
Admission Control and Interference-Aware
Scheduling in Multi-hop WiMAX Networks

Debalina Ghosh, Ashima Gupta, Prasant Mohapatra
Department of Computer Science

University of California, Davis
Davis, CA 95616

Email: {debghosh, ashgupta, pmohapatra}@ucdavis.edu

Abstract—Multi-hop WiMAX networks based on IEEE
802.16 has the potential of easily providing high-speed
wireless broadband access to areas with little or no existing
wired infrastructure. WiMAX technology can be used as
“last mile” broadband connections to deliver streaming
audio or video to clients. Thus, Quality of Service (QoS)
is very important for WiMAX networks. Providing QoS
in multi-hop WiMAX networks such as WiMAX mesh
or mobile multi-hop relay networks is challenging as
multiple links can interfere with each other if they are
scheduled at the same time. We propose efficient heuristic
algorithms for scheduling flows in a centrally scheduled
multi-hop WiMAX network. The proposed algorithms
guarantee bandwidth and delay constraints of flows and
allow multiple non-interfering links to be scheduled at the
same time. We also define a “schedule efficiency” metric
for comparing different flow scheduling algorithms. The
simulation results show that the “schedule flow subchannel”
algorithm leads to the best schedule efficiency.

I. INTRODUCTION

WiMAX technology is becoming increasingly popular
as a number of service providers are deploying WiMAX
to provide wireless broadband connectivity to customers.
WiMAX networks can be single-hop or multi-hop. In
the single-hop mode, a Base Station (BS) communicates
directly with several subscriber stations (SSs) [1]. In
the multi-hop mesh mode, the SSs can communicate
with each other and communication between a BS and a
SS may involve multiple hops. The newly formed IEEE
802.16j working group is focusing on mobile multi-
hop relay (MMR) networks that will enable multi-hop
communication in mobile WiMAX (IEEE 802.16e) net-
works. In a MMR network, mobile stations or subscriber
stations may communicate with a relay station (RS)
instead of communicating directly with the BS [2].

QoS is extremely important for WiMAX networks
as one of the potential applications is streaming audio
and video. The IEEE 802.16 standard specifies different
service classes which have QoS parameters like mini-
mum rate, maximum rate, latency and jitter. The different
service classes are shown in Table I. An important aspect
of QoS is scheduling links for flows in a non-interfering

manner to avoid packet loss. Scheduling needs to take
the latency, bandwidth, jitter requirements and service
classes of the different flows into account. However, the
scheduling mechanism is not specified in the standard
and hence it is an active research area.

In this paper, we explore the problem of admission
control and scheduling of flows in multi-hop WiMAX
networks. In particular, we make the following novel
contributions:

1) We propose an efficient admission control and
flow scheduling algorithm that schedules flows
in such a manner that the bandwidth and delay
requirements of the flows are satisfied. Our algo-
rithm schedules non-interfering links concurrently
leading to efficient spatial reuse. It schedules flows
close to the deadline, so that new flows with
earlier deadline can be admitted if there is enough
capacity. We calculate the latest start time slot by
which a link needs to be scheduled so that the
flow meets its latency requirements for all links in
the route of a flow. The algorithm consists of two
phases: in the first phase, we allocate interference-
free slots (timeslot-subchannel) to a flow based
on the maximum bandwidth requirement of the
flow. We execute the second phase only if the
first phase fails to allocate enough slots to satisfy
the minimum bandwidth requirement of the flow.
In the second phase, we take away extra slots
(slots allocated beyond the minimum bandwidth
requirement to an existing flow) and allocate these
slots to the flow under consideration. We admit a
flow only if the minimum bandwidth requirement
and latency requirement is satisfied.

2) We define a “schedule efficiency” (SE) metric to
compare different flow scheduling algorithms. The
schedule efficiency takes into account the service
class priority of flows, the minimum bandwidth
requested by a flow and the number of flows.

3) Finally, we provide extensive simulation results

1-4244-1455-5/07/$25.00 c© 2007 IEEE IEEE

TABLE I
SERVICE CLASSES IN WIMAX

Class Application QoS parameters

Unsolicited
Grant Service
(UGS)

VoIP,E1; fixed-
size packets on
periodic basis

max rate, latency
and jitter

Real-Time
Polling Service
(rtPS)

Streaming
audio/video

minrate, maxrate
and latency

Enhanced Real-
Time Polling
Service (ertPS)

VoIP with activ-
ity detection

minrate,maxrate,
latency and jitter

Non Real-Time
Polling Service
(nrtPS)

FTP minrate and
maxrate

Best Effort (BE) Data transfer,
Web

maxrate

which compares our algorithm with several vari-
ants. We compare the different algorithms using
the SE metric, the total bandwidth allocated, frac-
tion of accepted flows and computation time.

The results clearly indicate the need for admission
control without which the actual number of flows that
achieve the guaranteed rate is quite low. Among the
five scheduling algorithms, the schedule flow subchannel
(SFS) algorithm performs best in terms of schedule
efficiency and computation time. All the algorithms com-
pared schedule flows according to service class priority
and are all interference aware. But the SFS algorithm
performs better than the naive algorithm when there are
flows with latency requirements as the SFS algorithm
attempts to schedule flows as close to the deadline as
possible.

The rest of the paper is organized as follows. We
define the network model and state our assumptions in
Section II. In Section III we discuss our algorithms
for flow scheduling and admission control. We present
the simulation results in Section IV. In Section V we
describe related work. Section VI concludes the paper.

II. NETWORK MODEL

A typical network model is shown in Figure 1. It con-
sists of one base station and several subscriber stations
or relay stations that are connected to the base station
using one or more hops. Usually the number of hops
is small. All flows are centrally scheduled by the base
station (BS).

A. Assumptions

Our assumptions are listed below:

• The topology of the network is a tree with the BS
at the root of the tree. This is a standard topology
used for most WiMAX networks [3].

Fig. 1. Network Model

• Routing from a source to a destination is fixed and
non-adaptive.

• The flows are non-splittable, that is, they follow
only one path.

• All nodes are half-duplex.
• All links use the same coding scheme across all

frames. However, our algorithm can be easily ex-
tended to different coding schemes.

• The set of interfering links is provided as input by
the user. Hence this algorithm is independent of any
specific interference estimation method.

B. Physical Layer

We assume the physical layer is Orthogonal frequency
division multiple access (OFDMA). Both IEEE 802.16
and IEEE 802.16e Physical layer supports OFDMA.
OFDMA divides a channel into a number of subcarriers.
The subcarriers can be grouped together into “subchan-
nels”. Multiple access is two-dimensional in OFDMA.
Thus a particular subscriber can be assigned one or more
subchannels. A slot is the basic unit of assignment in the
time-frequency grid. Thus OFDMA is a combination of
both frequency domain and time domain multiple access.
Therefore it results in improved capacity, better schedul-
ing and QoS support and reduced interference. However,
as the number of slots in the two dimensional time-
frequency grid is more compared to a single dimensional
time or frequency domain, the scheduling overhead will
be higher.

C. Even-odd labeling

We assume all nodes in our wireless network are half-
duplex and they are not capable of transmitting and
receiving at the same time. Thus, we adopt the even-odd
framework as described in [3]. A link in the network is
assigned either an even or odd label and alternate links
are assigned different labels. An even link transmits in

an even timeslot and an odd link transmits in an odd
timeslot.

III. PROBLEM FORMULATION AND ALGORITHM

A. Statement of the Problem

The problem that we are trying to address can be
stated as:

Given a number of flows with minimum rate, maximum
rate and latency requirements, how can we admit and
schedule the flows so that the minimum rate and latency
requirements of the flow can be guaranteed while en-
suring maximum bandwidth utilization under a specified
interference model?.

This also ensures that In case of resource availability,
the flows are able to transmit at the maximum requested
rate.

We define a virtual link to be a physical link associated
with a particular flow. Thus, a virtual link is identified
by the link id and the flow id and has a number of
other parameters like the start time slot. Given a number
of flows that need to be scheduled and their routes,
we compute the start time slots of the virtual link in
the following manner. The start time slot of a link is
the timeslot within a frame by which the link must be
scheduled so that the flow reaches the destination by its
deadline. Assuming each link has the same rate, the start
time slot of a link can be defined as:

ts =
d − fs − kt1

t2

where ts is the start time slot of a link, d is the deadline,
fs is the start of the next frame, k is the number of hops
to the destination, t1 is the propagation delay and t2 is
the period of each time slot. The start time slot of a link
also depends on whether the corresponding link is even
or odd.

The above expression can be used to compute the start
time slots of links corresponding to UGS, ertPS and rtPS
flows as those flows have latency requirements. For BE
and nrtPS flows that do not have latency requirements,
the end time of the UL (or DL) frame is considered as
the start time slot of those flows.

The problem can be formulated as a list multi-coloring
problem where each virtual link is a vertex in a graph
and is connected to all interfering virtual links. We know
that the list multi-coloring problem is NP-complete even
for binary trees [4] and thus we propose a heuristic
algorithm to solve the problem.

B. Heuristic Algorithm

The algorithm is used to schedule flows in each
scheduling period. A scheduling period consists of an in-
tegral number of frames. The same schedule is followed
in all the frames of a scheduling period. We calculate
the minimum number and maximum number of slots

required by a flow in a frame in the manner illustrated
in [5]. The flows are scheduled according to the service
class priority.

The scheduling algorithm is shown in Algorithm 1.
The algorithm consists of two phases. First, we attempt
to schedule free timeslots and subchannels to the flow
and find out the maximum bandwidth that can be allo-
cated to all the links of the flow (bottleneckBw). If any
link has been allocated more bandwidth than the mini-
mum bandwidth requirement of a flow, we tag these extra
timeslot-subchannels so that these can be preempted by
other flows if required. If the bandwidth assigned to a
link is less than the minimum bandwidth requirement, we
execute the second phase (ScheduleFlowExtra) which re-
quires discovering these tagged slots and allocating them
to the flow being considered. The flows are scheduled
in an interference-aware manner. Primary interference at
a node v occurs when two nodes transmit to it in the
same slot. Secondary interference at v occurs because
of two simultaneous transmissions to different receivers.
Our assumed interference model accounts for both. Thus,
two interfering links are not scheduled in the same
timeslot-subchannel. Also, even/odd links are scheduled
in even/odd timeslots respectively.

for each flow f in F do
bwAlloc = SFS() or Timeslot-1() or Timeslot-2();
if bwAlloc < min bandwidth requirement of f then

Scheduled = ScheduleFlowExtra();
end
if bwAlloc > min bw or Scheduled is TRUE then

Tag Extra slots;
Make Temporary Schedule Permanent;
Update bandwidth allocated to flow;
accept flow f;

else
reject flow f;

end
end

Algorithm 1: Scheduling algorithm

Timeslots-subchannels can be allocated in the first
phase in three different ways. In the first method (Algo-
rithm 2), we determine the interference-free subchannels
in a timeslot that have not been allocated (FindFreeSub-
channels). If the number of free subchannels does not
fulfill the maximum bandwidth requirements of the flow,
then the previous timeslot is considered. If the maximum
bandwidth requirements of the flow is met or we reach
the start of the frame, then we schedule the next link
in the route of the flow. Once all the links of a flow
have been considered, the second phase of Algorithm
1 is executed if any link in the route does not meet
the minimum bandwidth requirement. Algorithms 3
and 4 show the two other methods by which slots are
allocated to a flow. In both the algorithms, only one
subchannel in a timeslot is allocated to a flow and then
the previous timeslot is considered. In the timeslot-1

bottleneckBw = maximum bw required by f;
for each link l in f do

Ts = start time slot for link l;
slotsalloc = 0;
while Ts > startOfFrame do

numfreeslots = FindFreeSubchannels(Ts,l);
if (slotsalloc + numfreeslots) < maxslots then

Add numfreeslots to temporary schedule;
slotsalloc = slotsalloc + numfreeslots;
Ts = Ts - 2;

else
Add (maxslots - slotsalloc) to temporary schedule;
slotsalloc = maxslots;
break;

end
end
update bottleneckBw;

end
return bottleneckBw;

Algorithm 2: ScheduleFlowSubchannel (SFS)

algorithm, we try to allocate the first free subchannel in a
timeslot whereas in the timeslot-2 algorithm we consider
a particular subchannel k in all timeslots and allocate it
if it is interference free.

bottleneckBw = maximum bw required by f;
for each link l in f do

initialize slotsalloc and subchannelCtr to 0;
BWSatisfied = FALSE;
find subchannels that are free from interference;
while (subchannelCtr< MAXSUBCHANNELS)
and (BWSatified is FALSE) do

Ts = start time slot of link l;
while (Ts > startOfFrame)
and (slotsalloc < maxslots) do

Add the first free subchannel in timeslot Ts to
tempschedule;
update slotsalloc;
Ts = Ts - 2;

end
if slotsalloc < maxslots then

subchannelCtr++;
else

BWSatisfied = TRUE;
break;

end
end
update bottleneckBw;

end
return bottleneckBw;

Algorithm 3: Timeslot-1

Given the space requirements of the paper we do
not present here the details of the ScheduleFlowExtra
algorithm that implements the preemption of the extra
tagged slots.

C. Naive algorithm

We compare our heuristic with a naive algorithm
(Algorithm 5). The naive algorithm is also interference-
aware, i.e., interfering links are scheduled in different
slots. But the naive algorithm schedules flows from
the start of the frame and only allocates the minimum
number of slots required. The naive algorithm consists
of only one phase and involves no tagging of extra slots.
The naive algorithm attempts to allocate a free subchan-
nel in a particular timeslot. If none of the subchannels
are available, it proceeds to the next timeslot.

bottleneckBw = maximum bw required by f;
for each link l in f do

initialize slotsalloc and subchannelCtr to 0;
BWSatisfied = FALSE;
while (subchannelCtr< MAXSUBCHANNELS)
and (BWSatified is FALSE) do

Ts = start time slot of link l;
while (Ts > startOfFrame) and (slotsalloc < maxslots) do

if subchannel[subchannelCtr] is free in timeslot Ts then
Add subchannel to tempschedule;
update slotsalloc;

end
Ts = Ts - 2;

end
subchannelCtr++;
if slotsalloc >= maxslots then

BWSatisfied = TRUE;
end

end
update bottleneckBw;

end
return bottleneckBw;

Algorithm 4: Timeslot-2

for all links l in f do
slotsalloc = 0;
finalslot = starttimeslot of link l;
Ts = startOfFrame;
subchannelCtr = 0;
while (Ts <= finalslot) and (slotsalloc < minslots) do

if subchannel[subchannelCtr] is free then
slotsalloc++;
update tempschedule;

end
subchannelCtr++;
if subchannelCtr = MAXSUBCHANNELS then

subchannelCtr = 0;
Ts = Ts+2;

end
end
if slotsalloc < minslots then

Scheduled = FALSE;
return Scheduled

end
end
Scheduled = TRUE;

return Scheduled

Algorithm 5: Naive Algorithm

D. Schedule Efficiency

We propose a schedule efficiency (SE) metric to
evaluate different scheduling algorithms.

SE =
Ca

Ct

C = WUGS∗bWUGS+WrtPS∗bWrtPS+WertPS∗bWertPS

+WnrtPS ∗ bWnrtPS + WBE ∗ bWBE

where the subscript a and t in Ca and Ct refer to
admitted and total flows respectively, Wsub is the weight
of flows of class sub, bWsub is the total bandwidth
(minrate) allocated to sub flows and the subscript sub
refers to the service class type (UGS, ertPS, rtPS, nrtPS,
BE) of the flows.

The SE metric measures how efficiently an algorithm
schedules flows. An algorithm that schedules higher

Fig. 2. Topology

priority flows is better than one that schedules lower
priority flows even if the number of scheduled flows
is same. Thus the weight of an accepted flow and its
minimum rate in the SE metric takes both the priority
and the bandwidth of a flow into account. Hence a
scheduling algorithm that has a higher SE value is more
efficient than one that generates a lower SE value even
if the number of flows accepted by the second algorithm
is higher.

IV. SIMULATION RESULTS

We use a custom simulator written in C. The sim-
ulation runs in two threads - the flow generator that
generates flows and the scheduler that checks at ev-
ery configurable scheduling period and schedules these
flows. We can perform both dynamic and static flow
scheduling depending on whether we run the threads
concurrently or not. For purposes of comparison with the
other scheduling algorithms we used static scheduling
so that the input to all the algorithms is identical. The
flows are generated according to Poisson arrival process.
For our results we limited the number of flows so that
the sum total of their minimum bandwidth requirements
matches the maximum capacity of the network. The
number of flows generated could be different each time
as the type of flows are also generated randomly and
each class is associated with a different latency and
bandwidth range. We use a uniform random generator
to generate the source and destination of each flow. We
use a fixed topology that is provided by user input as
is the interference model. For the following simulation
scenarios we used the topology shown in Figure 2. The
frame size and maximum number of subchannels are also
configurable and we used 5ms and 256 respectively.

We maintain five global queues at the BS ordered
by priority (UGS highest and BE lowest). Within each
queue flows are ordered on arrival times. Each flow has
an associated route that is computed from the source
and destination generated by the flow generator and the

topology input by the user. We perform link scheduling
for spatial efficiency. The schedule for each link is com-
puted by the algorithm and stored as a two dimensional
structure of subchannels indexed by timeslots.

We use five algorithms for scheduling. The SFS,
Timeslot-1, Timeslot-2 and Naive algorithms are de-
scribed in detail in Section III. We also present results
from the MinSubchannel algorithm which is similar to
the SFS algorithm except that it allocates only for the
minimum bandwidth requirements of the flows. In all the
algorithms flows are picked for scheduling in service
class priority and within each service class they are
picked on first arrival time.

We generated different sets of flows for which all of
the above algorithms were executed. The flow mix in
each set was varied from 10% of the network capacity
for one service class to 100% of that class and the
rest divided equally among all the other service classes.
We compare the algorithms on a number of parameters
as described further. The first parameter fraction of
accepted flows also illustrates the effect of admission
control.

• Fraction of Accepted flows: This is the measure of
total number of accepted flows per the total number
of flows. However, it does not take bandwidth into
account. Hence an algorithm could accept many BE
flows but still be bandwidth inefficient compared
to another that would accept fewer BE flows but
better number of nrtPS flows. In our simulations we
assume that BE flows have a minimum requirement
of one slot bandwidth. We illustrate the effect of
admission control on the fraction of accepted flows
in the Naive algorithm.The NaiveWithoutAc is the
naive algorithm with no admission control. This
algorithm schedules all flows in order of priority
without checking whether the deadline will be met.
Although a number of flows get accepted when
there is no admission control however the actual
number of flows that meet the minimum require-
ments are low. Figures 3- 6 show that admission
control increases the fraction of accepted flows sig-
nificantly for ugs, rtPs and ertPs flows as these flows
have latency requirements. However, as the number
of nrtPs flows increase (Figure 6), the difference in
the fraction of accepted flows is negligible as nrtPs
flows do not have latency requirements.

• Schedule Efficiency: “Schedule Efficiency” is a
weighted measure of the total minimum required
bandwidth of flows accepted per the total minimum
required bandwidth of all flows that were to be
scheduled. The results obtained for the various flow
sets are depicted in the Figures 7- 10.
As can be seen, Schedule Efficiency is maximum
for the SFS algorithm. This indicates that it can

Percentage of UGS Flows
10 20 30 40 50 60 70 80 90 100

F
ra

ct
io

n
 o

f
S

ch
e

d
u

le
d

 F
lo

w
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
NaiveWithoutAC
NaiveWithAC
Timeslot−2
MinSubchannel
Timeslot−1
SFS

Fig. 3. Effect of Admission Control and Scheduling, varying
percentage of UGS flows

Percentage of ertPs Flows
10 20 30 40 50 60 70 80 90 100

F
ra

ct
io

n
 o

f
S

ch
e

d
u

le
d

 F
lo

w
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
NaiveWithoutAC
NaiveWithAC
Timeslot−2
Timeslot−1
MinSubchannel
SFS

Fig. 4. Effect of Admission Control and Scheduling, varying
percentage of ertPs flows

Percentage of rtPs Flows
10 20 30 40 50 60 70 80 90 100

F
ra

ct
io

n
 o

f
S

ch
e

d
u

le
d

 F
lo

w
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
NaiveWithoutAC
NaiveWithAC
MinSubchannel
Timeslot−2
Timeslot−1
SFS

Fig. 5. Effect of Admission Control and Scheduling, varying
percentage of rtPs flows

Percentage of nrtPs Flows
10 20 30 40 50 60 70 80 90 100

F
ra

ct
io

n
 o

f
S

ch
e

d
u

le
d

 F
lo

w
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
NaiveWithoutAC
NaiveWithAC
Timeslot−2
MinSubchannel
Timeslot−1
SFS

Fig. 6. Effect of Admission Control and Scheduling, varying
percentage of nrtPs flows

Percentage of UGS Flows
10 20 30 40 50 60 70 80 90 100

S
ch

ed
ul

e
E

ffi
ci

en
cy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
MinSubChannel
Naive
Timeslot−2
Timeslot−1
SFS

Fig. 7. Schedule efficiency with varying percentage of UGS flows

allocate bandwidth efficiently and with priority to
the higher service classes. Schedule Efficiency(SE)
for the MinSubchannel algorithm is also the same
since it is computed over the minimum bandwidth
requirements of the different kinds of flows admit-
ted instead of the actual bandwidth allocated. The
SE curve of the Naive algorithm is the least while

Percentage of ertPs Flows
10 20 30 40 50 60 70 80 90 100

S
ch

ed
ul

e
E

ffi
ci

en
cy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
MinSubChannel
Naive
Timeslot−2
Timeslot−1
SFS

Fig. 8. Schedule efficiency with varying percentage of ertPs flows

Percentage of rtPs Flows
10 20 30 40 50 60 70 80 90 100

S
ch

ed
ul

e
E

ffi
ci

en
cy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
MinSubChannel
Naive
Timeslot−2
Timeslot−1
SFS

Fig. 9. Schedule efficiency with varying percentage of rtPs flows

Percentage of nrtPs Flows
10 20 30 40 50 60 70 80 90 100

S
ch

ed
ul

e
E

ffi
ci

en
cy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
MinSubChannel
Naive
Timeslot−2
Timeslot−1
SFS

Fig. 10. Schedule efficiency with varying percentage of nrtPs flows

that of the timeslot algorithms are close to that of
the SFS algorithm. The difference in performance
decreases as the flow priority decreases and the
latency requirements are relaxed. Hence the SE
curve for larger percentage of nrtPs flows in the
total flow mix is approximately the same for all the
algorithms.

• Bandwidth allocated: This compares the total band-
width allocated to all the accepted flows. Note that
this may not be the same as the total minimum
required bandwidth of all the flows since some
algorithms, viz., subchannel first, timeslot-1 and
timeslot-2 allocate more than the minimum required
bandwidth. The results obtained for the various flow
sets are depicted in the Figures 11- 14.
The bandwidth efficiency is highest for the SFS
algorithm as we vary the percentage of UGS flows
in the flow mix from 10 to 100%. The Naive
algorithm shows the lower performance primarily
because it starts allocating slots from the beginning
of the subframe. Hence it is unable to meet the
latency requirements of delay sensitive flows and
has to reject them. This is also the primary reason
for its poor performance in Figure 13. The sec-

Percentage of UGS Flows
10 20 30 40 50 60 70 80 90 100

B
a

n
d

w
id

th

5000

6000

7000

8000

9000
MinSubChannel
Naive
Timeslot−2
Timeslot−1
SFS

Fig. 11. Bandwidth utilization with varying percentage of UGS flows

Percentage of ertPs Flows
10 20 30 40 50 60 70 80 90 100

B
a

n
d

w
id

th

5000

6000

7000

8000

9000
MinSubChannel
Naive
Timeslot−2
Timeslot−1
SFS

Fig. 12. Bandwidth utilization with varying percentage of ertPs flows

ondary reason is that it allocates only the minimum
required bandwidth defined by the flows as does the
MinSubchannel algorithm which also shows a lower
performance. The performance of all the algorithms
converges to approximately the same as the flow
mix gets saturated with one kind of flow. This is
because with just one service class in the flow set,
flow priority and hence characteristics of the flow

Percentage of rtPs Flows
10 20 30 40 50 60 70 80 90 100

B
a

n
d

w
id

th

3000

4000

5000

6000

7000

8000

9000
MinSubChannel
Naive
Timeslot−2
Timeslot−1
SFS

Fig. 13. Bandwidth utilization with varying percentage of rtPs flows

Percentage of nrtPs Flows
10 20 30 40 50 60 70 80 90 100

B
a

n
d

w
id

th

5000

6000

7000

8000

9000
MinSubChannel
Naive
Timeslot−2
Timeslot−1
SFS

Fig. 14. Bandwidth utilization with varying percentage of nrtPs flows

Number of flows
50 100 150 200 250

C
o

m
p

u
ta

tio
n

 T
im

e

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
MinSubChannel
Naive
Timeslot−2
SFS
Timeslot−1

Fig. 15. Number of flows vs Computation Time

type have little effect on the algorithm performance.
The SFS and timeslot algorithms do best in almost
all scenarios except the two cases as shown in
Figure 12. This is because the flow mix had higher
BE traffic that has a lower bandwidth requirement
and the Naive algorithm schedules a higher number
of those.

• Computation Time: Computation time is the time
taken by the scheduling algorithm to execute. It
reflects the order of the algorithm. We generated
flow sets with varying number of total flows while
keeping the flow mix uniformly distributed. We then
executed each of the scheduling algorithms on every
flow set. The results are depicted in Figure 15. As
can be seen the computation times for Naive and
MinSubchannel algorithm are the lowest. These do
not perform any tagging and preemption. However
the computation time of the SFS algorithm also
increases linearly with the number of flows and is
comparable to the other two in-spite of providing
the additional advantages of higher bandwidth uti-
lization. The computation times of both the timeslot
algorithms increases rapidly with the number of
flows. The order of the increase is a polynomial of

Number of accepted flows / Total number of flows

N
u

m
b

e
r

o
f
F

lo
w

s

0

100

200

300

ugsaccepted

ertPsaccepted

rtPsaccepted

nrtPsaccepted

BEaccepted

ugsrejected

ertPsrejected

rtPsrejected

nrtPsrejected

BErejected

Fig. 16. SFS algorithm

Number of accepted flows / Total number of flows

N
u

m
b

e
r

o
f

F
lo

w
s

0

100

200

300

ugsaccepted

ertPsaccepted

rtPsaccepted

nrtPsaccepted

BEaccepted

ugsrejected

ertPsrejected

rtPsrejected

nrtPsrejected

BErejected

Fig. 17. Naive Algorithm

degree 3. The inefficiency of the timeslot algorithms
is attributed to the fact that each timeslot could
be revisited multiple times during the allocation
since only one subchannel per timeslot is assigned
at a time. The timeslot-2 algorithm is even more
inefficient since it searches for the possibility that
the same subchannel is free during all the timeslots
instead of getting the first free one.

Figures 16 and 17 shows the total number of flows and
accepted flows for each service class in a given flow for
the SFS and Naive algorithms. We used five different
flow sets with varying flow mixes. As can be seen the
SFS is bandwidth efficient and can schedule a larger
number of higher priority flows than the Naive algorithm.
For example, in the first flow mix, the SFS algorithm
schedules approximately 80% of the rtPS flows while
the naive algorithm schedules approximately 40% of
the rtPS flows. However, the naive algorihm is able to
schedule all the BE flows while the SFS algorithm can
schedule very few BE flows. This is also due to the fact
that the minimum bandwidth requirement of a BE flow
is only one slot.

V. RELATED WORK

Some researchers have addressed the problem of cen-
tralized link scheduling in WiMAX networks. Some of
the proposed scheduling algorithms ([5], [6]) schedule
only one link at a time and hence they do not effectively
utilize the capacity of the network. Others like [3] and
[7] try to allocate non-interfering links at the same time.

An interference-aware route construction and schedul-
ing algorithm is developed in [7]. The capacity request
D(k) of an SS node k is represented in terms of
link demands Y (j) for every link j. The scheduling
algorithm iteratively determines ActiveLink(t), that is,
the set of active links at the time t. An interference-
aware scheduling algorithm is described in [8] where
a SS is assigned service token based on its traffic
demand. In each timeslot a link is selected based on a
certain criterion and the service token of the transmitter
is decreased and the service token of the receiver is
increased by one. A centralized scheduling scheme using
multiple channels and single transceivers in a WiMAX
Mesh Network is discussed in [9]. The goal is to
minimize the length of scheduling defined as the number
of timeslots needed to complete all the data transmis-
sions. The authors in [6] compare the performance of
schedulers for multiple traffic classes (multi-class Mod-
ified Largest Weighted Delay First) vs a joint scheduler
that is used for all classes until the waiting time of a
QoS packet in the queue exceeds 50% of its maximum
allowable delay. However, none of the above schemes
use OFDMA as the physical layer. The authors in [10]
define a fairness model and then develop an efficient
algorithm for calculating the optimal schedule under the
fairness model. Perhaps the most relevant to our scheme
is Narlikar, Wilfong and Zhangs’ even-odd framework
which we have adopted in our algorithm [3]. Each node
is alternately labeled even or odd; even nodes transmit in
even timeslots and odd nodes transmit in odd timeslots.
They present techniques for constructing interference-
free routes within the even-odd framework. They also
show that if any wired scheduling policy with delay
bound is implemented locally at a node, the scheduling
framework guarantees approximately twice the delay of
the wireline scheduler. However, the scheme requires
that a route does not contain two interfering even or odd
links. Thus, there may not be a feasible route in their
scheme even if two nodes are able to communicate with
each other.

VI. CONCLUSION

In this paper we studied the admission control and
scheduling problem in multi-hop WiMAX networks
based on IEEE 802.16. This is an NP-Hard problem and
we described some heuristic approaches. Specifically,
we described five different algorithms, schedule flow

subchannel (SFS), timeslot-1, timeslot-2, minsubchan-
nel and the naive algorithm. Each of the algorithms
uses centralized scheduling and guarantee collision free
schedules by scheduling only non-interfering links in
the same slots. The SFS and timeslot algorithms also
maximize bandwidth consumption by allocating extra
bandwidth and performing preemption if required. We
introduced the “schedule efficiency” (SE) metric and
measured the five algorithms against this metric, as
well as computation time, bandwidth efficiency and
fraction of accepted flows. We used a custom simulator
and flow generator and measured the performance of
the algorithms against various flow sets. We find the
SFS algorithm to be the best in terms of the SE and
the computation time. Its bandwidth efficiency is also
comparable to the other algorithms. While in some
cases the fraction of flows accepted has been higher in
the naive algorithm however this is because the naive
algorithm inefficiently schedules delay sensitive rtPS
flows and instead schedules a larger number of BE flows
that have a smaller bandwidth requirement. The SFS
algorithm is more efficient in scheduling delay sensitive
flows. Hence we recommend the SFS algorithm. We are
currently working on the mathematical formulation of
the problem. The mathematical model will serve as a
benchmark for our proposed algorithms and other such
heuristics.

REFERENCES

[1] C. Eklund, R. B. Marks, K. L. Stanwood, and S. Wang, “Ieee
standard 802.16: A Technical Overview of the WirelessMAN Air
Interface for Broadband Wireless Access,” IEEE Communica-
tions Magazine., 2002.

[2] R. B. Marks, M. Nohara, J. Puthenkulam, and M. Hart, “IEEE
802 tutorial: 802.16 mobile multihop relay,” Website, 2006, ”http:
//www.ieee802.org/16/sg/mmr/index.html”.

[3] G. Narlikar, G. Wilfong, and L. Zhang, “Designing multihop
wireless backhaul networks with delay guarantees,” in Proceed-
ings of Infocom, 2006.

[4] D. Marx, “Graph coloring problems and their applications in
scheduling,” Periodica Polytechnica Ser. El. Eng., vol. 48, no.
1-2, pp. 5–10, 2004.

[5] A. Sayenko, O. Alanen, J. Karhula, and T. Hämäläinen, “Ensuring
the QoS requirements in 802.16 scheduling,” in MSWiM, 2006.

[6] H. Shetiya and V. Sharma, “Algorithms for Routing and Central-
ized Scheduling to Provide QoS in IEEE 802.16 Mesh Networks,”
in WMuNeP, 2005.

[7] H.-Y. Wei, S. Ganguly, R. Izmailov, and Z. J. Haas, “Interference-
aware IEEE 802.16 Wimax mesh networks,” in Vehicular Tech-
nology Conference, 2005.

[8] B. Han, W. Jia, and L. Lin, “Performance evaluation of schedul-
ing in IEEE 802.16 based wireless mesh networks,” Computer
Communications., 2007.

[9] P. Du, W. Jia, L. Huang, and W. Lu, “Centralized Scheduling
and Channel Assignment in Multi-Channel Single-Transceiver
WiMax Mesh Network,” in WCNC, 2007.

[10] M. Cao, V. Raghunathan, and P. Kumar, “A Tractable Algorithm
for Fair and Efficient Uplink Scheduling of Multi-hop WiMAX
Mesh Networks,” in WiMesh, 2006.

