
STAMP: Ad Hoc Spatial-Temporal Provenance
Assurance for Mobile Users

Xinlei (Oscar) Wang∗, Jindan Zhu∗, Amit Pande∗, Arun Raghuramu∗, Prasant Mohapatra∗,
Tarek Abdelzaher†, Raghu Ganti‡

∗ Computer Science Department, University of California, Davis

{xlwang, jdzhu, pande, araghuramu, pmohapatra}@ucdavis.edu
† Computer Science Department, University of Illinois at Urbana Champaign

zaher@cs.uiuc.edu
‡ IBM T J Watson Research Center

rganti@us.ibm.com

Abstract—Location-based services are quickly becoming im-
mensely popular. In addition to services based on users’ current
location, many potential services rely on users’ location history, or
their spatial-temporal provenance. Malicious users may lie about
their spatial-temporal provenance without a carefully designed
security system for users to prove their past locations. In this
paper, we present the Spatial-Temporal provenance Assurance
with Mutual Proofs (STAMP) scheme. In contrast to most
existing location proof systems which rely on infrastructure like
wireless APs, STAMP is based on co-located mobile devices
mutually generating location proofs for each other. This makes
STAMP desirable for a wider range of applications. STAMP
ensures the integrity and non-transferability of the location
proofs and protects users’ privacy. We also examine different
collusion scenarios and propose a light-weight entropy-based trust
evaluation approach to detect fake proofs resulting from collusion
attacks. Our prototype implementation on the Android platform
shows that STAMP is low-cost in terms of computational and
storage resources. Extensive simulation experiments show that
our entropy-based trust model is able to achieve high (> 0.9)
collusion detection accuracy.

I. INTRODUCTION

Most of the current location-based services for mobile
devices are based on users’ current location. In addition
to users’ current locations, there is an increased trend and
incentive to prove/validate mobile users’ past geographical
locations. This opens a wide variety of new location-proof
based mobile applications. Saroiu et. al described several such
potential applications in [1]. Let us consider three examples:
(1) A store wants to offer discounts to frequent customers.
Customers must be able to show evidence of their repeated
visits in the past to the store. (2) A company which promotes
green commuting and wellness may reward their employees
who walk or bike to work. The company may encourage daily
walking goals of some fixed number of miles. Employees need
to prove their past commuting paths to the company along
with time history. (3) On the battlefield, when a scout group
is sent out to execute a mission, the commanding center may
want every soldier to keep a copy of their location traces for
investigation purpose after the mission.

The above applications require users to be able to obtain
proofs from the locations they visit. Users may then choose
to present one or more of their proofs to a third-party verifier
to claim their presence at a location at a particular time. In

this paper, we define the past locations of a mobile user at
a sequence of time points as the spatial-temporal provenance
(STP) of the user, and a digital proof of user’s presence at a
location at a particular time as an STP proof. Many works [1]–
[3] in literation have referred to such a proof as location proof.
In this paper, we consider the two terms interchangeable. We
prefer “STP proof” because it indicates that such a proof is
intended for past location visits with both spatial and temporal
information. Other terminologies have been also used for
similar concepts, such as location claim [4], provenance proof
[5], and location alibi [6].

Today’s location-based services solely rely on users’ de-
vices to determine their location, e.g., using GPS. However,
it allows malicious users to fake their STP information.
Therefore, we need to involve third parties in the creation
of STP proofs in order to achieve the integrity of the STP
proofs. This, however, opens a number of security and privacy
issues. First, involving multiple parties in the generation of
STP proofs may jeopardize users’ location privacy. Location
information is highly sensitive personal data. Knowing where
a person was at a particular time, one can infer his/her personal
activities, political views, health status, and launch unsolicited
advertising, physical attacks or harassment [7]. Therefore,
mechanisms to preserve users’ privacy and anonymity are
mandatory in an STP proof system. Second, authenticity of
STP proofs should be one of the main design goals in order
to achieve integrity and non-transferability of STP proofs.
Moreover, it is possible that multiple parties collude and create
fake STP proofs. Therefore, careful thought must be given to
the countermeasures against collusion attacks.

In this paper, we propose an STP proof scheme named
Spatial-Temporal provenance Assurance with Mutual Proofs
(STAMP). STAMP aims at ensuring the integrity and non-
transferability of the STP proofs, with the capability of pro-
tecting users’ privacy. Most of the existing STP proof schemes
rely on wireless infrastructure (e.g., WiFi APs) to create proofs
for mobile users. However, it may not be feasible for all types
of applications, e.g. STP proofs for the green commuting and
battlefield examples certainly cannot be obtained from wireless
APs. To target a wider range of applications, STAMP is
based on a distributed architecture. Co-located mobile devices
mutually generate and endorse STP proofs for each other. In
addition, in contrast to most of the existing schemes which
require multiple trusted or semi-trusted third parties, STAMP

978-1-4799-1270-4/13/$31.00 c© 2013 IEEE

requires only a single semi-trusted third party which can be
embedded in a Certificate Authority (CA). We design our
system with an objective of protecting users’ anonymity and
location privacy. No parties other than verifiers could see both
a user’s identity and STP information (verifiers need both
identity and STP information in order to perform verification
and provide services). Users are given the flexibility to choose
the location granularity level that is revealed to the verifier. We
examine two types of collusion attacks: (1) A user A who is
at an intended location masquerades as another colluding user
B and obtains STP proofs for B. This attack has never been
addressed in any existing STP proof schemes. (2) Colluding
users mutually generate fake STP proofs for each other. There
have been efforts to address this type of collusion. However,
existing solutions suffer from high computational cost and low
scalability.

The contributions of this paper can be summarized as:

1) A distributed STP proof generation and verification
protocol (STAMP) is introduced to achieve integrity
and non-transferability of STP proofs. No additional
trusted third parties are required except for a semi-
trusted CA.

2) STAMP is designed to maximize users’ anonymity
and location privacy. Users are given the control over
the location granularity of their STP proofs.

3) STAMP is collusion-resistant. The Bussard-Bagga
distance bounding protocol [8] is integrated into
STAMP to prevent a user from collecting proofs on
behalf of another user. An entropy-based trust model
is proposed to detect users mutually generating fake
proofs for each other.

4) A prototype application is implemented on the An-
droid platform. Experiments show that STAMP re-
quires preferably low computational time and storage.

5) Simulation experiments validate that our entropy-
based trust model is able to achieve over 0.9 collusion
detection accuracy with fairly high percentage (∼5%)
of colluding attackers.

The rest of the paper is organized as follows: Section II
discusses related work. Section III describes our system model.
In Section IV, we discuss the security requirements in detail
and describe the threat model of this work. In Section V, we
present the details of the STAMP protocol. A security analysis
of STAMP against different types of attacks is provided in
Section VI. In Section VII, we describe our implementation
and simulation and present our experimental results on the
performance evaluation. We give a discussion and outline our
future work in Section VIII. Finally, Section IX concludes the
paper.

II. RELATED WORK

The notion of unforgeable location proofs was discussed
by Waters et al. [9]. They proposed a secure scheme which a
device can use to get a location proof from a location manager.
However, it requires users to know the verifiers as a prior.
Saroiu et al. [1] proposed a secure location proof mechanism,
where users and wireless APs exchange their signed public
keys to create timestamped location proofs. These schemes
are susceptible to collusion attacks where users and wireless
APs may collude to create fake proofs.

VeriPlace [2] is a location proof architecture which is
designed with privacy protection and collusion resilience.
However, it requires three different trusted entities to provide
security and privacy protection: a TTPL (Trusted Third Party
for managing Location in formation), a TTPU (Trusted Third

Party for managing User information) and a CDA (Cheating
Detection Authority). Each trusted entity knows either a user’s
identity or his/her location, but not both. VeriPlace’s collusion
detection works only if users request their location proofs
very frequently so that the long distance between two location
proofs that are chronologically close can be considered as
anomalies. This is not a realistic assumption because users
should have the control over the frequency of their requests.

Hasan et al. [5] proposed a scheme which relies on both
location proofs from wireless APs and witness endorsements
from Bluetooth-enabled mobile peers, so that no users can
forge proofs without colluding with both wireless APs and
other mobile peers at the same time. It eliminates the necessity
of multiple trusted parties.

All the above systems are centralized, that is, they all
require central infrastructures (wireless APs) to act as the
location authorities and generate location proofs.

In Davis et al.’s alibi system [6], their private corroborator
scheme relies on mobile users within proximity to create
alibi’s (i.e., location proofs) for each other. The security and
privacy of the system is achieved based on a cryptographic
commitment scheme. However, they do not deal with any
collusion attacks. Also, multi-level location granularity is not
considered in their work.

The system that is most closely related to our work is Zhu
et al.’s APPLAUS [3]. It is a location proof system that is
also based on co-located mobile devices mutually generating
location proofs. In order to protect privacy, the knowledge of
private information is separately distributed to three parties:
a location proof server, a CA, and the verifier. Periodically
changed pseudonyms are used by the mobile devices to protect
their real identities from each other, and from the location
proof server. We believe the location proof server is redundant
for accomplishing the goals. Periodically changed pseudonyms
incurs high operational overhead because of the requirement
for highly cautious management and scheduling. Dummy
proofs have to be regularly generated in order to achieve
the privacy properties, which also incurs high communication
and storage overhead. The collusion detection in APPLAUS
is based on betweenness ranking and correlation clustering.
These approaches require the location proof server to have
access to at least the majority of the concurrent (within a short
delay) location proofs at the same location (within a small
region). This needs users to submit their location proofs right
after generating them, which is infeasible when there is no
Internet connection on-the-spot. Moreover, these approaches
cost large computing power to run the detection (>200 seconds
for 5000 pseudonyms) and their successful detection ratio
is high (>0.9) only when the percentage of the colluding
attackers is rather low (<0.1%).

III. SYSTEM MODEL

As we explained, wireless infrastructure may not be avail-
able everywhere and hence a system based on wireless APs
creating STP proofs would not be feasible for all scenarios. In
addition, the deployment cost would be high if we require
a large number of wireless APs to have the capability of
generating STP proofs. Therefore, we think a distributed STP
proof architecture, i.e., mobile users obtaining STP proofs from
nearby mobile peers, would be more feasible and appropriate
for a wider range of applications.

Figure 1 illustrates the architecture of our system. There
are four types of entities based on their roles:

• Prover: A prover is a mobile device which tries to
obtain STP proofs at a certain location.

Prover

Witness
Witness

Witness
Witness

STP
Proof

STP
Proof

STP
Proof

STP
Proof

CAVerifier

STP
Verification

STP
Claim

Fig. 1: An illustration of system architecture

• Witness: A witness is a mobile device or stationary
wireless AP which is in proximity with the prover and
is willing to create an STP proof for the prover upon
receiving his/her request.

• Verifier: A verifier is the party that the prover wants
to show one or more STP proofs to and claim his/her
presence at a location at a particular time.

• Certificate Authority (CA): The CA is a semi-trusted
server (untrusted for privacy protection, see Section
IV-C for details) which issues, manages cryptographic
credentials for the other parties. CA is also responsible
for proof verification and trust evaluation.

A prover and a witness communicates with each other via
Bluetooth or WiFi in ad hoc mode, STP claims are sent to
verifiers from provers via a LAN or Internet, and verifiers
are assumed to have Internet connection with CA. Each user
can act as a prover or a witness, depending on their roles
at the moment. We assume the identity of a user is binded
with his/her public key, which is certified by CA. Users have
unique public/private key pairs, which are established during
the user registration with CA and stored on users’ personal
devices. There are strong incentives for people not to give their
privacy away completely, even to their families or friends, so
we assume a user never gives his/her mobile device or private
key to another party.

IV. REQUIREMENTS AND CHALLENGES

Before introducing the details of our protocol, we first
present and discuss the important issues and design challenges
involved, in order to give an intuition of our objectives of
constructing the protocol.

A. Security
The security of STP proofs are two fold: integrity and

non-transferability. The integrity property requires that no
prover can create fake STP proofs by himself/herself or by
collaborating with one or more other untrusted parties in
the system. The non-transferability property requires that no
prover can claim the ownership of another prover’s legitimate
STP proofs.

B. Privacy
Anonymity: Location privacy is an extremely important

factor that needs to be taken into consideration when de-
signing any location based systems. Revealing both identity
and location information to an untrusted party poses threats
to a mobile users. First, a prover should be able to hide
his/her identity from a witness. In addition, it is not only the
prover’s anonymity that we should pay attention to, a witness’s
anonymity should also be preserved. Since a witness who

agrees to create an STP proof is co-located with the prover,
his/her identity should not be revealed to the prover, either.

Pseudonyms: Pseudonyms are often used to provide
anonymity. Nevertheless, if the same pseudonym is used by
a mobile user, it is possible for an adversary to link multiple
locations of the same pseudonym. By profiling and analyzing
the user’s location trace, the adversary which could reveal
the identity of the user or at least significantly reduce the
anonymity set. True anonymity requires unlinkability [10].
Anonymity can be effectively enhanced if a user is assigned
with multiple pseudonyms, and pseudonyms are carefully cho-
sen when communicating with another party. The APPLAUS
scheme [3] adopts such an approach. However, this incurs high
operational overhead because of the management of identities
and their corresponding pseudonyms. This also requires a
deliberate pseudonym scheduling algorithm which statistically
eliminates the possibility of linking multiple pseudonyms or
user profiling based on a single pseudonym. In addition, the
pseudonym manager (e.g., CA) has to be completely trusted.
Otherwise, it could be the single point of failure. If an
adversary breaks into the pseudonym manager and obtains a
copy of the pseudonym mapping, the whole system would
break down. Therefore, we do not design STAMP based on
pseudonyms. Instead, we use cryptographic encryption and
commitment techniques to hide users’ identities in the STP
proof generation process.

Location granularity: An STP proof system needs to be
flexible in terms of location granularity. The location of a
prover could be represented by different levels of granularity,
for example, a city, a neighborhood, or an exact geo-coordinate
point. Though a prover needs to reveal both his/her identities
and STP information in order to get services from a verifier, the
prover does not necessarily trust the verifier completely. When
a prover tries to claim his/her location at a particular time to a
verifier, he/she should not be obligated to reveal his/her most
accurate location to the verifier. Depending on the requested
service, a prover should have control over the granularity level
of his/her location that is revealed to the verifier.

C. Threat Model
Prover: A malicious prover seeks to create fake STP proofs

without physically being present at a location. This includes
creating fake STP proofs by himself/herself, lying to a witness
about his/her location, tampering with the spatial-temporal
information in his/her existing proofs, as well as stealing and
using another user’s STP proofs. Moreover, a malicious prover
also attempts to obtain a witness’s identity information in the
entire process of STP proof generation.

Witness: A malicious witness’s goals include acquiring a
prover’s identity information and repudiating an STP proof that
is generated by him/her.

Verifier: A verifier is often a service provider or an
authority that is trying to validate a prover’s STP claim. A
prover has to present both his/her identity and STP information
to the verifier in order to get a service or simply prove his/her
alibi. However, a prover should be able to only give a verifier
his/her STP information that is necessary. In other words, a
prover should have the control over which STP proofs and
what location granularity of the STP proofs are revealed to a
verifier.

CA: We assume CA is semi-trusted, in the sense it is
only trusted in term of correctly performing its functions, i.e.,
user registration, key and credential management, and trust
assessment for STP proofs. However, we consider CA not
trusted in terms of protecting users’ location privacy. CA may

intend to use any information it learned to profile user’s spatial-
temporal history and thus a potential privacy abuse may happen
at CA.

Collusion: We specifically tackle two different collusion
scenarios in this work: (1) A witness can collude with a prover
by creating an STP proof for him/her even though one or both
of them are not at the location as claimed in the STP proof. We
name this collusion scenario as W-P collusion. To the best of
our knowledge, there is no good solution to detect this type of
collusion yet. (2) A prover A who requires a colluding prover
B who is at a specific location to masquerade as him/her and
generate a fake STP proof. Though we assume A does not
give his/her private key to B, it is possible for A and B to
have a hidden communication tunnel during the STP proof
generation process, so that B could relay messages to A, A
signs on them and returns them to B in real time. This kind of
collusion attack is a type of Wormhole attack [11], which has
been more commonly referred to as the Terrorist Fraud attack
[12] in location verification. It is one of the most challenging
attacks to protect against in location verification. Applied to
our context, we name this collusion scenario as P-P collusion.

In this work, we do not specifically deal with establishing
an anonymous communication channel between a prover and a
witness. This can be achieved by various existing anonymous
communication protocols [13]. Attacks via communication
links and DoS attacks (e.g., jamming and flooding) are out
of the scope of this paper.

V. THE STAMP SCHEME

A. Preliminaries
1) Location Granularity Levels: We assume there are n

granularity levels for each location, which can be denoted
by L1, L2, . . . , Ln, where L1 represents the finest location
granularity (e.g., an exact Geo coordinate), and Ln represents
the most coarse location granularity (e.g., a city). Hereafter, we
refer to location granularity level as location level for short.
When a location level Lx is known, we assume it is easy to
obtain a corresponding higher location level Ly where y > x.
The semantic representation of location levels are assumed to
be standardized throughout the system.

2) Cryptographic Building Blocks: STAMP uses the con-
cept of commitments to ensure the privacy of provers. A
commitment scheme allows one to commit to a message while
keeping it hidden to others, with the ability to reveal the
committed value later. The original message cannot be changed
after it is committed to. A commitment to a message M can
be denoted as C(M, r) where r is a nonce used to randomize
the commitment so that the receiver cannot reconstruct M , and
the commitment can later be verified when the sender reveals
both M and r. A number of commitment schemes [14]–[17]
have been proposed and commonly used. Our system does not
require a specific commitment scheme.

One-way hash functions have the similar binding and hid-
ing properties as commitment schemes. However, for privacy
protection purpose, we do not use hash functions because they
are vulnerable to dictionary attacks. An adversary who has a
full list of possible inputs could run an exhaustive scanning
over the list to crack the input of a hash function.

We assume every user has the ability to generate one-
time symmetric keys. All parties have agreed upon a one-way
hash function and a commitment scheme. All cryptographic
notations have been summarized in Table I.

3) Distance Bounding: A location proof system needs a
prover to be securely localized by the party who provides
proofs. A distance bounding protocol serves the purpose. A

TABLE I: List of notations
M1|M2 Concatenation of messages M1 and M2

K+
u Public key of user u

K−
u Private key of user u

EK(M) Encryption of message M with key K
H(M) One-way hashing of message M
C(M, r) Commitment to message M with nonce r

distance bounding protocol is used for a party to securely
verify that another party is within a certain distance [18].
Different types of distance bounding protocols have been
studied and proposed. A most popular category is based on
fast-bit-exchange: one party sends a challenge bit and another
party replies with a response bit and vice versa. By measuring
the round-trip time between the challenge and the response,
an upper bound on the distance between the two parties can
be calculated. This fast-bit-exchange phase is usually repeated
a number of times.

One of the most challenging problems in distance bounding
is the Terrorist Fraud attack, i.e., the P-P collusion scenario.
The Terrorist Fraud attack is hard to defend against because
a fast-bit-exchange process demands no processing delay (or
at least extremely small processing delay) at the prover end
between receiving a challenge bit and replying a response bit
[18]. Thus, signing cannot be executed in the middle of a fast-
bit-exchange, which means a hidden communication tunnel
between two colluding parties allows them to execute fast-bit-
exchange and signing separately. Thereby, one is only certain
that the party who executed the fast-bit-exchange is nearby,
but the party may not actually possess the private key of the
identity who he/she claimed to be.

To the best of our knowledge, three existing distance
bounding protocols [8], [19], [20] addressed the Terrorist Fraud
attack. The schemes proposed in [19], [20] are based on pre-
established shared secrets, and thus does not fit our scheme
considering the anonymity requirement between a prover and a
witness. The Bussard-Bagga protocol proposed in [8] is based
on a zero-knowledge proof technique, and it allows the prover
to be authenticated via a private/public key pair. Hence, we
adopt the Bussard-Bagga protocol as our distance bounding
protocol. The protocol consists of three stages. The first stage is
the preparation stage, where the prover encrypts his/her private
key K−

p with a random symmetric key k and gets an encrypted
message e. The prover then commits to each bit of e and k,
resulting two sequences of bit commitments Ce and Ck. In
the second distance bounding stage, the prover sends Ce and
Ck to the location verifier (or the witness in our context), the
location verifier then starts a multi-round fast-bit-exchange. In
round i, the prover replies the ith bit of k or e depending
on the challenge bit. Since the location verifier never learns
both bit values, he/she can never learn about K−

p . After the
fast-bit-exchange, the location verifier de-commits and verifies
the corresponding bit commitments in Ce and Ck (only for
the received bits) by asking the prover to provide the nonces
used for those commitments. In the third zero-knowledge proof
stage, the prover convinces the verifier that he/she knows K−

p
through a zero-knowledge proof. It is not possible for a user to
give away the values of k and e, which would mean that K−

p is
given away. Because of this, the protocol is not vulnerable to
the Terrorist Fraud attack. In the scenario we are considering,
a witness does not know the identity of a prover, we therefore
cannot rely on the witness only to authenticate the prover
via the zero-knowledge proof. We integrate the Bussard-Bagga
protocol into STAMP by breaking up its execution and have
the witness and verifier jointly authenticate the prover. The
details are given in Section V-B.

PReq

VReq

Distance
Bounding

STPC

(1)

Prover Witness CA

(2)

EP
(3)

(4)

(7)

STP Proof
Generation

STP Claim &
 Verification

Verifier

(6)

(5)
VResZero Knowledge

Proof

Fig. 2: An illustration of STAMP protocol

B. Protocol
1) Overview: Our protocol consists of two primary phases:

STP proof generation and STP claim and verification. Figure
2 gives an overview of the two phases and the major commu-
nication steps involved.

When a prover collects STP proofs from his/her co-located
mobile devices, we say an STP proof collection event is started
by the prover. An STP proof generation phase is the process of
the prover getting an STP proof from one witness. Therefore,
an STP proof collection event may consist of multiple STP
proof generations. The prover finally stores the STP proofs
he/she collected in the mobile device.

When a prover encounters a verifier (the frequency of such
encounters is specific to the application scenarios) and he/she
intends to make a claim about his/her past STP to the verifier,
the STP claim and verification phase takes place between the
prover and the verifier. A part of the verification job has
to be done by CA. Therefore, communication between the
verifier and CA happens in the middle of the STP claim and
verification phase.

In Figure 2, the two arrowed lines in red color represent the
latter two stages of the Bussard-Bagga protocol. These stages
require multiple interactions between the two involved parties,
and thereby are represented by doubly arrowed lines. The
preparation stage of the Bussard-Bagga protocol does not need
to be executed for every STP proof generation and thus is not
shown. Users could run the preparation stage before each STP
proof collection event or pre-compute and store several sets of
the bit commitments and primitives, and randomly choose one
set of them when needed. Subsequently, we present the details
of the STAMP protocol.

2) STP Proof Generation: Prover: Suppose a prover wants
to start an STP proof collection event at time t, the prover first
broadcasts an STP proof request (denoted as PReq) to other
nearby mobile devices and waits for responses. A PReq is
constructed as follows:

PReq = C(IDp, rp)|L1|t (1)
where IDp is the prover’s ID, rp is a random nonce generated
by the prover for the commitment to IDp, and L1 is the lowest
level of the current location.

Witness: A witness who receives a PReq decides if he/she
accepts the request. If the request is accepted, the witness sends
an ACK back to the prover, after which, the two parties start
the execution of the distance bounding stage of the Bussard-
Bagga protocol. This enables the witness to know that the
party who is requesting an STP proof is within a certain range.
However, the witness has no way to verify if the party has

the private key which in fact corresponds to the committed
identity. The zero-knowledge proof stage cannot be carried
out by the witness because it requires the knowledge of the
prover’s public key. As shown in Figure 2, we leave the zero-
knowledge proof stage to be executed by a verifier later in
the STP claim and verification phase. However, this does not
mean the witness can simply ignore the zero-knowledge proof
stage. Based on the Bussard-Bagga protocol, the witness is
able to compute a big integer z from the bit commitments
received from the prover after the distance bounding stage.
The witness has to make sure that z is securely enclosed in
the STP proof so that the verifier can run the zero-knowledge
proof stage base on z and the prover’s public key K+

p .
If the distance bounding stage succeeds, the witness starts

creating an STP proof for the prover. The witness first creates
an STP record (denoted as STPR):

STPR = C(L1, r
1
w)| . . . |C(Ln, r

n
w)|t (2)

where r1w is a random nonce generated by the witness and
used to commit to L1 provided in PReq. The higher location
levels L2, . . . , Ln are also committed with different nonces
r2w, . . . , r

n
w, which in turn are derived based on a hash chain

of r1w:
rxw = H(rx−1

w) ∀ x = 2, 3, . . . , n (3)
A plaintext STP proof (denoted as P) is then created as

follows:
P = C(IDp, rp)|STPR|z (4)

P is finally endorsed by the witness and encrypted using
CA’s public key. The endorsed STP proof (denoted as EP) is
given by:

EP = EK+
CA(IDw|P |EK−

w (H(P))) (5)
where IDw is the witness’s ID. Finally, the witness sends
EP |r1w to the prover. EP is encrypted using CA’s public key
to protect the witness’s ID from being seen by the prover. r1w
should not be seen by CA and thus is not included in P but
sent along with EP .

Prover: Suppose the prover finally receives EP |r1w from m
witnesses (denoted as EP1|r1w,1, . . . , EPm|r1w,m) for this STP
proof collection event, the prover stores them locally together
with the associated primitives (i.e., rp and the Bussard-Bagga
primitives) and the spatial-temporal information (i.e., L1 and
t). We say the prover now has created an STP proof entry for
himself/herself at location L1 and time t.

3) STP Claim and Verification: Prover: At the beginning
of an STP claim and verification phase, the prover extracts the
necessary data from his/her corresponding STP proof entry and
creates an STP claim (denoted as STPC) as follows:

STPC = EP1| . . . |EPm|rxw,1| . . . |rxw,m|IDp|rp|Lx|t (6)
where Lx is the lowest location level that the prover intends
to reveal to the verifier. rxw,1, . . . , r

x
w,m are derived from the

r1w,1, . . . , r
1
w,m based on a hash chain operation.

Verifier: After receiving the prover’s STPC, the verifier
needs CA’s assistance in verifying the STPC. The verifier
now constructs a verification request (denoted as V Req) by
extracting the following information from the STPC:

V Req = EP1| . . . |EPm|IDp|rp (7)
The V Req is then sent to the CA.

CA: When CA receives a V Req, it is able to decrypt
everything in EP1| . . . |EPm except for the committed location
levels in the STPRs, because CA does not know any of
the random numbers used by the witnesses to construct the
location level commits. CA is now responsible for two tasks:
EP verification and P-W collusion detection.

First, CA performs EP verification by checking the follow-
ing in each EP enclosed in the V Req:

• Signature of K−
w agrees with the public key of IDw;

• H(P) agrees with P ;
• C(IDp, rp) can be de-committed with IDp and rp.

For all the EP s that passed the verification, CA starts a
trust evaluation and obtains a P-W collusion detection result.
We present the details of the P-W collusion detection process
separately in Section V-B4.

If all the EP s fail the verification or the P-W collusion
detection returns a positive result, CA sends back a verification
response (denoted as V Res) with a one-bit failure notification
to the verifier. Otherwise, CA creates a V Res as follows and
sends it back to the verifier:

V Res = EK−
CA(STPR1| . . . |STPRm|z) (8)

where STPR1| . . . |STPRm are the STPRs extracted from
EP1| . . . |EPm respectively, and z is the big integer resulted
from the distance bounding stage. Notice that z’s value is
derived from the prover’s bit commitments that are prepared
for the Bussard-Bagga protocol. For different witnesses, we
request the prover to use the same bit commitments during
a same STP proof collection event. In this case, the same z
should be in each of EP1| . . . |EPm. Therefore, only one copy
of z is attached in V Res.

Verifier: Upon receiving the V Res, the verifier performs
two additional verification operations:

• Zero-knowledge proof: The zero-knowledge proof is
done based on z and the prover’s public key K+

p . A
multi-round interaction is executed to minimize the
prover’s chance of cheating.

• STPR opening: From V Res, the verifier obtains
STPR1| . . . |STPRm . The temporal information t in
each STPR is first checked against t claimed by the
prover. A de-commitment is then done for C(Lx, r

x
w)

in each STPR, with Lx and rxw,1| . . . |rxw,m obtained
from the STPC. An inconsistent t or a location
commitment which cannot be de-committed nullifies
the corresponding STPR and thus the EP .

Now, suppose the verifier has a list of legitimate EP s passed
the verifications, the verifier finally needs to determine if the
prover’s STP claim is successful by looking at number of
legitimate EP s. Without loss of generality, we do not specify
how the verifier makes such a decision. For instance, the
verifier may consider the prover’s STP claim successful as
long as the number of legitimate EP s or the percentage of
legitimate EP s among the originally received EP s exceeds a
certain threshold.

4) P-W Collusion Detection: If a prover colludes with a
witness, it is easy for the witness to give the prover a legitimate
STP proof with fake spatial-temporal information. Since the
STP proof generation process is done in an opportunistic
manner and we do not assume a trusted party (e.g., a location
authority or a trusted witness) in this process, a P-W collusion
cannot be prevented or detected with a 100% certainty. As
a countermeasure against P-W collusions, we proposed an
entropy-based trust model which measures the likelihood of
such an attack. The trust evaluation is done by CA, which
requires CA to keep track of the STP proof transaction history
between any two users. A user’s STP proof transactions include
both the STP proofs he/she gets as a prover and the STP proofs
he/she creates as a witness.

First of all, we want to measure each user’s collusion
likelihood, based on his/her past STP proof transaction history.
The intuition is that a legitimate user should not intentionally
choose his/her witnesses, and therefore a user who gets ma-
jority of his/her STP proofs from a small set of users has a

high likelihood to be colluding with these users. Based on this
intuition, we define two factors which determine a user u’s
collusion likelihood:

• Diversity: This is defined as the number of different
users who had STP proof transactions with u. A higher
diversity indicates that u does not rely on a small
group of witnesses, and thus suggests low collusion
likelihood.

• Fairness: This is defined as the randomness in the
distribution of STP proof transactions among all the
different users who have had STP proof transactions
with u. A highly random distribution indicates u does
not manipulate the witness choosing process, and thus
suggests low collusion likelihood.

We use entropy to measure the collusion likelihood of a
user because of its capability of capturing both the above
two factors. In the STAMP system, provers meet witnesses
on-the-spot. Thus, the system follows the Markov property
which assumes that prover-witness pairing is memoryless.
This is analogous to the rationale behind the definition of
entropy in information theory. Given a user, if the diversity
and fairness of his/her past STP proof transactions are high,
the unpredictability of the prover-witness pairing will be high.
Hence, we would like consider the user has a low collusion
likelihood. Entropy is a measure of such unpredictability.
Assuming u has a total number of N different users who had
STP proof transactions with him/her, we denote this set of
users as u1, u2, . . . , uN . Applying the definition of entropy
into our context, u’s entropy is given by:

Eu = −
N∑

i=1

p(u, ui) log p(u, ui) (9)

where p(u, ui) denotes the percentage of past STP proof
transactions between u and ui out of u’s total past STP proof
transactions.

The entropy measure gives an incentive to users to increase
the diversity and fairness in the process of generating their STP
proofs, regardless of the size of the user set. For scenarios
where there is a massive number of users, each user is
encouraged to reach out and interact with different users in
order to maintain a high entropy. Certain applications may
require users to interact with only a limited set of other
users, such as the battlefield scout group example. In such
applications, lacking diversity and fairness in a user’s STP
proof generation pattern is still undesirable and may be deemed
as having a higher collusion tendency.

The trust of an EP (denoted as T) is a scalar in [0, 1]
which is evaluated by CA based on the prover’s and witness’s
entropy as well as the specific STP proof transaction history
between these two users. We define T as follows:

T = 1− e−
Ep·Ew·ω
Q(p,w) (10)

where Q(P,W) denotes the number of STP proof transactions
between the prover and the witness out of the total number of
their distinct STP proof transactions in the past; ω is a scaling
parameter which can be fine-tuned. The exponential term can
be thought of as the penalty applied to the trust based on
the collusion likelihood between the prover and the witness
derived from their past STP transaction history with each other
as well as with other users.

With the trust level of each EP extracted from a V Req,
CA needs to determine if these EP s resulted from a collusion.
Such a decision should be made by consolidating the trust
values calculated for all the EP s into one measure (denoted

as T̂):
T̂ = F (T1, T2, . . . , Tm) (11)

where F () is the trust consolidation function. Different trust
consolidation functions could be used. Some straightforward
examples are max, min, and average. We suggest using
weighted average, where the trust values are weighted by the
number of past STP proof transactions of the corresponding
EP ’s witness. This makes the witnesses who have more past
STP proof transactions (i.e., whose entropy is expected to
be more accurate) have bigger influence on T̂ . Ultimately, a
decision can be made by comparing T̂ against a trust threshold
(denoted as θ).

VI. SECURITY ANALYSIS

In this section, we analyze the security properties of the
STAMP protocol and prove that the protocol can achieve our
security goals.

Proposition 1. A prover cannot create a legitimate EP
without a witness.

Since users do not give away their private keys, a prover
has no access to another user’s private key. A plaintext STP
proof (P) has to be signed by a legitimate witness to create a
legitimate EP . If a prover uses his/her own private key or an
illegitimate private key to create a signature for EP . CA will
be able to detect it.

Proposition 2. Without colluding with a witness, a prover
cannot create a legitimate EP without being present at the
claimed location at the claimed time.

Based on Proposition 1, a prover has to ask a witness to
create a legitimate EP . Let us now consider two attacks: (1)
a prover asserts a false location/time in a PReq; (2) a prover
establishes a hidden communication tunnel with a proxy at
the intended location and ask the proxy to send a PReq for
him/her (i.e., P-P collusion).

When a legitimate witness receives a PReq, he/she can
easily check if t in Preq is within an acceptable range from
the current time. Subsequently, the execution of the distance
bounding stage enables the witness to determine if the party
who sent the PReq is within an acceptable distance. Since
no signal travels faster than the speed of light, a prover who
communicates with the witness from a distant location will
be detected by the fast-bit-exchange in the distance bounding
stage. Hence, Attack (1) can easily be detected by the witness.

Based on the Bussard-Bagga protocol, the zero-knowledge
proof stage is able to guarantee that a party who ran the
distance bounding stages with the witness in fact has the
private key corresponds to the committed IDp in a PReq. That
means, a prover has to give his/her private key to the proxy
in order to pass both the distance bounding stage with the
witness and the zero-knowledge proof stage with the verifier.
Assuming a user never gives away his/her private key, our
protocol ensures that Attack (2) cannot succeed.

Proposition 3. A prover cannot change the spatial and/or
temporal information in an EP .

The location levels L1, . . . , Ln are committed by the wit-
ness in an STPR. The STPR is in turn encrypted by CA’s
public key in an EP . The prover does not have CA’s private
key, and thus cannot decrypt an EP and see the location level
commitments.

Proposition 4. A prover cannot use an EP created for
another prover.

By the binding property of commitments, a prover’s ID is
binded with the C(IDp, rp), which is in turn encrypted in an
EP . A prover therefore cannot change the IDp binded with an

EP . If a prover claims to a verifier with his/her own IDp and
another prover’s EP , CA will detect that the C(IDp, rp) in
the EP does not agree with the IDp in the V Req sent by the
verifier. If a prover claims to a verifier with another prover’s
IDp and EP , hoping to get services without showing his/her
own identity, the verifier will detect that the prover does not
possess the private key corresponding to IDp via the zero-
knowledge proof stage.

Proposition 5. A witness cannot repudiate a legitimate EP
created by him/her.

A legitimate EP contains EK−
w (H(P)). Based on the

assumption that no user gives away his/her private key,

EK−
w (H(P)) assures the non-repudiation property of an EP .
Proposition 6. A prover and a witness cannot find out each

other’s identity.
During an STP proof generation process, the prover’s

identity IDp is committed. Since rp is not known to the
witness, he/she cannot de-commit C(IDp, rp) and obtain IDp.
The witness’s identity IDw is enclosed in EP , which is
encrypted by CA’s public key. Since the prover does not
possess CA’s private key, he/she cannot decrypt EP and obtain
IDw. Furthermore, based on the Bussard-Bagga protocol,
the distance bounding stage does not reveal the two parties’
identities to each other.

Proposition 7. PReqs sent from the same prover for
different STP proof collection events are unlinkable to a
witness.

A prover chooses different rps at different locations. Even
a witness has received multiple PReqs from the same prover
at different locations, there is no information that could help
the witness to link these PReqs and thus obtain a location
trace of the prover.

Proposition 8. STP proofs generated from the same witness
for different STP proof collection events are unlinkable to a
prover.

A witness chooses different r1w’s for different STP proof
collection events. The EP generated by a witness is always
encrypted by CA’s public key. Even the same prover has
received multiple pieces of EP |r1w from the same witness at
different locations, there is no information that could help the
prover to link these pieces of EP |r1w and thus obtain a location
trace of the witness.

Proposition 9. The lowest location level a verifier learns
about a prover is the level that the prover intends to reveal to
him/her.

In an STPC, the prover sends an rxw to the verifier
for each EP , where x is the location level that the prover
intends to reveal to the verifier. Due to the one-wayness of
the hash-chain applied on r1w, the verifier cannot obtain any
ryw where y < x. Therefore, though the verifier has the
access to C(L1, r

1
w), . . . , C(Ln, r

n
w), the lowest location level

commitment that can be opened by the verifier is C(Lx, r
x
w).

Due to the randomness introduced by the rw’s, a dictionary
attack over all possible locations under the location level x is
infeasible.

Proposition 10. CA cannot learn any location information
about a prover or witness from V Req.

CA cannot de-commit any location level commitments
from a V Req and thus cannot obtain any location information
about the prover and the witnesses associated with the V Req.
Due to the randomness introduced by the rw’s, a dictionary
attack over all possible locations is infeasible.

The above analysis shows that our pre-discussed secu-
rity goals are achieved properly by the STAMP protocol. In

512/1024 768/2048 1024/30720

0.5

1

1.5

2

2.5

Key size

Ti
m

e
(s

)
STP proof generation
Distance bounding

(a) Time to generate an STP proof
under different key sizes

512/1024 768/2048 1024/30720

5

10

15

20

Key size

B
us

sa
rd
−B

ag
ga

pr
ep

ar
at

io
n

tim
e

(s
)

(b) Time of Bussard-Bagga prepara-
tion stage under different key sizes

512/1024 768/2048 1024/3072800

900

1000

1100

1200

1300

1400

1500

1600

1700

Key size

EP
 s

iz
e

(b
yt

e)

(c) Size of EP under different key
sizes

1−5 5−10 10−200

0.5

1

1.5

2

2.5

3

3.5

Distance (m)

Ti
m

e
(s

)
STP proof generation
Distance bounding

(d) Time to generate an STP proof
under different communication dis-
tances

Fig. 3: Implementation results

summary, an STP proof’s integrity and non-transferability is
assured; the possibility of P-P collusion is eliminated; provers
and witnesses always remain anonymous in the process of
proof generations; a verifier only sees the location levels that
a prover intends to reveal; CA only learns users’ identities but
not their locations.

VII. EXPERIMENTS AND RESULTS

A. Prototype Implementation
We implemented a prototype client application on An-

droid with Java. Our experiments are carried out on two
Samsung Exhibit II 4G devices equipped with Qualcomm
MSM 8255 1GHz chipset, 512MB RAM, 1GB ROM, GPS,
and Bluetooth, and running Android OS 2.3. Bluetooth is
used as the communication interface between mobile devices.
We use DSA key pairs for signing/authentication operations
because DSA is based on the discrete-log problem, which
makes it possess the mathematical properties desired by the
Bussard-Bagga protocol. Since DSA is not designed for en-
cryption/decryption purpose, we use RSA key pairs as sub-
keys for encryption/decryption operations. We use SHA1 as
the one-way hashing function and 128-bit AES as the sym-
metric key encryption scheme. We implemented the string
commitment scheme presented in [15] and use it for ID and
location commitments. We model each location with six levels:
exact location, neighborhood, town/city, region/county, state
and country, where each level is represented by a name string
except that the lowest level also has the geo-coordinates.

With our implementation, we examine the computational
time (also an indicator of power consumption) and storage
that are needed to run STAMP. Since the STP verification is
done by verifiers and CA where desktops or servers with high
computational power can be used, we focus our testing on the
STP proof generation phase that is executed on mobile phones.
The results we show are obtained based on 10 runs of each
test. No other background processes were running in parallel
during the tests.

First, we study the impact of key size on the performance
of our client application. Since both DSA and RSA are used
in our implementation, we test three key size combinations

TABLE II: Default simulation settings
Parameter Value
Percentage of colluding attackers (PC) 2%
Collusion tendency (CT) 0.2
Mean of witnesses (μw) 5
Standard deviation of witnesses (σw) 2

Trust scaling parameter (ω) 1 × 10−4

Collusion trust threshold (θ) 0.6

representing three different security levels: (1) 512-bit DSA
with 1024-bit RSA (denoted as 512/1024); (2) 768-bit DSA
with 2048-bit RSA (denoted as 768/2048); (3) 1024-bit DSA
with 3072-bit RSA (denoted as 1024/3072). Figure 3(a)-(c)
show the computational resources required with these three
key size settings.

Figure 3(a) shows the time needed for a prover to get an
STP proof from a witness and for the portion of this process
taken by the Bussard-Bagga distance bounding. We could
observe that a majority portion of the STP proof generation is
taken by the Bussard-Bagga distance bounding. It is easy to
disable the distance bounding stage for application scenarios
where P-P collusion is not a concern. In that case, the time
for each proof generation will be significantly reduced to less
than 0.2s even if large keys are used. Figure 3(b) shows the
time needed for the Bussard-Bagga preparation stage. We can
see this could cause long delay (∼18s) if large keys are used.
However, as we explained in Section V-B, to achieve best
unlinkability, it could be executed only once for an STP proof
collection event. Under a relaxed unlinkability requirement,
users could also pre-compute and store several sets of the bit
commitments and primitives, and randomly choose one set of
them when needed. Figure 3(c) shows the size of an EP that
needs to be stored on a prover’s mobile device. Since multiple
EP s could be received for each STP proof collection event,
the size of an EP is the main factor that determines the storage
need for an STP proof entry. We can see that each EP is less
than 2000 bytes. Though several such EP s may need to be
retained for each STP proof entry, the storage consumption
is definitely acceptable considering the storage capacity of
today’s mobile devices.

Figure 3(a)-(c) tell us the choice of key size is critical.
Larger keys provide stronger security, but also require more
resources in terms of computational time and storage. For
achieving general security requirements for a light-weight
mobile application, we suggest using a small key size setting.

In addition to key size, we study the impact of commu-
nication distance between mobile devices on the STP proof
generation time. Figure 3(d) shows the results of our testing
with the 768/2048 key size setting. As expected, the commu-
nication distance negatively affects the STP proof generation
time as well as the distance bounding time.

B. Simulation
To measure the effectiveness and accuracy of our P-W

collusion detection, we implemented our trust model with
Java simulation. In this section, we present our simulation
details and the performance results that we obtained from our
simulation experiments.

1) Simulation Setup: In our simulation, a total number
of 1000 users are deployed. All users are traveling with a
random mobility model. In each STP proof collection event, a
random prover is selected among all the users. The selection of
witnesses is modeled by a Gaussian distribution with default
mean (μw) of 5 and default standard deviation (σw) of 2. The
percentage of colluding attackers (PC) among these users is
varied from 1% to 10%. We allow all the attackers to find
each other through a hidden channel and form a collusion

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.4

0.5

0.6

0.7

0.8

0.9

1

Θ

B
A

Weighted Average
Average
Max
Min

(a) BA under different trust consolidation func-
tions

1 2 3 4 5 6 7 8 9 100.5

0.6

0.7

0.8

0.9

PC(%)

B
A

CT=0.2
CT=0.5
CT=0.8

(b) BA under different percentage of colluding
attackers and collusion tendency

3 4 5 6 7 8 9 10

0.7

0.8

0.9

1

μw

B
A

σw=1
σw=2
σw=3

(c) BA under different number of witnesses

Fig. 5: Impact of system settings and network conditions on BA

0
1

2
3

4

x 10−4

0.2
0.4

0.6
0.8

0.4

0.5

0.6

0.7

0.8

0.9

1

ωθ

B
A

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Fig. 4: BA under different ω and θ

group. Whenever an attacker needs to get a fake STP proof,
he/she seeks assistance from random witnesses in the collusion
group, in order to maximize his/her own entropy by making
his SPT proof generation patten as unpredictable as possible
within the collusion group. Each attacker is configured with a
collusion tendency (CT) in the range of (0, 1], which represents
the attacker’s probability of launching a collusion for each of
his/her STP proof collection event. In our experimental tests,
we vary some critical parameters to see their impact on the
performance. Default settings are used for parameters that are
not under test. Table II summarizes our default settings.

We run a training phase with the first 10000 STP proof
collection events, i.e., an average of 10 STP proof collection
events for each user. Each of the data points shown in our
simulation results is based on another 100000 STP proof
collection events after the training phase, i.e., an average of
100 STP proof collection events for each user.

2) Performance Metric: We use the Balanced Accuracy
(BA) [21] as our performance metric, which is a commonly
used accuracy measure for classification algorithms. BA is
defined as the arithmetic mean of sensitivity (true negative rate)
and specificity (true negative rate). We choose BA because: (1)
its interpretation is straightforward, (2) it takes both sensitivity
and specificity into account, and (3) it avoids inflated perfor-
mance estimates on imbalanced datasets.

3) Simulation Results: First, two crucial parameters that
affect how our trust model performs are the trust scaling
parameter ω and collusion trust threshold θ. We run extensive
tests to see the BA distribution under different choices of ω
and θ with our default setup. The results are shown in Figure
4. Our trust model performs well (BA ¿ 0.9) only when good
ω and θ are chosen. From Figure 4, we observe that our trust

model is very sensitive to the choice of ω, which agrees with
Equation 10. For different choices of ω, different θ has to be
set to achieve a high BA. We choose ω = 1×10−4 and θ = 0.6
because this pair yields the best result in our testing.

Subsequently, we examine how the choice of trust consoli-
dation functions affects the accuracy of our collusion detection.
Figure 5(a) shows the BA results when we used weighted
average, average, max and min. The tests are carried out under
the default settings except that we vary the collusion trust
threshold θ, because different trust consolidation functions get
their best BA with different θ. max gets its best BA with a
higher θ than other approaches because max only compares
the highest trust value with θ. Similarly, min is gets its best
BA with a lower θ. Comparing the best BAs yielded by the
four approaches, we can see weighted average outperforms the
other three. In our simulation, the STP proof collection events
are randomly distributed to the users, so users’ amounts of past
STP proof transactions are roughly balanced. We anticipate the
BA of weighted average will be more pronounced if users’
amounts of past STP proof transactions are more skewed.

Figure 5(b) shows the performance of our trust model with
different percentages of colluding attackers (PC) and when the
attackers have different collusion tendencies (CT). We can see
that our trust model is more resistant against attackers with
a higher collusion tendency. Under high collusion tendency
(CT=0.8), our trust model achieves a BA over 0.9 for up to
8% of colluding attackers. This means if attackers launches
collusions frequently so that 80% of their STP proofs are fake,
our trust model is able to detect the collusions with BA over
0.9 even when 8% of all users are colluding. If the percentage
of colluding attackers is low (PC ≤ 2%), Figure 5(b) shows
that our trust model can achieve a BA over 0.9 even when CT is
as low as 0.2. This means if 2% of all users are colluding, and
every attacker is intelligent and tries to cover their collusions
by having 80% of their STP proof transactions legitimate, our
trust model can still detect collusions with a BA over 0.9.

Other than the above tested factors, we want to study the
impact of the number of witnesses involved in an STP proof
collection event. Since we model the number of witnesses for
each STP proof collection event with Gaussian Distribution,
we vary the mean (μw) and standard deviation (σw) and test
the resulting BA when other settings are set to default. Figure
5(c) shows the BA levels we get for different μw and σw. We
can conclude that our trust model performs better when there
are more witnesses involved in STP proof collection events on
average. Thereby, a good way to make P-W collusions hard
and also enhance the collusion detect accuracy is to require
more witnesses for an STP proof.

VIII. DISCUSSION AND FUTURE WORK

From our experimental results, we observe that under small
key size settings, our scheme works efficiently in terms of
both computational and storage resources. However, the com-
putational latency could become rather long when large keys
are desired. A major part of computational cost is caused by
the Bussard-Bagga protocol, which is known for its expensive
computation due to large amount of modular exponentiations
[18]. Other than defending against the Terrorist Fraud attack
(P-P collusion), functionalities of STAMP do not specifically
rely on the Bussard-Bagga protocol. Therefore, under circum-
stances where P-P collusion is not a concern, we suggest
to disable the Bussard-Bagga stages in STAMP, which will
result less than 0.2s for each STP proof transaction (distance
bounding time deducted from STP proof generation time)
without the necessity of the preparation stage. Furthermore,
active on-going research in the location verification field is
being conducted to achieve the same security property as the
Bussard-Bagga protocol with much better performance. It is
also a part of our future work to investigate such possibilities.
A new distance bounding scheme can be easily plugged into
STAMP and replace the Bussard-Bagga protocol.

Our P-W collusion detection is supported by entropy-based
trust evaluation, instead of complex graph algorithms like the
ones used by the APPLAUS system. Therefore, each run
of our P-W collusion detection only requires a number of
cheap computations. It is much more efficient than APPLAUS
where a few hundred seconds are needed to run a detection
among a few thousands of users. The weakness of our de-
tection, however, is that if attackers only launch collusions
very infrequently, or if there is a large pool of users that an
attacker can choose to collude with, the accuracy may drop
significantly. Nevertheless, unless trusted infrastructures are
deployed at every location, it is always hard to tell if an
STP proof is a result of collusion or not. Our trust model
serves as a good countermeasure so that malicious users are
deterred from launching collusions of their own free will or
with only a small group of users. In the future, we will
further examine alternative approaches which could make such
collusions impossible to succeed. A potential direction is to
utilize camera or other sensors on mobile devices and have
a prover and a witness jointly create a proof that contains a
consistent signature (e.g., a picture) of the location.

STAMP does not limit the possibility of utilizing wire-
less APs. We can easily accommodate wireless APs in our
architecture by treating them as stationary witnesses. Since
we are targeting a distributed system in this paper, we do
not specifically differentiate wireless APs from other mobile
devices. In fact, if trusted APs are deployed, our P-W collusion
detection can be further enhanced because provers who claim
their presence at a location with a trusted AP should have an
EP from the AP. We will study how our trust model could be
improved given some trusted EP s.

IX. CONCLUSION

In this paper we have presented STAMP, which aims at
providing security and privacy assurance to mobile users’
proofs for their past location visits. STAMP relies on mobile
devices in vicinity to mutually generate location proofs. In-
tegrity and non-transferability of location proofs and location
privacy of users are the main design goals of STAMP. We have
specifically dealt with two collusion scenarios: P-P collusion
and P-W collusion. To protect against P-P collusions, we
integrated the Bussard-Bagga distance bounding protocol into
the design of STAMP. To detect P-W collusion, we proposed an

entropy-based trust model to evaluation the trust level of each
claim of the past location visits. Our security analysis shows
that STAMP achieves the security and privacy objectives. Our
implementation on Android smartphones indicates that low
computational and storage resources are required to execute
STAMP on mobile devices. Extensive simulation results show
that our trust model is able to attain a high balanced accuracy
(> 0.9) with appropriate choices of system parameters.

ACKNOWLEDGMENT

This work was sponsored by the Army Research Labo-
ratory and was accomplished under Cooperative Agreement
Number W911NF-09-2-0053. The views and conclusions con-
tained in this document are those of the authors and should
not be interpreted as representing the official polices, either
expressed or implied, of the Army Research Laboratory or
the U.S. Government. The U.S Government is authorized to
reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation here on.

REFERENCES

[1] S. Saroiu and A. Wolman, “Enabling new mobile applications with
location proofs.,” in ACM HotMobile, 2009.

[2] W. Luo and U. Hengartner, “VeriPlace: a privacy-aware location proof
architecture.,” in ACM GIS, 2010.

[3] Z. Zhu and G. Cao, “Towards privacy-preserving and colluding-
resistance in location proof updating system,” IEEE Transactions on
Mobile Computing, 2011.

[4] N. Sastry, U. Shankar, and D. Wagner, “Secure verification of location
claims,” in ACM WiSe, 2003.

[5] R. Hasan and R. Burns, “Where have you been? Secure location
provenance for mobile devices,” CoRR, 2011.

[6] B. Davis, H. Chen, and M. Franklin, “Privacy preserving alibi systems,”
in ACM ASIACCS, 2012.

[7] I. Krontiris, F. Freiling, and T. Dimitriou, “Location privacy in urban
sensing networks: research challenges and directions,” IEEE Wireless
Communications, 2010.

[8] L. Bussard and W. Bagga, “Distance-bounding proof of knowledge to
avoid real-time attacks,” Security and Privacy in the Age of Ubiquitous
Computing, 2005.

[9] B. Waters and E. Felten, “Secure, private proofs of location,” tech. rep.,
Department of Computer Science, Princeton University, 2003.

[10] A. Pfitzmann and M. Köhntopp, “Anonymity, unobservability, and
pseudonymity-a proposal for terminology,” in Designing privacy en-
hancing technologies, Springer, 2001.

[11] Y.-C. Hu, A. Perrig, and D. B. Johnson, “Wormhole attacks in wireless
networks,” IEEE Journal on Selected Areas in Communications, vol. 24,
no. 2, pp. 370–380, 2006.

[12] Y. Desmedt, “Major security problems with the ’unforgeable’ (feige)-
fiat-shamir proofs of identity and how to overcome them,” in Securi-
Com, 1988.

[13] G. Danezis and C. Diaz, “A survey of anonymous communication
channels,” Computer Communications, 2008.

[14] M. Naor, “Bit commitment using pseudorandomness,” Journal of cryp-
tology, 1991.

[15] S. Halevi and S. Micali, “Practical and provably-secure commitment
schemes from collision-free hashing,” in CRYPTO, 1996.

[16] I. Damgård, “Commitment schemes and zero- knowledge protocols,”
Lectures on Data Security, 1999.

[17] I. Haitner and O. Reingold, “Statistically-hiding commitment from any
one-way function,” in ACM Symposium on Theory of Computing, 2007.

[18] D. Singelee and B. Preneel, “Location verification using secure distance
bounding protocols,” in IEEE MASS, 2005.

[19] J. Reid, J. Nieto, T. Tang, and B. Senadji, “Detecting relay attacks with
timing-based protocols,” in ACM ASIACCS, 2007.

[20] C. Kim, G. Avoine, F. Koeune, F. Standaert, and O. Pereira, “The swiss-
knife rfid distance bounding protocol,” in ICISC, 2009.

[21] K. Brodersen, C. Ong, K. Stephan, and J. Buhmann, “The balanced
accuracy and its posterior distribution,” in IEEE ICPR, 2010.

