each training round have a
better round-to-accuracy performance [8]. However, the
time efficiency is not necessarily better because the time

5

length of each training round also increases with more
participants. Besides, it is unclear how computation and
communication overheads behaves for different number
of participants. In the measurement study, we set M to
1, 10, 20, and 50.

• The number of training passes (i.e., E). Increasing the
number of training passes as a method to improve
communication efficiency has been adopted in several
works, such as FedAvg [8] and FedNova [11]. However,
how does the number of training passes affect the time
overhead and computation overhead is unclear. In the
measurement study, we set E to 0.5, 1, 2, 4, 8, where
0.5 means that only half of each client’s local data are
used for local training in each round.

• Model complexity. We also investigate how the model
complexity influences the training overheads if a target
accuracy is met. Although it is common knowledge
that smaller models have better time and computation
performance in other paradigms of model training, we
are the first to report the four system overhead versus
model complexity in the FL setting. We use ResNet [35]
to build different models, as listed in Table III.

C. Illustration of FL Training
To gain an intuitive understanding of FL training, we plot

FL training profiles in Fig. 3 where a different number of
participants M is used on each round. We use ResNet-18 and
set the target model accuracy to 0.8. In this measurement, E,
C1, C2, C3 and C4 are all set to 1, for illustration purpose.
Results are normalized to the largest overhead.

As expected, more participants lead to a better accuracy-
to-round performance (Fig. 3a). However, if the FL training
is stopped too early, it is misleading to conclude that more
participants result in higher final model accuracy. Instead, they
all reach the same model accuracy as FL hyper-parameters
do not invalidate the convergence. Correspondingly, more
participants have a better accuracy-to-CompT performance, as
shown in Fig. 3b. However, the performance gap between a
different number of participants for the accuracy-to-CompT is
less significant than the accuracy-to-round performance. This
is because the time duration of each training round increases
when more participants are selected on each training round
(Fig. 3c). In this measurement, there are no obvious accuracy-
to-CompT difference when 20 and 50 participants are selected.
On the other hand, fewer participants lead to better accuracy-
to-CompL performance, as shown in Fig. 3d, which means
the effectiveness of each unit computation operation is higher
when fewer participants are involved in the FL training. The
accuracy-to-TransT (Fig. 3e) is the same as the accuracy-to-
round (Fig. 3a) since we adopt C3 = 1 for plotting. That
is, more participants have a better accuracy-to-TransT perfor-
mance. Fig. 3f shows that the accuracy-to-TransL performance
has the opposite trend, i.e., more participants result in a worse
performance.

D. Measurement Results
In Section III-C, we illustrate CompT, CompL, TransT, and

TransL performance when a different number of participants

(a) Computation Time (b) Transmission Time

(c) Computation Load (d) Transmission Load
Fig. 4. CompT, TransT, CompL, and TransL when a different number of
participants and a different number of training passes are used. The lower the
better.

(a) Computation time and
load

(b) Transmission time and
load

Fig. 5. CompT, TransT, CompL, and TransL versus model complexity. The
lower the better.

are adopted in FL training. This section presents results from
more extensive measurements for the number of participants
M , the number of training passes E, and the model complex-
ity. The results are averaged over three runs.

• Computation Time (CompT). Fig. 4a compares CompT
for a different number of participants M and a different
number of training passes E. In the experiments, we use
ResNet-18 and normalize their overheads. As we can see,
more participants lead to smaller CompT, i.e.; it takes
a shorter time to converge. However, the difference is
insignificant among 10, 20, and 50 participants, especially
when the number of training passes is large. In addition,
we can see that larger E has worse CompT. There is no
apparent difference between E = 0.5 and E = 1 though.
In a nutshell, the common knowledge of more participants
is faster for FL model training is valid. However, the gain
of more participants is insignificant when the number of
participants is moderate. In addition, it is preferred to
adopt a small number of training passes to achieve good
time efficiency.

• Transmission Time (TransT). Fig. 4b plots TransT,
which clearly shows that TransT favors larger M and
E. Since TransT is dependent on the number of training
rounds R (Eq. (3)), it is equivalent to the metric of round-

6

to-accuracy. Our measurement result is consistent with
common knowledge (e.g., [12]) that more participants
and more training passes have a better round-to-accuracy
performance. We can also observe that when M is small,
e.g., 1, TransL is much worse than the other cases.

• Computation Load (CompL). Fig. 4c shows CompL.
We make the following observations: (1) More partici-
pants result in worse CompL. The results indicate that the
gain of faster model convergence from more participants
does not compensate for the higher computation costs
introduced by more participants. (2) CompL is increased
when more training passes are used. This is probably
because that larger E diverges the model training [20],
and thus, the data utility per unit of computation cost is
reduced.

• Transmission Load (TransL). Fig. 4d illustrates TransL.
As shown, more participants greatly increase TransL.
This is because more participants can only weakly reduce
the number of training rounds R [11], however, in each
round, the number of transmissions increases linearly
with the number of participants. Regarding the number
of training passes, larger E reduces the total number
of training rounds R and thus has better TransL. On
the other hand, the gain of larger E diminishes. The
results are consistent with the analysis of [11] that R
is hyperbolic with E (the turning point happens around
100-1000 in their experiments).

• Model Complexity. Table III tabulates the models for
comparing training overheads versus model complexity.
In this experiment, we select one participant (M = 1)
to train one pass (E = 1) on each training round.
Fig. 5 shows the normalized CompT, TransT, CompL,
and TransL for different models. The x-axis is the target
model accuracy, and the y-axis is the corresponding over-
head to reach that model accuracy. Since only one client
and one training pass are used on each round, CompT and
CompL have the same normalized comparison, and so are
TransT and TransL. The results show that smaller models
are better in terms of all training aspects. In addition,
it is interesting to note that heavier models have higher
increase rates of overheads versus model accuracy. This
means that model selection is especially essential for high
model accuracy applications.

E. Summary of System Overhead
Based on our measurement study, we summarize systems

overheads versus FL hyper-parameters in Table IV. As we can
see, CompT, TransT, CompL, and TransL conflict with each
other in selecting the optimal M and E. Regarding model
complexity, smaller models have better system overheads if
the model accuracy is satisfied. Please note that Table IV
is consistent with existing work (e.g., [12]), but is more
comprehensive. Thus, Table IV is also valid for other datasets
and ML models.

F. Intuitive Explanation of Measurement Results
We present intuitive explanation of the measurement re-

sults to help FL practitioners better understand FL hyper-

TABLE IV
SYSTEM OVERHEADS VERSUS THE NUMBER OF PARTICIPANTS M , THE
NUMBER OF TRAINING PASSES E , AND MODEL COMPLEXITY. ‘<’, ‘=’,
AND ‘>’ MEANS THE SMALLER THE BETTER, DOES NOT MATTER, AND

THE LARGER THE BETTER, RESPECTIVELY.

Training aspect M E Model complexity

CompT > < <
CompL < < <
TransT > > <
TransL < > <

Model Accuracy = = >

parameters. Fig. 6 visualizes the intuition.
• The number of participants M . In Fig. 6a, the top

scheme and the bottom scheme have the same compu-
tation cost (two local training) and communication cost
(four transmissions). However, the bottom scheme has
a better overall CompL and TransL at the expense of
degraded CompT and TransT. The bottom scheme is
better probably because the clients in the bottom scheme
always work on the updated global model, whereas the
clients in the top scheme work on the same global model.
In other words, narrow-and-deep FL schemes have better
computation load and transmission load than wide-and-
shallow FL schemes.

• The number of training passes E. In Fig. 6b, both the
top scheme and the bottom scheme take E total training
passes. However, the bottom scheme has better CompT
and CompL at the expense of higher communication
costs. The results indicate that the usefulness per local
update decreases with the number of local updates. There-
fore, for computation-sensitive FL applications, large E
should be avoided.

• Model complexity. Fig. 6c shows that a smaller model
has better CompT, TransT, CompL, and TransL than a
heavier model, as long as the accuracy requirement is
met. In addition, our results in Fig. 5 indicate that if
the target model accuracy is low, then using a heavy
model does not introduce significantly more overhead
than a lightweight model. However, if the goal is to
achieve a high-accuracy model, carefully selecting a
model complexity is essential, as over-large models cause
significantly more system overhead.

IV. FEDTUNE: AUTOMATIC TUNING OF FEDERATED
LEARNING HYPER-PARAMETERS FROM A SYSTEM

PERSPECTIVE

Due to the conflicting FL hyper-parameters for CompT,
TransT, CompL, and TransL, practitioners bear the burden of
selecting a set of FL hyper-parameters, which if not chosen
well may lead to poor system performance. For example,
it is unclear how to set FL hyper-parameters that are both
CompT and TransT friendly, since these two system aspects
prefer different number of training passes. We propose Fed-
Tune to adjust FL hyper-parameters during the FL training
automatically. FedTune considers the application’s preference
for CompT, TransT, CompL, and TransL, denoted by α, β, γ,
and δ, respectively. We have α+β+ γ+ δ = 1. For example,

7

(a) Number of participants M (b) Number of training passes E (c) Model complexity
Fig. 6. Intuitive explanation of our measurement results. (a) The number of participants. The bottom scheme is better regarding CompL and TransL. (b)
The number of training passes. The bottom scheme is better regarding CompT and CompL. (c) Model complexity. The bottom scheme is better for CompT,
CompL, TransT, and TransL.

α = 0.6, β = 0.2, γ = 0.1, and δ = 0.1 represent that the
application cares most about CompT, somewhat about TransT,
and the least on CompL and TransL.

A. Problem Formulation

For two sets of FL hyper-parameters S1 and S2, FedTune
defines the comparison function I(S1, S2) as

I(S1, S2) = α× t2 − t1
t1

+ β × q2 − q1
q1

+γ × z2 − z1
z1

+ δ × v2 − v1
v1

(6)

where t1 and t2 are CompT for S1 and S2 when achieving
the same model accuracy. Correspondingly, q1 and q2 are
TransT, z1 and z2 are CompL, and v1 and v2 are TransL.
If I(S1, S2) < 0, then S2 is better than S1. A set of hyper-
parameters is better than another set if the weighted improve-
ment of some training aspects (e.g., CompT and CompL) is
higher than the weighted degradation, if any, of the remaining
training aspects (e.g., TransT and TransL). The weights are
training preferences on CompT, TransT, CompL, and TransL.

However, the training overhead for different sets of FL
hyper-parameters are unknown a priori. As a result, directly
identifying the optimal hyper-parameters before FL training
is impossible. Instead, we propose an iterative method to
optimize the next set of hyper-parameters. Given the current
set of hyper-parameters Scur, the goal is to find a set of hyper-
parameters Snxt that improves the training performance the
most, that is, minimizes the following objective function:

G(Snxt) = α× tnxt − tcur
tcur

+ β × qnxt − qcur
qcur

+γ × znxt − zcur
zcur

+ δ × vnxt − vcur
vcur

(7)

where tcur, qcur, zcur, and vcur are CompT, TransT, CompL,
and TransL under the current hyper-parameters Scur; tnxt,
qnxt, znxt, and vnxt are CompT, TransT, CompL, and TransL
for the next hyper-parameters Snxt. We focus on the number
of participants M and the number of training passes E,
since training overhead is monotonous with model complexity.
Therefore, we need to optimize Snxt = {Mnxt, Enxt}.

B. Snxt Optimization

To find the optimal Snxt, we take the derivatives of G(Snxt)
over M and E, obtaining

∆M =
∂G(Snxt)

∂M
=

α

tcur
× ∂tnxt

∂M
+

β

qcur
× ∂qnxt

∂M

+
γ

zcur
× ∂znxt

∂M
+

δ

vcur
× ∂vnxt

∂M

(8)

∆E =
∂G(Snxt)

∂E
=

α

tcur
× ∂tnxt

∂E
+

β

qcur
× ∂qnxt

∂E

+
γ

zcur
× ∂znxt

∂E
+

δ

vcur
× ∂vnxt

∂E

(9)

We illustrate how to approximate ∆M . The process for ∆E
is similar. Considering that each step makes a small adjustment
of M , ∂tnxt/∂M can be represented by (+1)× |tnxt − tcur|,
where (+1) means CompT prefers larger M according to
Table IV. To estimate |tnxt− tcur|, we apply a linear function
ηt−1×|tcur−tprv| where ηt−1 =

|tcur−tprv|
|tprv−tprvprv| (tprvprv is the

CompT at two steps before). Thus, ηt−1 represents the slope
of the linear function. Similarly, we have ηq−1, ηz−1, ηv−1 for
TransT, CompL, and TransL when calculating their derivatives
over M . As a result, ∆M can be approximated as

∆M =
(+1)× α× ηt−1 × |tcur − tprv|

tcur

+
(+1)× β × ηq−1 × |qcur − qprv|

qcur

+
(−1)× γ × ηz−1 × |zcur − zprv|

zcur

+
(−1)× δ × ηv−1 × |vcur − vprv|

vcur

(10)

Similarly, we can calculate ∆E as

∆E =
(−1)× α× ζt−1 × |tcur − tprv|

tcur

+
(+1)× β × ζq−1 × |qcur − qprv|

qcur

+
(−1)× γ × ζz−1 × |zcur − zprv|

zcur

+
(+1)× δ × ζv−1 × |vcur − vprv|

vcur

(11)

where ζt−1, ζq−1, ζz−1, and ζv−1 are the parameters for
calculating the derivatives of CompT, TransT, CompL, and
TransL over E.

8

TABLE V
PERFORMANCE OF FEDTUNE FOR THE SPEECH-TO-COMMAND DATASET WHEN FEDADAGRAD IS USED FOR AGGREGATION.

‘+’ IS IMPROVEMENT AND ‘−’ IS DEGRADATION. STANDARD DEVIATION IN PARENTHESES AND THE BEST RESULTS ARE IN BOLD TEXTS.

α β γ δ CompT (1012) TransT (106) CompL (1012) TransL (106) Final M Final E Overall

- - - - 0.94 (0.01) 11.61 (0.10) 5.97 (0.04) 232.24 (1.99) 20 20 -
1.0 0.0 0.0 0.0 0.42 (0.02) 50.19 (2.57) 4.57 (0.22) 2418.71 (240.91) 57.33 (4.50) 1.00 (0.00) +55.23% (2.22%)
0.0 1.0 0.0 0.0 1.34 (0.22) 7.68 (1.12) 14.99 (2.73) 289.82 (46.98) 48.00 (2.16) 48.00 (2.16) +33.87% (9.67%)
0.0 0.0 1.0 0.0 1.02 (0.10) 615.98 (97.52) 1.76 (0.16) 672.21 (91.62) 1.00 (0.00) 1.00 (0.00) +70.51% (2.75%)
0.0 0.0 0.0 1.0 2.18 (0.47) 35.47 (7.51) 3.30 (0.22) 76.47 (1.68) 1.00 (0.00) 46.67 (3.30) +67.07% (0.72%)
0.5 0.5 0.0 0.0 0.82 (0.13) 9.17 (1.26) 9.13 (1.66) 347.11 (54.31) 47.33 (2.05) 21.33 (4.78) +16.97% (9.68%)
0.5 0.0 0.5 0.0 0.48 (0.04) 81.42 (9.83) 3.23 (0.14) 1875.99 (155.21) 25.00 (1.63) 1.00 (0.00) +47.57% (3.43%)
0.5 0.0 0.0 0.5 0.79 (0.10) 11.59 (0.55) 5.04 (0.89) 241.86 (68.65) 22.33 (5.79) 15.67 (4.50) +5.82% (11.28%)
0.0 0.5 0.5 0.0 0.83 (0.03) 10.66 (0.15) 5.16 (0.31) 207.79 (6.08) 21.00 (1.41) 21.00 (1.41) +10.87% (2.83%)
0.0 0.5 0.0 0.5 1.54 (0.16) 11.48 (3.83) 9.59 (3.52) 190.52 (61.53) 19.67 (14.82) 49.00 (0.00) +9.55% (7.08%)
0.0 0.0 0.5 0.5 1.69 (0.26) 50.14 (8.21) 2.70 (0.26) 93.21 (8.48) 1.00 (0.00) 23.33 (2.49) +57.32% (3.76%)

0.33 0.33 0.33 0.0 0.82 (0.07) 11.59 (1.01) 5.65 (0.27) 255.35 (9.65) 22.33 (2.62) 15.67 (1.25) +6.09% (6.67%)
0.33 0.33 0.0 0.33 1.06 (0.08) 10.07 (0.90) 8.10 (0.34) 247.54 (29.18) 26.33 (2.05) 27.00 (2.16) -1.93% (7.40%)
0.33 0.0 0.33 0.33 0.91 (0.19) 18.23 (5.83) 4.15 (1.13) 229.26 (63.40) 12.00 (1.41) 14.00 (5.72) +11.66% (11.76%)
0.0 0.33 0.33 0.33 1.13 (0.13) 16.16 (3.36) 4.51 (0.59) 169.93 (25.84) 9.00 (5.35) 23.00 (4.55) +3.99% (6.19%)

0.25 0.25 0.25 0.25 0.91 (0.10) 9.73 (1.81) 6.19 (0.76) 207.34 (3.34) 23.33 (5.44) 22.67 (3.30) +6.51% (6.13%)

C. Decision Making and Parameter Update

FedTune is activated when the model accuracy is improved
by at least ϵ. Then, it normalizes current overheads and
calculates the comparison function of the previous hyper-
parameters Sprv and the current hyper-parameters Scur. Af-
terward, FedTune updates the parameters, i.e., four η and
four ζ. Next, it computes ∆M and ∆E, and determines
the next M and E based on the signs of ∆M and ∆E.
Specifically, Mnxt = Mcur + 1 if ∆M > 0, otherwise,
Mnxt = Mcur − 1. Likewise, FedTune increases Enxt by
one if ∆E > 0; else FedTune decreases Enxt by one. The
FL training continues using the new hyper-parameters. It is
clear that FedTune is lightweight and its computational burden
is negligible to the FL training: it only requires dozens of
multiplication and addition calculations (refer to our source
code for more details).

FedTune automatically updates ηt−1, ηq−1, ηz−1, ηv−1,
ζt−1, ζq−1, ζz−1, and ζv−1 during FL training. At each
step, FedTune updates the parameters that favor the current
decision. For example, if Mcur is larger than Mprv , FedTune
updates ηt−1 and ηq−1 as CompT and TransT prefer larger
M ; otherwise, FedTune updates ηz−1 and ηv−1.

Furthermore, FedTune incorporates a penalty mechanism to
mitigate bad decisions. Given the previous hyper-parameters
Sprv and the current hyper-parameters Scur, FedTune calcu-
lates the comparison function I(Sprv, Scur). A bad decision
occurs if the sign of I(Sprv, Scur) is positive. In this case,
FedTune multiplies the parameters that are against the current
decision by a constant penalty factor, denoted by D (D ≥ 1).
For example, if I(Sprv, Scur) > 0 and Mcur > Mprv,
FedTune updates ηt−1 and ηq−1 as explained before, but also
multiplies ηz−1 and ηv−1 by D.

Please note that the new hyper-parameters are based on
the eight parameters (four η and four ζ) that are updated
automatically. These eight parameters along with the training
overheads determine the next hyper-parameters as shown in
Eq. (10) and Eq. (10).

V. EVALUATION

In this section, we provide the evaluation results of FedTune.
First, we explain our experiment setup in Section V-A. Next,
we present the overall performance in Section V-B. Then,
we conduct trace analysis in Section V-C. Last, the penalty
mechanism is studied in Section V-D.

A. Experiment Setup

Benchmarks and Baseline. We evaluate FedTune on three
datasets: speech-to-command [34], EMNIST [36], and Cifar-
100 [37], and three aggregation methods: FedAvg [8], Fed-
Nova [12], and FedAdagrad [38]. We set equal values for
the combination of training preferences α, β, γ and δ (see
the first column in Table V). Therefore, for each dataset, we
conduct 15 combinations of training preferences. We set target
model accuracy for each dataset and measure CompT, TransT,
CompL, and TransL for reaching the target model accuracy.
We regard the practice of using fixed M and E as the baseline
and compare FedTune to the baseline by calculating Eq. (6).
In the evaluation, the positive performance means FedTune
reduces the system overheads and the negative performance
means the degradation. We implemented FedTune in PyTorch.
All the experiments are conducted in a server with 24-GB
Nvidia RTX A5000 GPUs.
Training Setup. (1) speech-to-command dataset. It classifies
audio clips to 35 commands (e.g., ‘yes’, ‘off’). We transform
audio clips to 64-by-64 spectrograms and then downsize them
to 32-by-32 gray-scale images. As officially suggested [34],
we use 2112 clients’ data for training and the remaining 506
clients’ data for testing. We set the mini-batch size to 5,
considering that many clients have few data points. We use
ResNet-10 and the target model accuracy of 0.8. (2) EMNIST
dataset. It classifies handwriting (28-by-28 gray-scale images)
into 62 digits and letters (lowercase and uppercase). We split
the dataset based on the writer ID. We randomly select 70%
writers’ data for training and the remaining for testing. We
use a Multiplayer Perception (MLP) model with one hidden
layer (200 neurons with ReLu activation). We set the mini-
batch size to 10 and the target model accuracy of 0.7. (3)

9

(a) (1-0-0-0) (b) (0-1-0-0) (c) (0-0-1-0) (d) (0-0-0-1) (e) (0.5-0.5-0-0)

(f) (0.5-0-0.5-0) (g) (0.5-0-0-0.5) (h) (0-0.5-0.5-0) (i) (0-0.5-0-0.5) (j) (0-0-0.5-0.5)

(k) (0.33-0.33-0.33-0) (l) (0.33-0.33-0-0.33) (m) (0.33-0-0.33-0.33) (n) (0-0.33-0.33-0.33) (o) (0.25-0.25-0.25-
0.25)

Fig. 7. Illustrations of the number of participant M and the number of training passes E during FL training for different application preferences.

TABLE VI
PERFORMANCE OF FEDTUNE FOR DIVERSE DATASETS WHEN FEDAVG

AGGREGATION METHOD IS APPLIED.

Dataset Speech-command EMNIST Cifar-100
Data Feature Voice Handwriting Image
ML Model ResNet-10 2-layer MLP ResNet-10

Performance +22.48% (17.97%) +8.48% (5.51%) +9.33% (5.47%)

Cifar-100 dataset. It classifies 32-by-32 RGB images to 100
classes. We randomly split the dataset into 1200 users, where
each user has 50 data points. Then, we randomly select 1000
users for training and the remaining 200 users for testing. We
set the mini-batch size to 10. ResNet-18 is used, and the target
model accuracy is set to 0.2 (due to our limited computational
capability, we set a low threshold for Cifar-100).

For all datasets, we normalize the input images with the
mean and the standard deviation of the training data before
feeding them to models for training and testing. Both M and
E are initially set to 20. FedTune is activated when the model
accuracy is increased by at least 0.01 (i.e., ϵ = 0.01). The
penalty factor D is set to 10. All results are averaged by three
experiments. Note that FedTune is the first work of its kind and
we choose the experiment settings as reasonably as possible.

B. Overall Performance

Results for Diverse Datasets. Table VI shows the overall
performance of FedTune for different datasets when FedAvg
is applied. We set the learning rate to 0.01 for the speech-to-
command dataset and the EMNIST dataset, and 0.1 for the

TABLE VII
PERFORMANCE OF FEDTUNE FOR DIVERSE AGGREGATION ALGORITHMS.

SPEECH-TO-COMMAND DATASET AND RESNET-10 ARE USED IN THIS
EXPERIMENT.

Aggregator FedAvg FedNova FedAdagrad
Performance +22.48% (17.97%) +23.53% (6.64%) +26.75% (6.10%)

Cifar-100 dataset, all with the momentum of 0.9. We show
the standard deviation in parenthesis. As shown, FedTune
consistently improves the system performance across all the
three datasets. In particular, FedTune reduces 22.48% system
overhead of the speech-to-command dataset compared to the
baseline by averaging the 15 combinations of training prefer-
ences. We also observe that the FL training benefits more from
FedTune if the training process needs more training rounds
to converge. Our experiments with EMNIST (small model)
and Cifar100 (low target accuracy) only require a few dozens
of training rounds to reach their target model accuracy, and
thus their performance gains from FedTune are not significant.
The observation is consistent with the decision-making process
in FedTune, which increases/decreases hyper-parameters by
only one at each step. We leave it as future work to augment
FedTune to change hyper-parameters with adaptive degrees.

Results for Different Aggregation Methods. Table VII shows
the overall performance of FedTune for different aggregation
methods when we use the speech-to-command dataset and
the ResNet-10 model. We set the learning rate to 0.1, β1

to 0, and τ to 1e-3 in FedAdagrad. As shown, FedTune
achieves consistent performance gain for diverse aggregation

10

Fig. 8. Performance of the degraded cases versus the penalty factor. Speech-
to-command dataset and FedAvg is used in this experiment.
methods. In particular, FedTune reduces the system overhead
of FedAdagrad by 26.75%.

C. Trace Analysis

We present the details of traces when the speech-to-
command dataset and the FedAdagrad aggregation method
are used. Table V tabulates the results, where we show the
application preference (α, β, γ, and δ), the system overheads
(CompT, TransT, CompL, and TransL), the final M and E
when the training is finished, and the overall performance.
We report the average performance, as well as their standard
deviations in parentheses. The first row is the baseline, which
does not change hyper-parameters during the FL training. As
we can see from Table V, FedTune can adapt to different
training preferences. Specifically, FedTune reduces the system
overhead up to 70.51% when the application only cares about
computation load (i.e., γ = 1). Only one preference (0.33,
0.33, 0, 0.33) results in a slightly degraded performance.
On average, FedTune improves the overall performance by
26.75% for the speech-to-command dataset and the FedAda-
grad aggregation method.

Fig. 7 illustrates one trace of M and E during the FL train-
ing for each application preference. The experiment is con-
ducted with the speech-to-command dataset and the FedAda-
grad aggregation method. The experiment result clearly shows
that FedTune can automatically adjust FL hyper-parameters
during the FL training while respecting the application’s
preference on system overhead. We also observe that FedTune
does not keep increasing or decreasing M and E. Instead, in
many cases, it intelligently tunes the M and E during the
different phases of the FL training.

D. Study of Penalty Mechanism

We investigate our penalty mechanism by conducting exper-
iments with the Google speech-to-command dataset and the
FedAvg aggregation method. Without the penalty mechanism
(equivalently D = 1 since the penalty factor is a multiplier),
we find that FedTune results in three degraded cases, i.e., the
preferences of (0, 0.5, 0.5, 0), (0, 0.5, 0, 0.5), and (0.33, 0.33,
0, 0.33).

First, we conduct experiments to explore whether the
penalty mechanism can mitigate the degradation. Results are
averaged over three runs. Fig. 8 plots the performance of
FedTune for the degraded cases versus penalty factors, where
error bars represent the standard deviation. Although the
penalty mechanism does not guarantee positive performance
for the degraded cases, it mitigates the degradation. Fig. 8

Fig. 9. Performance comparison of FedTune without penalty mechanism
and with penalty mechanism for the Speech-to-command dataset and FedAvg
aggregation method.

also shows that FedTune remains stable for a moderate value
of penalty factors. Empirically, we set the penalty factor to 10
in FedTune.

Fig. 9 compares the performance of FedTune when the
penalty factor is 10 (full-fledged) versus 1 (no penalty) for
different training preferences. Results are averaged by three
runs and the error bars represent the standard deviation. Over-
all, FedTune increases the performance gain of the FedAvg
aggregation method from 17.97% to 22.48%. In addition,
FedTune with the penalty mitigates the highly degraded cases
and thus is more practical than the non-penalty counterpart.
We also observe that FedTune with penalty mechanism is more
stable, with the averaged standard deviation of 7.77% versus
14.14% in the non-penalty counterpart.

VI. DISCUSSION

FedTune has promising performance in tuning FL hyper-
parameters. As one of the first work of its kind, FedTune has
some limitations/opportunities that deserve further exploration.

Heterogeneous Devices. This paper assumes that clients are
homogeneous, i.e., the same hardware and network. In prac-
tice, however, client devices are heterogeneous. Measurements
of the computation capabilities of mobile devices and their net-
work throughput exhibit order-of-magnitude difference [39]–
[41]. As a result, for clients even with the same amount of
local data points, they result in different computation and
transmission costs. Currently, FedTune only tunes the system-
wide hyper-parameters, which might not be optimal for hetero-
geneous devices that may require device-level hyper-parameter
tuning. However, compared to the overwhelming and laboring
effort of manually determining the FL hyper-parameters for
each device, tuning system-wide hyper-parameter seems to be
a more practical approach for FL practitioners. We leave it as
future work to evaluate FedTune on heterogeneous devices.

Extensions. Many FL algorithms have been proposed to
tackle the limitations of FedAvg. FedTune could be extended
to the following scenarios. (1) Participant selection. Compared
to the random selection of participants, guided participant se-
lection that considers clients’ data utility and device utility can
improve overall training performance [9]. Popular alternatives
are to only wait for participants that are finished before a
deadline [42] or only wait for the first M participants [11].
(2) Adaptive training passes across participants. Due to the
heterogeneity of clients, setting the same number of training

11

passes E for all participants in each training round is not opti-
mal. To support different E across participants, FedNova [12]
relies on re-weighting of aggregation while FedProx [20] adds
a proximal term to stabilize the convergence. We plan to
incorporate these functionality to further improve the perfor-
mance of FedTune. (3) Investigate more FL hyper-parameters.
Although we only take the number of participants, the number
of training passes, and the model complexity as examples to
illustrate the workflow of FedTune, we believe FedTune is a
general framework, which can be applied to other FL hyper-
parameters, e.g., the mini-batch size.

VII. CONCLUSION

FL involves high system overhead in the training process,
which hinders its research and real-world deployment. We
argue that optimizing system overhead for FL applications is
extremely valuable. To this end, we propose FedTune to adjust
FL hyper-parameters, catering to the application’s training
preferences automatically. Although FedTune is simple to
implement, it is powerful and effective. Our evaluation results
show that FedTune is general, lightweight, flexible, and is
able to significantly reduce system overhead in FL training.
As the first work of its kind that considers comprehensive
system overheads, we only compare FedTune with the baseline
because existing FL hyper-parameter automatic tuning work is
either incompatible with standard FL algorithms, complex and
cumbersome to implement or insignificant (improved by only
a few percentage points). Nonetheless, we plan to evaluate
FedTune more thoroughly in scenarios such as heterogeneous
devices and real-world deployments. We will also provide a
theoretical analysis framework for FedTune in future work.

REFERENCES

[1] A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beaufays, S. Augen-
stein, H. Eichner, C. Kiddon, and D. Ramage, “Federated Learning for
Mobile Keyboard Prediction,” arXiv:1811.03604, 2019.

[2] M. Paulik, M. Seigel, H. Mason, D. Telaar, J. Kluivers, R. van Dalen,
C. W. Lau, L. Carlson, F. Granqvist, C. Vandevelde, S. Agarwal,
J. Freudiger, A. Byde, A. Bhowmick, G. Kapoor, S. Beaumont, A. Cahill,
D. Hughes, O. Javidbakht, F. Dong, R. Rishi, and S. Hung, “Federated
Evaluation and Tuning for On-Device Personalization: System Design
& Applications,” arXiv:2102.08503, 2021.

[3] C. Ju, R. Zhao, J. Sun, X. Wei, X. Zhang, D. Gao, B. Tan, H. Yu, C. He,
and Y. Jin, “Privacy-Preserving Technology to Help Millions of People:
Federated Prediction Model for Stroke Prevention,” arXiv:2006.10517,
2020.

[4] M. Zhang, F. Zhang, N. Lane, Y. Shu, X. Zeng, B. Fang, S. Yan, and
H. Xu, “Deep Learning in the Era of Edge Computing: Challenges and
Opportunities,” in Book chapter in Fog Computing: Theory and Practice,
Wiley, 2020.

[5] T. Zhang, L. Gao, C. He, M. Zhang, B. Krishnamachari, and S. Aves-
timehr, “Federated learning for internet of things: Applications, chal-
lenges, and opportunities,” IEEE Internet of Things Magazine, 2022.

[6] M. I. Jordan and T. M. Mitchell, “Machine Learning: Trends, Perspec-
tives, and Prospects,” Science, vol. 349, no. 6245, pp. 255–260, 2015.

[7] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen, and
J. S. Rellermeyer, “A Survey on Distributed Machine Learning,” ACM
Computing Surveys, vol. 53, no. 2, pp. 1–33, 2020.

[8] H. B. McMahan, D. R. Eider Moore, S. Hampson, and B. A. Arcas,
“Communication-Efficient Learning of Deep Networks from Decentral-
ized Data,” in International Conference on Artificial Intelligence and
Statistics (AISTATS), 2017, pp. 1–10.

[9] F. Lai, X. Zhu, H. V. Madhyastha, and M. Chowdhury, “Oort: Efficient
Federated Learning via Guided Participant Selection,” in USENIX Sym-
posium on Operating Systems Design and Implementation, 2021.

[10] C. Li, X. Zeng, M. Zhang, and Z. Cao, “PyramidFL: A Fine-grained
Client Selection Framework for Efficient Federated Learning,” in ACM
International Conference on Mobile Computing and Networking (Mobi-
Com), 2022.

[11] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the Convergence
of FedAvg on Non-IID Data,” in International Conference on Learning
Representations (ICLR), 2020, pp. 1–12.

[12] J. Wang, Q. Liu, H. Liang, G. Joshi, and H. Vincent Poor, “Tackling
the Objective Inconsistency Problem in Heterogeneous Federated Op-
timization,” in Conference on Neural Information Processing System
(NeurIPS), 2020.

[13] S. H. Haji and S. Y. Ameen, “Attack and Anomaly Detection in
IoT Networks using Machine Learning Techniques: A Review,” Asian
Journal of Research in Computer Science (AJRCOS), vol. 9, no. 2, pp.
30–46, 2021.

[14] D. N. Mekuria, P. Sernani, N. Falcionelli, and A. F. Dragoni, “Smart
Home Reasoning Systems: A Systematic Literature Review,” Journal
of Ambient Intelligence and Humanized Computing, vol. 12, pp. 4485–
4502, 2021.

[15] M. Won, “Intelligent Traffic Monitoring Systems for Vehicle Classifica-
tion: A Survey,” IEEE Access, vol. 8, pp. 73 340–73 358, 2020.

[16] A. Sharma, A. Jain, P. Gupta, and V. Chowdary, “Machine Learning
Applications for Precision Agriculture: A Comprehensive Review,” IEEE
Access, vol. 9, pp. 4843–4873, 2020.

[17] M. M. Hassan, A. Gumaei, G. Aloi, G. Fortino, and M. Zhou, “A
Smartphone-Enabled Fall Detection Framework for Elderly People in
Connected Home Healthcare,” IEEE Access, vol. 33, pp. 58–63, 2019.

[18] M. M. de Almeida and J. von Schreeb, “A Smartphone-Enabled Fall De-
tection Framework for Elderly People in Connected Home Healthcare,”
Prehospital and Disaster Medicine, vol. 34, pp. 82–88, 2018.

[19] J. Wang, Z. Charles, Z. Xu, G. Joshi, H. B. McMahan, B. A. y. Arcas,
M. Al-Shedivat, G. Andrew, S. Avestimehr, K. Daly, D. Data, S. Diggavi,
H. Eichner, A. Gadhikar, Z. Garrett, A. M. Girgis, F. Hanzely, A. Hard,
C. He, S. Horvath, Z. Huo, A. Ingerman, M. Jaggi, T. Javidi, P. Kairouz,
S. Kale, S. P. Karimireddy, J. Konecny, and etc, “A Field Guide to
Federated Optimization,” arXiv: 2107.06917, 2021.

[20] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated Optimization in Heterogeneous Networks,” in Conference on
Machine Learning and Systems (MLSys), 2020, pp. 429–450.

[21] H. Zhang, M. Zhang, X. Liu, P. Mohapatra, , and M. DeLucia, “Fedtune:
Automatic tuning of federated learning hyper-parameters from system
perspective,” in IEEE Military Communications Conference (MILCOM),
2022.

[22] Z. Dai, B. K. H. Low, and P. Jaillet, “Federated bayesian optimization via
thompson sampling,” in Conference on Neural Information Processing
Systems (NeurIPS), 2020.

[23] Z. Li, H. Li, and M. Zhang, “Hyper-parameter tuning of federated
learning based on particle swarm optimization,” in IEEE International
Conference on Cloud Computing and Intelligent Systems (CCIS), 2021.

[24] Z. Dai, B. K. Low, and P. Jaillet, “Differentially private federated
bayesian optimization with distributed exploration,” in Conference on
Neural Information Processing Systems (NeurIPS), 2021.

[25] P. Guo, D. Yang, A. Hatamizadeh, A. Xu, Z. Xu, W. Li, C. Zhao,
D. Xu, S. Harmon, E. Turkbey, B. Turkbey, B. Wood, F. Patella,
E. Stellato, G. Carrafiello, V. M. Patel, and H. R. Roth, “Auto-FedRL:
Federated Hyperparameter Optimization for Multi-institutional Medical
Image Segmentation,” arXiv:2203.06338, pp. 1–18, 2022.

[26] H. Mostafa, “Robust Federated Learning Through Representation
Matching and Adaptive Hyperparameters,” arXiv:1912.13075, pp. 1–11,
2019.

[27] M. Khodak, R. Tu, T. Li, L. Li, M.-F. Balcan, V. Smith, and A. Tal-
walkar, “Federated hyperparameter tuning: Challenges, baselines, and
connections to weight-sharing,” in Conference on Neural Information
Processing Systems (NeurIPS), 2021.

[28] Y. Zhou, P. Ram, T. Salonidis, N. Baracaldo, H. Samulowitz, and
H. Ludwig, “FLoRA: Single-shot Hyper-parameter Optimization for
Federated Learning,” arXiv, pp. 1–11, 2021.

[29] L. Yang and A. Shami, “On Hyperparameter Optimization of Machine
Learning Algorithms: Theory and Practice,” Neurocomputing, 2020.

[30] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian Optimiza-
tion of Machine Learning Algorithms,” in International Conference on
Neural Information Processing Systems (NIPS), 2012.

[31] Z. Karnin, T. Koren, and O. Somekh, “Almost Optimal Exploration
in Multi-Armed Bandits,” in International Conference on Machine
Learning (ICML), 2013, pp. 1238–1246.

12

[32] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
“Hyperband: A Novel Bandit-based Approach to Hyperparameter Opti-
mization,” Journal of Machine Learning Research (JMLR), 2017.

[33] Z. WANG, W. Kuang, C. Zhang, B. Ding, and Y. Li, “FedHPO-
B: A Benchmark Suite for Federated Hyperparameter Optimization,”
arXiv:2206.03966, pp. 1–27, 2022.

[34] P. Warden, “Speech Commands: A Dataset for Limited-Vocabulary
Speech Recognition,” arXiv: 1804.03209, 2018.

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in IEEE CVPR, 2016.

[36] G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, “Emnist: Extending
mnist to handwritten letters,” in International Joint Conference on
Neural Networks (IJCNN), 2017.

[37] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
2009.

[38] S. J. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konecny,
S. Kumar, and H. B. McMahan, “Adaptive federated optimization,” in
International Conference on Learning Representations (ICLR), 2021.

[39] A. Ignatov, “AI-Benchmark,” https://ai-benchmark.com/index.html,
2021.

[40] M-Lab, “MobiPerf,” https://www.measurementlab.net/tests/mobiperf,
2021.

[41] F. Lai, Y. Dai, X. Zhu, and M. Chowdhury, “FedScale: Benchmark-
ing Model and System Performance of Federated Learning,” arXiv:
2105.11367, pp. 1–15, 2021.

[42] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konečný, S. Mazzocchi, B. McMahan, T. Van
Overveldt, D. Petrou, D. Ramage, and J. Roselander, “Towards Federated
Learning at Scale: System Design,” in Conference on Machine Learning
and Systems (MLSys), 2019, pp. 374–388.

