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Abstract— Accurate Energy Expenditure (EE) Estimation is 

very important to monitor physical activity of healthy and 

disabled population. In this work, we examine the limitations of 

applying existing calorimetry equations and machine learning 

models based on sensor data collected from healthy adults to 

estimate EE in disabled population, particularly children with 

Duchene muscular dystrophy (DMD). We propose a new 

machine learning-based approach which provides more 

accurate EE estimation for boys living with DMD. Existing 

calorimetry equations obtain a correlation of 40% (93% 

relative error in linear regression) with COSMED indirect 

calorimeter readings, while the non-linear model derived for 

normal healthy adults (developed using machine learning) gave 

37% correlation. The proposed model for boys with DMD give 

a 91% correlation with COSMED values (only 38% relative 

absolute error) and uses ensemble meta-classifier with Reduced 

Error Pruning Decision Trees methodology. 

I. INTRODUCTION 

Duchenne muscular dystrophy (DMD) is a progressive, 
X-linked recessively inherited muscular disorder with an 
approximate prevalence of 1 per 3,500-5,000 males, making 
it the most common and severe form of childhood muscular 
dystrophy [1](Emery 2002, MMVR 2009). Boys with DMD 
are usually confined to a wheelchair by the age of ten years 
and have a median life expectancy of thirty years [2]. 
Functional impairments often result in gait abnormalities and 
decreased physical activity as their disease progresses.  

An important aim in the clinical management of boys 
with DMD is to preserve functional abilities for as long as 
possible. There is limited evidence as to whether exercise 
training in DMD is helpful or harmful. The small number of 
training studies have focused on resistance training in 
ambulatory boys and concluded that submaximal resistance 
exercises had only small positive effects on muscle strength 
and timed functional tests but, did not cause any physical 
damage [3]. International guidelines recommend ambulatory 
boys to perform voluntary active exercises (such as 
swimming) and to avoid eccentric exercises. Due to the 
absence of the protein dystrophin, which supports muscle 
fiber strength and prevents muscle injury, muscle fibers in 
DMD patients are abnormally vulnerable to contraction-
induced injury [4] and therefore, eccentric exercises should 
be avoided.  
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However, these clinic or laboratory measures may not 
capture the true loss of independence, real life activities, 
social interactions and quality of life. The ability to 
accurately measure everyday physical activity and activity-
related energy expenditure (EE) is crucial for the 
development of effective interventions to combat the 
detrimental effects of reduced physical activity associated 
with DMD. Mobile sensors enable point-of-care intervention 
to improve physical activity and its monitoring in healthy 
and patient population.  

Different measuring techniques have been used in 
disabled populations including questionnaires, activity 
diaries, heart rate (HR) monitoring, motion sensors 
(pedometers, accelerometers), indirect calorimetry, and 
doubly labeled water. Activity questionnaires and diaries, 
while inexpensive, are time consuming, rely on accurate 
recall and reporting by the individual, and have been shown 
to be inaccurate, especially in children [5,6]. In normal 
populations, HR monitoring has been shown to be less 
accurate in estimating Energy Estimation (EE) for low 
intensity activities, which comprise the majority of the 
activity for disabled populations [5,6]. Accelerometers are 
more accurate for non-disabled populations because they 
measure activities across several planes allowing 
measurements of the duration, frequency and intensity of 
physical activity. Disadvantages include the inability to 
measure activities where the patient is not moving the part of 
the body being monitored by the accelerometer (cycling, 
sitting, standing) [7].   

Indirect calorimeters such as the COSMED k4b2 have 
been validated and used as reference standard for measuring 
EE [8]. However, the bulky size of COSMED limits its use 
in point-of-care technologies, and prevents its use in the 
monitoring of daily activities.  

Our objective is to develop an algorithm to accurately 
estimate EE in boys with DMD from sensor data collected 
using small, pervasive wearable accelerometers and heart 
rate monitors, to be used in future point of care technologies 
for disabled populations. This can be used for monitoring 
population with DMD as well as serve as antecedent to 
future research in developing new EE models for disabled 
populations. We have developed a new non-linear regression 
(machine learning) based algorithm to estimate EE for 
children with DMD which gives 91% correlation and Root 
Mean Square Error of 0.0167. 

To the best of our knowledge, this is also the first work 
that tests whether existing EE algorithms designed for 
normal adults is applicable and accurate for pediatric DMD 
patients. Previous studies [9,10] have focused on activity 
monitoring, not EE estimation.  
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II. METHODS 

2.1 Subjects   

Seven subjects with DMD between the ages of 6-10 years 

were recruited from the regional neuromuscular clinic at the 

UC Davis Medical Center. Subjects completed an informed 

written consent approved by the Institutional Review Board 

of The University of California Davis. 

2.2 Experimental Design 

Subjects were asked to perform a series of activities in our 

exercise laboratory at UC Davis while simultaneously 

monitored by an accelerometer, a heart rate monitor, and the 

COSMED K4b2 (COSMED, Concord, CA) metabolic 

system. For accelerometer measurements, we used 

smartphone devices placed in a waist pack, and oriented in a 

standardized position.  A chest strap was used for the heart 

rate monitor.   

2.3 Exercise protocol 

Before each test, the COSMED K4b2 components were 
calibrated according to the manufacturer’s instructions. 
Subjects were then fitted with the pack containing the phone 
(accelerometer) and the COSMED K4b2 metabolic system. 
Subjects were asked to perform the following activities, one 
right after the other, in the ordered listed:  

3 minutes of lying supine on an exam table, 3 minutes of 
sitting, 50-meter slow paced walk (lasting approximately 1-2 
minutes for participants), 50-meter self-selected typical 
comfortable speed walk (45-60 sec), and 50-meter fast walk 
(20-60 sec) with approximately 1 minute rest between the 
walking protocol.  

Speeds were chosen based on ratings from the OMNI 
scale with easy walking rated as 0-2 or “not tired at all”, 
medium pace as 2-4 or “getting a little tired” and fast 
walking pace 4-6 or “getting more tired” (Robertson et al. 
2000). The final activity was a 6-minute walking test 
(6MWT).  Cones were set up at a 25 m distance in the 
hallway and the children walked as fast as possible back and 
forth between the cones for 6 minutes (McDonald et al 
2010). Heart rate (Polar heart rate monitor, Woodbury, NY), 
oxygen consumption, carbon dioxide production, respiratory 
exchange ratio (RER) and ventilation rate were continuously 
monitored.  

Data from the COSMED metabolic system was averaged 
over the 30-60 sec of each collection period. Energy 
expenditure was calculated using the following equation: 
COSMED K4b2 EE (kcal∙min-1) = 
((1.2285*RER)+3.821))* VO2 where VO2 is the oxygen 
consumption in L per minute, and RER is respiratory 
exchange ratio. All data was processed according to the 
following procedures:  

1. The COSMED output was resampled to obtain per-second 

estimates of EE and Heart rate.  

2. Smartphone sensors were oversampled at 4 Hz and then 

downsampled to obtain higher   frequency resolution (more 

accurate sensor readings).  Oversampling improves 

resolution and reduces noise in the readings.   Resampling 

was done to obtain per-second estimates of Accelerometer 

readings (Ax, Ay and Az relative to the x,y and z axis of the 

smartphone) 

3. The accelerometer readings were synced with the 

COSMED readings using paper markers.  

4. The local coordinates from the smartphone accelerometer 

readings were translated into global coordinates (two 

components – horizontal and vertical).  

5. Additional information about subject measurements such 

as age, height and weight were used as attributes for training 

data mining algorithms and validating existing algorithms. 

2.4 Machine Learning/ Statistical Analysis 

We used bagging ensemble technique with reduced-error 

pruning decision tree as the underlying classifier to predict 

EE [11,12,15,16].   The bagging ensemble technique is 

presented here because it was superior to models generated 

using other techniques (eg, multilayer perceptron, support 

vector machines, linear regression, naïve Bayes, reduced-

error-pruning decision trees and naïve Bayes). The bagging 

technique (or Bootstrap aggregation) is an ensemble meta-

algorithm to improve the stability and accuracy in statistical 

regression obtained by decision tree. The decision tree was 

built using Information-theoretic criterion for selecting the 

nodes. Once the tree is built, reduced error pruning is used, 

where each node, beginning with the leaves, is replaced with 

its most popular class. We divided the data for the model 

into n = 10 folds, where, n-1 folds are for supervised 

learning and one fold is used to test the model for errors. The 

errors obtained in a fold is added to the weights of nodes of 

next fold in the training set. Ten-fold cross validation was 

used to evaluate the model in order to ensure that the model 

was tested on data that it had not seen while training, to 

minimize chance for over-fitting.  Data processing was done 

in MATLAB Version: 8.1.0.604 (R2013a) while data mining 

(machine learning algorithms) was done using Weka 

software 3.6.10.  

2.5 Existing Equations 

We used generalized non-linear equations [17] originally 

developed based on the Tritrac-R3D accelerometer: where H 

and V are the horizontal and vertical accelerometer-based 

counts, respectively for the k-th minute, and a, b, p1, and p2 

are the generalized parameters that are modeled based on the 

subject’s mass in kg and their gender (p1=male, p2=female).  

EEact k( ) = aH k( )
p1
+ bV k( )

p2

a =
12.81´mass kg( )+ 843.22éë ùû

1000

b =
38.90 ´mass kg( )- 682.44 ´ gender + 692.50éë ùû

1000

p1=
2.66 ´mass kg( )+146.72éë ùû

1000

p2 =
-3.85´mass kg( )+ 968.28éë ùû

1000

 

The resulting activity energy expenditure (EEact) is the 

amount of energy expended in KJ above resting energy 



  

expenditure (NOR-CHEN).  For comparison with normal 

adults, we used a model developed from experiments on 23 

healthy people. The model to estimate EE in healthy adults 

combined accelerometer and heart rate measurements, A 

protocol similar to the one outlined in this paper was 

followed for normal adults:  obtaining sensor values and 

COSMED readings. In that analysis, two models were 

developed – one using linear regression (NOR-LIN) and 

another using Ensemble Bagging Technique over normal 

adults’ data (NOR-ENS). Further details of the healthy adult 

EE study are the subject of a different paper, currently under 

review.  

III. RESULTS 

3.1 Subject Characteristics 

Physical characteristics of the subjects are shown in Table 1. 

All subjects completed the study protocol without any 

problems. 

TABLE I.  CHARACTERISTICS OF SUBJECTS   IN THE STUDY 

Attributes Range 

Age, year 8.3±1.7 

Height, cm 121.4±10.4 

Weight, kg 28.7±5.8 

BMI, kg/m2  19.3±2.1 

Fitness: 1 min recovery HR, bpm 321.3±126.4 

Fitness: 6 min walk test 120.7±16.3 

 

3.2 Feature Selection  

The goal of feature selection is to reduce the number of 

attributes used in the model and to understand the predictive 

power of the original set of attributes. Correlation Feature 

Selection (CFS) was used to identify a subset of attributes, 

for reduction of input attributes [13]. Age, Height, Weight, 

Horizontal, Vertical and Net Acceleration measurements, as 

well as Heart Rate measurements, were retained, while BMI, 

recovery HR and 6 minute walk test values were removed. 

The CFS technique was used with a greedy stepwise search 

to find the subset S with the best average merit, which is 

given by MS 

 
Where n is the number of features in S,  is the average 

value of feature-outcome correlations and   is the 

average value of all feature-feature correlations. We used the 

information-gain (IG) metric to measure the relative 

predictive power of each final attribute in our dataset, 

Training set ‘T’ [14]: 

 
H() represents the information entropy and is an attribute. 

Figure 1. shows the plot of  for all the attributes. It 

demonstrates that for children with DMD, heart rate readings 

have the highest information gain contribution to EE  

 

Figure 1: Relative Information Gain (IG) of different 

attributes on the EE Estimation. We observed substantially 

reduced significance of accelerometer output in children 

with DMD compared to normal adults. 

 

Figure 3: Plot showing EE values obtained by COSMED 

and those estimated by Ensemble Model for DMD patients 

(DMD-ENS).  

estimation. In the DMD group, accelerometer values (Net A, 

Horizontal A and Vertical A) have lower relative 

information contributions for determination of overall EE, 

compared to normal adults where accelerometer readings 

have higher impact than heart rate. Other factors, such as 

age, weight and height have small IG for both populations. 

The reduced predictive power of smartphone accelerometer’s 

readings can be attributed to the unique body movement of 

DMD patients which makes it impossible for one single 

accelerometer to capture their body motion effectively. 

3.3 Ensemble Model  

Using the data obtained from the DMD children, we 

identified a total of 12 attributes (11 features and 1 output 

attribute) and 7560 total instances, to develop a new model 

of EE. We used the Bagging ensemble technique with 

Reduced Error Pruning Regression Tree as the underlying 

regression model to predict the EE values. The regression 

model generated from this choice outperformed others in 

terms of output correlation (91.2%) and Mean Absolute 

Error (MAE, 0.012): neural networks, linear regression 



  

(81.12%, 0.019), Decision Stump trees (58%, 0.025), 

Stacking (0.0289%, 0.03) and Additive Regression (78.73%, 

0.2).   This newly developed algorithm (DMD-ENS) builds a 

regression tree using information variance and prunes it 

using reduced-error pruning (with backfitting).  

 

3.4 Comparison with existing algorithms 

Results from the performance of the DMD-ENS model 

compared with the models built over normal adults are 

shown in Table 2. It can be seen that existing adult models 

give a very poor performance (only 40% correlation) and 

MAE of 0.02-0.04.  

TABLE II.  PERFORMANCE COMPARISON OF DMD-ENS MODEL WITH 

MODELS FOR NORMAL ADULTS 

Model Correlation to 

EE 

Mean Prediction Error 

DMD-ENS 91.2% 0.012 

NOR-CHEN 40.62% 0.0289 

NOR-LIN 41.59% 0.030 

NOR-ENS 37.91% 0.038 

 

In our range of observations, the mean value of COSMED 

readings over the sample population (over one second 

epoch) was 0.09. Thus, an error of 0.04 is significant. 

IV. DISCUSSION 

The purpose of this study was to test the use of 

accelerometer and heart rate sensors to estimate energy 

expenditure in boys with Duchene muscular dystrophy. 

Compared to the EE data obtained from the COSMED 

K4b2, EE estimation based on our proposed model (DMD-

ENS) has superior accuracy and correlation for EE during 

resting and low-energy activities, as well as for higher 

energy, and moderate exercise activities.  While this single 

model appears to work across a range of activities in a 

clinical setting, further investigation into the validity of this 

EE estimation model for daily activities outside the clinic is 

needed. 

Further investigation into the bodily placement of multiple 

sensors will provide information into the relative information 

gained by sensors in specific bodily locations.  It is 

conceivable that information from each of these sensors will 

independently effect accuracy of this EE model for disabled 

populations, depending on the particular conditions of the 

disability and impairment.    

We found that most of the participants found the sensors 

easy to use, unobtrusive and would be willing to use it on a 

daily bases as a tool to monitor their physical activity and 

energy balance as part of their treatment program.  

In this study, we used a smartphone accelerometer along 

with a heart rate monitor to account for both modalities in 

estimating EE. It may also be possible to mount an 

accelerometer with heart rate monitor, making the use of 

smartphone redundant. 

There are some limitations of our study.  First is the small 

sample size.  We plan to continue collecting data from DMD 

patients to validate our results.  The second limitation is that 

laboratory based measurements may not correlate to regular 

daily activity and should be further validated in  home or 

community settings.   
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