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Abstract—With the ever increasing usage of handheld devices
and vast deployment of wireless networks, we observe that
it is possible to collect data from mobile devices and reveal
personal relationships of their owners. In the paper, we exploit
the hidden information collected from WLAN devices and infer
individual relationships between device pairs based on three
observation dimensions: network association history, physical
proximity and spatio-temporal behavior. By measuring WLAN
data, we demonstrate that device owners with social relationship
tend to share access points, or show similar behavior patterns in
wireless communications (e.g. go to the same place periodically to
access the same WLAN network). These results can be exploited
for various network analytic purposes.

I. INTRODUCTION

With the fast development of mobile computing and wireless
communication, people become more and more attached to
the mobile handheld devices, such as smartphones, PDAs and
tablets. The physical devices have been so tightly coupled to
the network users, that the network structure will be largely
dependent on the distribution of network users and their
relationships in the network. In order to provide better network
designs and enhance network performance in the future, it
is imperative to study the user behaviors and their relation-
ships within the network. What makes relationship discovery
more important is that in some networks, it provides critical
information for network applications. Consider two networks
as examples: the delay tolerant network (DTN) [1] and the
tactical network [2]. In DTNs, each user works as a network
router and disseminate the information in a store-and-forward
manner. In this case, relationship discovery helps decide which
two (or more) users will meet more often and hence optimize
the routing strategy and expedite the information propagation.
In tactical networks, members from different teams (such as
spies or malicious members) can form an orchestrated group
and communicate with each other periodically, resulting in
disclosing classified information to the espionage organization.
In this case, relationship discovery helps to identify hidden
relations between the agents and hence reveal the covert
communities inside the tactical networks.

In this paper, we focus on relationship discovery in WLANs.
The study of relationship in WLANs faces challenges due to
its unique characteristic. First, recent years have witnessed
a significant growth of mobile WLAN users. It is easy for

them to join or leave, which makes it difficult to infer
relationships by simply taking network snapshots. Second,
Mobile users can roam between different WLANs at different
time under different names. The difficulty of tracing a mobile
user brings challenge in the relationship discovery. Third, most
private WLANs adopt encryption mechanism such as WEP
or WPA to preserve data confidentiality. When users access
the network through encrypted channels it is difficult to get
relationship information by tapping the wireless media. These
challenges motivate us to explore hidden information that is
not generated from wireless communication channels, but from
users’ implicit behavior patterns. It is supported by the fact that
society is formed by the congregation of people with similar
behaviors. Therefore, in mobile wireless networks, people with
similar mobility patterns should have a stronger social tie.

In order to discover user relationships, we focus on the
similarity of users’ behavior patterns. Our first observation is
that previously accessed networks implies user relationships.
Since most of the private WLAN network are encrypted,
users who are able to access the same private network share
the same key, hence are very likely to know each other.
Users that access same public networks in the past may also
have relationship if they share multiple common networks.
Therefore, the similarity of devices’ network access history
can be used to infer relationship between the device owners.
Our second observation is that users who locate in the same
building and access the network from the same location are
more likely to be related to each other, or have potential
relationship. For example, it is common for one organization
to have more than one department and each department having
its own network for the employees. Even though the employees
from different departments have different network to access,
they may still know each other from work collaborations.
Hence we make physical proximity as the second observation
dimension. Third, we assume that users with high temporal
similarity are more likely to have relationships. For example,
friends and family members meet more often than strangers.
In this case, we observe the spatio-temporal co-occurrence
frequency of the users and generate spatio-temporal similarity
to infer their relationships.

The rest of this paper is organized as follows. Section 2
defines the problem and our proposed framework. Section 3



presents experimental set up and some measurement based
refinements. Section 4 demonstrates the results of our experi-
ment, Section 5 discusses related work and finally, Section 6
concludes the paper.

II. RELATIONSHIP INFERRING FRAMEWORK

In this section, we define the problem, set up the notations
and definitions, and introduce the framework of our solution.

A. Problem statement

The goal of this paper is to leverage the information that
can be observed from portable wireless devices (e.g. notebook,
netbook, tablet, pda and smartphone) and infer possible rela-
tionship between the device users.

Social groups by nature consists of individuals with similar
behavioral patterns. Based on this observation, in order to
infer user relationships, we explore WLAN users’ behavioral
similarity from three aspects: the similarity of previously
accessed networks; the proximity of user locations and the
frequency of co-occurrence.

Since the meaning of relationships can be multi-faceted and
context-dependent, we clarify that our work mainly focus on
relationships that are related in real life. For example, users
who are friends in online social networks but not know each
other in the real life are not considered in this paper. Our work
does not intend to discover user relationship with certainty.
Its goal is to narrow down users that may have relationships
from a large sample poll, or strengthen conjectures such as the
existence of a relationship between some users. Instead of self-
reporting data, our method is observation based. Therefore it
can detect objective relationships such as working interactions
or neighborhood relationship (where communication can be
observed).

B. Exploration user behavior and similarity metrics

1) Network association similarity: Given two devices d1
and d2 and their previous network access lists n1 and n2,
their similarity can be compared [3] based on certain similarity
metric (such as Jaccard, Pearson or Cosine similarity metric).
In this paper, we will use Cosine metric because it is claim to
outperform other existing similarity metrics [3], [4].

Similar(d1, d2)a =
n1 · n2

∥n1∥ ∥n2∥
(1)

Current technology has made it possible to get the network
access history of Wi-Fi devices. To speed up the process of
reconnecting to the WLAN access points, most operations
systems (e.g. Windows, Mac OS, Linux, iOS and Android)
keeps a Preferred Network List (PNL) of previously accessed
network names. When a wireless device is discovering the
WLAN network, the default setting is to first actively probe
for the previous accessed network names by their Service
Set Identifier (SSID). The PNL also decides the order of the
SSIDs being probed. The SSID information is contained in
the Probing Request Frame (PRF), which is broadcast in plain
text before any encryption mechanism is applied. A wireless

network adapter will keep requesting for the SSIDs based on
certain order until some AP replies a probe response frame.
This SSID list is very user specific and be used to uniquely
identify a user [5].

In this paper, our first step is to compare user similarity
based on their network access history. Since a device always
broadcast SSIDs in plain text, the information is public ac-
cessible to anyone. Only after this phase, device starts to
exchange authentication packets with AP, and encrypted the
communication channel.

2) Location proximity: According to the first law of geogra-
phy, (everything is related to everything else, but near things
are more related than distant things [6]), the mobile users’
interactions between places are inversely proportional to the
travel distance between them. Hence, user relationship can be
explored by geographic location proximity.

For location proximity exploration, we focus on the location
of the Access Points (AP) mobile user has connected to since
it reflects a large sample of the user’s location history. This
user-location coupling can help to identify similarity between
mobile user patterns. Since most of the Wi-Fi devices are
portable and some are high attached to the user, the SSID
list that gives information about previously accessed networks
also implies that user has been to the places where those
networks locate. As long as the AP’s location is given, the
user’s location history is revealed. With online AP database
such as WiGLE [7], the AP’s name can be mapped into
geographical coordinates that reveals the location history of
the user. Location similarity can be therefore represented by
the overall collocation times between two users.

Similar(d1, d2)l =
∑

η(li, lj) (2)

where li ∈ l1, l2 ∈ l2 and η(li, lj) = 1 if li, lj in same
location; η(li, lj) = 0 if li, lj in different locations.

3) Spatio-temporal co-occurrence probability: Mobile
users may demonstrate periodic reappearances at certain loca-
tions. Users who are related are more likely to gather together
or meet frequently than unrelated strangers. Thus we make
spatio-temporal co-occurences the third aspect of inferring
social relationships.

Spatio-temporal co-occurence is defined as the probability
that the user u1 and u2 occur together at the same place and
time. Each user’s behavior can be modeled as a temporally
distributed process at different places, with random variables
representing the user’s reoccurrence frequency at that location
during different timeslots. Hence, we assign each device a
matrix D, with the column representing the location and rows
representing the timeslots we capture this user. For example,

D =


1 2 0 0
0 0 1 0
2 1 0 0
0 1 1 2

 (3)

An entry D(i, j) represents the number of reoccurrence that
device show up at corresponding times in the corresponding



location. Then the temporal similarity which describes the co-
occurrence of a pair of devices is defined as follows.

Similar(d1, d2)o =
∑
j

D1j ·D2j

∥D1j∥ ∥D2j∥
(4)

where the temporal similarities at different locations are
summed up to compare occurrence similarity.

TABLE I
EXAMPLE OF A WLAN USER PROFILE

MAC address SSID Location Timeslot
a1:b2:c3:d4:e5:f6 attwifi starbucks 13pm-14pm
a1:b2:c3:d4:e5:f6 hello starbucks 13pm-14pm
a1:b2:c3:d4:e5:f6 lisa’s network Bldg1 15pm-16pm

TABLE II
AN EXAMPLE OF INFERRING RELATIONSHIP FROM THREE SIMILARITY

METRICS

Relationship SSID similar-
ity

Location
similarity

Spacial tem-
poral simi-
larity

no 1.6E-6 (weak) 0 (weak) 0.1 (weak)
yes 3.4E-3 (strong) 1(weak) 0.45 (strong)
yes 0.1234 (strong) 2 (strong) 0.6 (strong)

III. EXPERIMENTAL SET UP AND REFINEMENTS

A. Data capture

In the experiment, we set our device’s Wi-Fi interface to
monitor mode and passively monitor the WLAN probing re-
quest frames within our communication range. The experiment
is done at four campus hotspot locations during four rush hours
for one month. We record the time-stamp, the source MAC
address, the location and SSIDs being probed and use them
as the Wi-Fi device’s profile. Table I shows an example of a
user’s profile with hypothetical information. Then we examine
the similarity of user profiles on three aspects and infer social
relationships based on the combined knowledge of similarities
(one example is shown in Table II).

In the experiment, we observe several facts that can lead
to bias or inaccurate inference of similarities due to the
characteristic of Wi-fi probings. The SSID list device probes
records the previous networks the device has accessed to.
However, there are several problems we need to address.

Our first observation is that two pair of nodes with same
number of common SSIDs can shows different tie strengths.
For example, if the SSID is a public network name commonly
used in different places(e.g. “attwifi” is used for most star-
bucks APs), the users’ relationship can be weaker. If the SSID
only belongs to a home network which is unique in the world,
the users are supposed to have stronger relationship. In order
to differentiate kind of networks and give high importance
to unique network name, it is necessary to assign different
weights to different SSIDs.

Another observation is that different network service plat-
forms provide different strategy of sending probing request
packets. The request can be sent in order of recently accessed

Fig. 1. CDF of ssid frequencies in public and private networks in semi-log
scale

order or longest connection time, or only request for networks
that are accessed in the last month. As soon as the Wi-Fi
device receives the probe response frame from the AP, it
stops broadcasting probe frames and starts to communicate
with the AP. Therefore, the SSID list we can capture is highly
dependent on how new the environment to the users. A new
user will give more SSID information than an old (a regular)
user. As far as we know, Windows system sends probing
information in the order of most recently accessed networks.
As long as it receives the probe response frame from the
AP, it stops broadcasting probe request frames and start to
associate with the AP. This observation leads to the result
that the SSID list we collect can be partial information. One
method to overcome this problem is capturing the SSID from
different environments. In our experiment, we focus our data
capture in four different hot spots. The SSIDs collected from
the same device in different places during different timeslots
will be merged if the lists are different.

B. Association history similarity

In reality, SSID has different meanings and lead to different
strength of relationship. There are SSID names like “linksys”
and “comcast”, which are the default SSIDs given by the
router’s manufacturer Cisco or the Internet service provider
Comcast. There are campus or enterprize SSIDs like “UC-
Davis” and “eduroams”, that are shared by multiple APs in
the same institution or company. And there is unique SSID
name that are used by certain user in private networks (like
“lisa’s network”). The tie strength of relationship differs based
on which kind of network the users are sharing. In order to
give high weights to specific and unique SSID, we assign a
weight for each SSID.

SSID weight assignment We examine the frequency (f ) of
different type of network names and discover one of the main
difference is their frequency of being probed. For example, as
shown in Figure 1, public networks are being probed more
frequently than private networks. Therefore, in order to show
the importance of different networks, we assign weight of an
SSID as inverse proportional to its frequency of being probed.

Then we adopt a similar metric to compare the similarity



of two SSID lists, and use a modified Cosine similarity metric
to measure two devices’ SSID similarity.

similarityDa(d1, d2) =
Σβ2

z√
Σβ2

x

√
Σβ2

y

(5)

βi =
1

fi
(6)

where d1, d2 refer to device1 and device2, β is the weight
of an SSID, which is inverse proportional to its frequency f ,
z is the set of common SSIDs both in d1 and d2s’ preferred
network list.

In order to find the similarity threshold for SSID metric,
we trained a control set that maximize the True Positive Rate
(TPR) and minimize the False Positive Rate (FPR). Here
True Positive (TP ) (resp. False Positive (FP )) is the number
of related pairs (resp. unrelated pairs) that are inferred to have
relationship in our method. Similarity, True Negative (TN )
(resp. False Negative (FN )) is the number of unrelated pairs
(resp. related pairs) that are not inferred to have relationship
in our method. TPR is defined as TP/(TP + FN), reflect-
ing the sensitivity of our method. And FPR is defined as
FP/(FP + TN), reflecting the (1- specifity) of our method.
The controlling set is based on 13 user’s 66 relationships.
Figure 2 shows the TPR and FPR at different threshold.
According to the result, we choose our threshold 1.85E − 6,
where TPR is 0.75, FPR is 0.25 and TPR/FPR is maximized.

Based on this threshold, we can calculate each pair of
devices’ SSID similarity and discover potential relationship
between device owners.

C. Location similarity

For location measurement, we detect the existing networks
in each campus building and group the AP names in the
same building as one cluster. For example, as shown in Table
III, if Bldg1 has two SSIDs SSID1 and SSID2, we will
map them into same location Bldg1. For future representation,
devices looking for either SSID1 or SSID2 are considered
to have been in the same location Bldg1. In this case, by
comparing the number of buildings where the devices accessed
the network, we get location similarity of two users.

similarityDl
(d1, d2) = count common(M(l1),M(l2))

(7)
where M is the function that maps a specific SSID into its
geographic location.

Location proximity can also serve as complementary in-
formation for SSID-based relationship detection. Consider co-
workers at same layer of building who know each other. If they
access the network from their own labs by different APs, they
will not have common SSIDs. Hence SSID-based metric will
lose this relation. On the other hand, location-based similarity
will merge their lab SSIDs into single building and hence
discover the relationship between them.

With activities such as Wardriving (persons mapping wifi
networks by a mobile vehicle, using a portable computer or

smartphone), it is possible to get public AP maps from some
wireless network database. In this paper, we use the AP map
from an online database [7], to group the SSIDs we collected
from on campus access points and group them into 25 campus
buildings. Figure 4 shows a snapshot of the AP maps of
University of California, Davis from [7]. The red dots in the
map represent the APs and the SSID names of the APs are
also given in the database. Based on this, we can set up a
mapping table from SSID names to the building names.

D. Spatio-temporal similarity

Co-occurrence is another aspect for the study of user
relationships. In reality, wether two person meet often is
an indispensable information to infer if they are related to
each other. People performing social behaviors like meetings
or group discussion requires encounter with each other. The
repetition and duration of encounters reflect how strong the
users’ relationship is.

We use spatio-temporal similarity to describe users co-
occurrence behaviors. We collect users’ wireless activity by
monitoring if their device generate packets during certain
timeslots. Then we can infer user relationship by exploiting
the devices’ co-location history and encounter history. Without
a complete deployment of monitoring system, we can only get
partial information from the network. However, as long as we
get enough sampling of users’ trace data, we can discover
potential relationships from these partial information. The
estimation is based on the similarity of user profiles in WLANs
we capture. A fake mobile users spatio-temporal profile is
shown in Table I. Each entry of the trace has the location
of association and session time duration information for that
user.

In our experiment, we passively pick up packets at four
locations that users most frequently go to (one starbucks, one
cafeteria and two student activity centers). The timeslot is set
to one hour. We record the probing history at four rush hours
(12pm-2pm, 16pm-18pm) for one month. And put the number
of time we observed a user show up into a 4 by 4 matrix.
This matrix represent this user’s spatio-temporal profile. We
use similarity metric introduced in Equation 4 to calculate
two users’ spatio-temporal similarity, where the column is the
location, the rows is timeslots and each entry is the users show
up frequency.

IV. RESULTS IN RELATIONSHIP INFERENCE

A. Relationship inference based on SSID similarity

We detect possible relationship in 30 days and compare
them with the original number of relationship in Figure 3.
Note that our method largely reduces the sampling poll and
provide users pairs that share at least one common preferred
networks. However, this reduction may generate false negative
infer because some public area can have more than one access
points with different names. Therefore, even two users access
the same network with different AP names, they are inferred
to be unrelated. In this case, we need other metric to detect
user relationships from a different aspect.



Fig. 2. TPR and FPR of detected relationship in the control set by similarity
metric

Fig. 3. Number of potential relationships vs. number of detected relationships

B. Relationship inference based on location similarity

To further improve the relationship inference, we exploits
the location similarity to explore more possible relationships.
We couple public SSID names with the campus buildings
it belong to, so whenever two users probe for two different
SSIDs from the same building, they are mapped to the same
location hence can generate a stronger relationship than other
users. For this experiment, we collect all the SSIDs that show
up in 25 main campus buildings (representing 38 different
departments), as shown in 5, and map different SSIDs within
same building into one location.

Before calculating the SSID similarity between a pair of
devices, we first check if the their SSIDs can be mapped
to the same department building. The SSIDs should only
belong to this building. If the mapping is successful, we assign
a potential relationship to the pair of devices. Otherwise,
only the SSID similarity is measured. Result shows that with
location information, we can detect 30% more relationships
than simply using SSID metric (Figure. 6).

C. Relationship inference based on spatio-temporal similarity

Result of spatio-temporal similarity is shown in Figure 7,
where detected related pairs of users is given. From this result,

Fig. 4. Map of APs in UC Davis

TABLE III
MAPPING UNIQUE SSIDS TO THE BUILDINGS

Building SSID
Bldg1 SSID1

Bldg1 SSID2

Bldg2 SSID3

we find it will generate more possible pairs of related users
by examining the spatio and temporal overlaps than simply
looking at the network access history. It shows that the spatio-
temporal is another complementary dimension for relationship
discovery.

In the end, the aggregated inference result is given in Table
IV. In this table we compare the total dyads detected by
network observation and the number of inferred related pairs
by different user activity metric. The aggregated results is
generated based on the decision table shown in Table II.

V. RELATED WORK

Relationship inferring in online social network has been
well discussed in recent years. Based on information content,
such as emails or blogs, relationship can be drawn from
communication archives or message traffics [8]–[12]. One
of the earlier approaches in relationship discovery is set up
a generative model to discover correlation or dependency

Fig. 5. Number of different APs in same campus buildings

Fig. 6. SSID similarity with and without AP location information



Fig. 7. Temporal similarity of device pairs

TABLE IV
INFERENCE RESULTS ON THREE DIMENSIONS AND THE AGGREGATED

RESULT

Inference metric Number of related dyads
Total pairs 3,552,445
SSID similarity 337,902
Location proximity 595,779
Spatio-temporal similarity 2697
Aggregated result 793

between entities. In this case, the relationship is substantiated
by the content of the information data and the information
traffic between the users. Another kind of approach is to infer
relationship from the network structure [13], [14]. Different
from previous approach, this one needs the complete network
structure.

Relationship discovery in mobile networks (e.g. WLAN,
cellular network) has recently drawn researchers attention.
Relationships such as user-user encounter or user-base-station
encounter is largely dependant on the users’ social behavior
and can impact network performance by affecting network
workload [15]. In this case, instead of looking at users’
communication content, the pattern of user behavior can be
exploited to infer a social relationship. Cranshaw et al studied
the user behavior in WLAN traces and inferred objective
relationship based on user profile similarity. Relationship
inferring based on behavior similarity is discussed as a new
research area. Relationship discovery based on WLAN users’
association logs is discussed in [16], [17]. In [18], a study
of mobile phone data proves that similar behavior pattern in
cell phone data can provide inference of user relationship. In
this paper, Eagle et. al shows that the observational cell phone
data can generate friendship structures, which is in consistence
with users’ self-reported friendship structure.

VI. CONCLUSION

In this paper we have presented and analyzed user behavior
in WLAN networks based on a trace collected at campus
hotspots. The goal of our study is to extend the understanding
of wireless users’ relationship by comparing their behavioral
patterns obtained from hidden information in WLAN net-
works. After characterizing wireless users in terms of network

association history, geographic location proximity and spatio-
temporal co-occurrence frequency, we compare the similarity
of user behaviors in these three aspects and infer possible re-
lationship from their respective similarity measurements. Our
work can be applied to social community detections or social
tie inference to understand WLAN users’ grouping behavior.
It can also improve the wireless network deployment and
potential network optimizations in user-centric applications.
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