
Chaining for Securing Data Provenance in
Distributed Information Networks

Xinlei (Oscar) Wang∗, Kai Zeng†, Kannan Govindan∗, Prasant Mohapatra∗

∗Department of Computer Science
University of California, Davis, CA 95616

{xlwang, kgovindan, pmohapatra}@ucdavis.edu
†Department of Computer and Information Science

University of Michigan, Dearborn, Michigan, USA 48128
kzeng@umich.edu

Abstract—Entities in an information communication network
may use various types of collaborative networking for sharing
information such as documents, sensing reports, datasets, etc. The
derivation history (i.e., the provenance) of the information plays
a very important role in such a networking environment. For
example, provenance can be used for information trustworthiness
assessment, copyright clearance, data reconciliation, and data
replication. While substantial research efforts have focused on
these usages of provenance, very limited work has focused on
the security issues of the provenance, which is the prerequisite
of any provenance-based information analysis systems. In this
paper, we explore the security properties of provenance meta-data
compared to other general user data in a distributed network en-
vironment. We introduce a “chain-structure” provenance scheme
to provide security assurance for the provenance meta-data in
three dimensions - confidentiality, integrity and availability. Our
scheme outperforms the previously proposed “onion-structure”
provenance security scheme in terms of the flexibility, protection
capability as well as computational overhead.

Index Terms—Distributed Information Networks, Data Prove-
nance, Provenance Security

I. INTRODUCTION

Information networks are networks that use the networking
technologies such as the Internet and wireless communication
for distributing and sharing information among different in-
formation processing entities to enhance knowledge, business
or social aims. Essentially, the information processing entities
can be individuals or interest groups within and between
human institutions such as companies, research organizations,
governmental organizations and communities. The basic unit
of the dynamics forming information networks can be seen
as an ”information transaction” involving the exchange of an
information item between two or more information processing
entities. One of the main factors that influences the quality
of information (QoI) is the data provenance, which describes
the derivation history of an information item. Provenance
involves tracking the origin of the information and subsequent
transformations performed on it [1]. In order to exclude
malicious information sources or prioritize the information
according to individuals’ preferences, the QoI is commonly
assessed based on provenance. In addition to QoI assessment,
some other important usages of provenance include copyright
clearance, data reconciliation and data replication.

Several research efforts have focused on the areas of
tracking, querying and analysis of provenance. However, very
limited work has been done on securing provenance data,
a vital step in achieving trust and ultimately usability of
provenance as a concept. Consider the incentives of protecting
provenance in the following military command and control
networks scenario: Information such as unit status, target in-
formation, intelligence reports, operational plans and logistics
activities from multiple sources needs to be distributed to

and processed by relevant users throughout the battle space.
Provenance needs to be recorded to facilitate the analysis of the
information credibility for better decision-making. A compro-
mised node may try to deceive the decision makers by forging
or tampering the provenance records. We need a mechanism
to detect it when this happens. Furthermore, user identities
or certain processing details recorded in the provenance may
have to be kept confidential when the information flows from
a higher level of command to a lower level of command.

Assuring provenance security is relatively easy if there is
a central application server when the information network is
online, which can serve as a central administration to manage
the provenance data. However, it will be more challenging
if there is no online central server available or the server
cannot be trusted. In such distributed information networks,
the provenance security management work is distributed to
the individual users. Although a few recent efforts have tried
to define the provenance security problem [2]–[4], they did
not consider the challenges posed by the distributed nature of
certain information networks. Our first objective of this work
is to discuss these unique challenges and requirements. Based
on our discussion, we propose a novel provenance framework
which provides security assurance and can be applied directly
to provenance-based network trust systems like [5], [6]. A
related provenance scheme was proposed by Hasan et al. [7].
We refer to their solution as the Onion scheme due to its onion-
like signature structure for protecting the provenance integrity.
The Onion scheme has certain weaknesses when applied to
a distributed information network (see detailed discussion in
Section II). In contrast to the Onion scheme, our solution is
“linked chain” structured which solves their problems and also
reduces the overhead significantly especially for provenance
verification. To summarize, our contributions include:

1) The unique challenges and requirements for securing
provenance in a distributed network are discussed and a
concrete notion of provenance security is given.

2) A Public-key Linked Chain framework is proposed to
provide assurance for the integrity, confidentiality and
availability of provenance data. Our scheme provides
better protection capability than the Onion scheme and
solves some of its implementation difficulties.

3) An analysis is done to show that our scheme fulfills each
of the security requirements.

4) Analytical and empirical evaluations are given on the
provenance overheads of our framework. Experimental
results show that our approach reduces significant com-
putational overhead comparing to the Onion scheme.

The rest of the paper is organized as follows. We highlight
the related work of securing provenance in Section II. In
Section III, we give a discussion on the challenges in securing
provenance in a distributed information network. The threat

2

model will also be detailed in this section. We then present
our Public-key Linked Chain (PKLC) provenance framework
in Section IV and show that our approach can actually meet the
security requirements in Section V. The empirical performance
evaluations are presented in Section VI. Finally, Section VII
concludes the paper and talks about our future work.

II. RELATED WORK

Hasan et al. [2] were the first to attempt to define the secure
provenance problem and argue that it is of vital importance in
numerous applications. They were emphasizing the protection
of the contents of provenance records. Braun et al. [3] gave a
preliminary discussion about how provenance data is different
from other data from the security perspective. Kairos [8]
is an architecture to allow the secure verification of data
authorship and temporal information in provenance records. It
uses digital signatures and cryptographic time-stamps, which
requires straightforward implementation in provenance-aware
workflow systems. A secure provenance scheme based on the
bilinear pairing technique is proposed in [9] to provide trusted
evidences for data forensics in cloud computing.

None of these efforts can be applied directly to dynamic
information sharing in a distributed network. The most closely
related solution we could find that applies to the distributed
networks is the Onion scheme [7]. Their solution composes
of encryption for sensitive provenance record fields and an
incremental signature mechanism that is of onion-like structure
(i.e., every provenance record’s signature encloses the previous
provenance record’s signature) for securing the integrity of the
chain as a whole. The Onion scheme has certain weaknesses.
First of all, the outermost layers of the “onion” signature
cannot be protected. When an insider attacker receives an
information item with a provenance chain, he/she can extract
a part of the provenance chain from the beginning and then
wrap it with his/her own signature checksum, with one or
more out-most layers of the original “onion” peeled off.
Secondly, their scheme requires every auditor to be aware of
the NodeID/public key correspondence in order to verify the
integrity of the provenance records. However, this may cause
privacy issues, i.e., no nodes can really hide their identity
since they must put their public key in the records. Also, it is
normal that some nodes’ keys get revoked/refreshed or some
nodes leave the network, it will become hard to verify their
previous sent provenance records especially for a long-history
provenance. Our approach focuses on solving these problems.
Additionally, experimental results show that our approach
reduce the provenance verification overhead significantly.

III. PROVENANCE AND ITS SECURITY

A. Provenance Security Assurance
Each information item consists of meta-data and payload.

The meta-data contains the provenance of the information
item. Each node needs to generate a provenance record P
and the provenance is finally represented as a chain which
is a time-ordered sequence of provenance records P1| · · · |Pn.
Notice that although we use the term “provenance chain” to
denote the entire provenance meta-data, it is not necessarily a
single chain. When a node takes multiple information items as
input, the provenance chain will become a tree. Figure 1 shows
a scenario of information flow in a distributed network and the
resulting information item with its provenance meta-data.

Provenance has characteristics that differentiate it from data
typically considered by secure systems. As discussed by Braun
et. al. [3]. First, provenance differs from traditional data in
that it forms a directed acyclic graph (DAG) that captures
information flow from inputs to outputs. Also, the sensitivity
of provenance and the information payload it describes may
be different. In addition to the above characteristics of the

N6

I1

I2

I3

I6

I6

I7

I4
I8

N5

N4
N1

N3

N2

N8

N7

N9 I9

(a) A scenario of information flow

P8
Information

Payload

P4P1

P5
P2

P3

P6

P7

(b) Information item structure re-
ceived by N9

Fig. 1. A scenario of information flow and the structure of the final
information item

provenance, the distributed nature of the information networks
poses more challenges on providing security for provenance.

1) Nodes must have access to read the preceding prove-
nance records, at least to certain extent, in order to verify
or use the provenance. At the same time, each node
should also be able to write its own provenance. This
requires different access control on the same provenance
data.

2) It is relatively easy to have each node protect their own
records, but without a central trusted administration, it
is hard to protect the relationship among them.

3) Different security groups may exist in a network. When
a piece of information goes through different security
groups, differentiated confidentiality control may be
needed for the same provenance meta-data.

4) A user from a lower security group may need to verify
the integrity of a provenance chain which comes from
a higher security group without accessing the content.

We extend and apply the three dimensions of general data
security to provenance security as follows:

Confidentiality and Privacy: A provenance record may
contain information that is of a confidential nature in two
ways: (i) information about the tasks performed may be secret;
(ii) the ownership history might contain sensitive information
that should not be revealed to unauthorized parties.

Integrity: The integrity of provenance is three-fold:
1) Data Integrity: The information contained in each

individual provenance record is not tampered with.
2) Origin Integrity: The origin of each individual prove-

nance record is not forged. A node cannot deny its
ownership of the provenance records created by it.

3) Chain Integrity: The order of the owners on the prove-
nance chain is not modified.

Availability: We need to ensure that no nodes in the
network can selectively drop a part of the provenance chain
without being detected.

B. Threat Model
We will consider a malicious insider or outsider adversary

with the goals of:
1) gaining confidential information from provenance

records about the actions performed on or the ownership
history of the information item.

2) using fake key-pairs or stolen key-pairs to make their
own provenance records un-verifiable.

3) altering existing records or adding forged information to
the existing provenance chain (this might involve tam-
pering with other nodes’ records, changing the sequence
or adding forged records).

4) selectively removing a certain part of the preceding
provenance chain.

We assume every user has a unique public/private key pair
and the information receivers’ public keys are known to the
senders before the data transmission. We assume a Trusted

3

Is an auditor? Verify provenance chain
(Algorithm 2)

Receive info
item

Start

Stop

Send Info Item

Verification
succeeded?

Process info item

Provenance analysis
(optional) Verification failure actions

Yes

No
NoYes

Add own provenance record
(Algorithm 1)

Fig. 2. Flowchart of an intermediate node’s actions with an information item

Central Authority does the user and group registration, key
assignment and key management work offline and a scheme
like [10] is used for group key distribution.

IV. SECURE PROVENANCE SCHEME

A. Public-key Linked Chain
Network Framework: In this work, as we are considering

distributed information networks, the online users commu-
nicate with each other directly with no central server. The
nodes can be classified into different roles or groups that
have different access rights. Generally, every node in the
network is capable of information generation, processing and
dissemination. Among all the nodes, there are auditors that
are responsible for verifying the integrity and availability of
the provenance chain. The number of auditors in the network
is application specific. It is possible to have all the nodes in
the network as auditors. Figure 2 gives an illustration of an
intermediate node’s actions with a received information item.
Our work is focusing on the two parts of “add own prove-
nance record” and “verify provenance chain”. The provenance
record generation steps are described in Algorithm 1 and the
provenance verification process is described in Algorithm 2.

Alg.1. A node’s provenance record generation steps:

1: Nodei ⇒ NodeInfoi|ProcessInfoi|OptInfoi
(Nodei produces provenance information fields)

2: Nodei ⇒ ks
(Nodei generates a symmetric key)

3: PInfoi = Encryptks [NodeInfoi|ProcessInfoi
|OptInfoi]
(Encrypt sensitive parts of the provenance information
fields)

4: For all Groupm ∈ AccessibleGroups

4.1: Skeyi = Skeyi ∪ {EncryptK
+
m [ks]}

5: For all Noden ∈ AccessibleUsers And Noden /∈
AccessibleGroups

5.1: Skeyi = Skeyi ∪ {EncryptK
+
n [ks]}

6: PLHashi = Hash[Ii]

7: PubKeyi = {K+
i+1}

8: If i = 2, PubKeyi = PubKeyi ∪ {K+
1 }

9: PInfoi = PInfoi|PLHashi|Skeyi|PubKeyi

10: SIGi = EncryptK
−
i [Hash[PInfoi]]

11: Pi = PInfoi|SIGi

3-Level Provenance Structure: We propose a secure prove-
nance structure composed of three levels as shown in Figure

P2P1 PnPi

NodeID i
Annotations

OutHash i,m
Annotations i,m

ProcessID i,m
InHash i,m

OutHash i,1
Annotations i,1

ProcessID i,1
InHash i,1

K +i+1
K +i-1 (optional except for the 2nd node)

NodeInfo i
ProcessInfo i

OptInfo i
PLHash i

PubKey i

SKey i

K -i Hash PInfo i

SIG i

Fig. 3. An illustration of the 3-level provenance structure

3. The first level is the information level, which is a DAG
of provenance records. Each provenance record is generated
by one network node and thus is the node level provenance
information. A node uses one or more information items
to produce a new information item. One or more processes
may be invoked by the node and then applied on the input
information item(s). Therefore, each node level provenance
record may contain one or more process level details. That is,
each provenance record Pi summarizes a sequence of actions
taken by a user. Figure 3 illustrates our secure provenance
structure and Algorithm 1 shows the detailed steps for a node
to generate its own provenance record. Each of the provenance
fields shown in the provenance structure is explained below.

NodeInfo is a field which contains encrypted or plaintext
information of the processing node. The identifier of the node
NodeID must be included. Other semantic description of the
node may also be included as property-value annotations.

ProcessInfo contains encrypted or plaintext represen-
tation of the processes performed by the node. This field
consists of one or more sub-fields, which in turn has the
information of a process. Each process sub-field must have
the identifier of the corresponding process and the references
(hashes) of the input and output information items. Other
contextual information about the process can be included as
property-value annotations.

OptInfo contains other optional information the node
wants to put in the provenance record. It could be the times-
tamp of the information being sent out or other application
specific information. Again, this can be either an encrypted or
a plaintext field.

PLHash contains the hash of the final information pay-
load produced by the node.

SKey contains the secret symmetric key Ks that auditors
can use to access the encrypted fields or subfields. Multiple
copies of Ks are enclosed, with each encrypted by the public
key of one intended auditor individual or group.

PubKey is a crucial field used to link each provenance
record together and ease the verification process. For every
node, this field must contain the plaintext public key K+

i+1
of the recipient node. This represents the directional edge in
the provenance graph. For the information originators, since
they do not have preceding provenance records, they have to
put their own public key in the field PubKey1, too. For the
second node in the provenance chain, it has to put public keys
of both the originator K+

1 and the next recipient node K+
3 .

For the rest of the nodes, it is optional for them to put their
preceding node’s public key.

SIG contains a digital signature of the node to ensure the
integrity of the provenance record and the chain as a whole.

4

As shown in Figure 3, to create the signature, a node i first
generates a hash for the entire PInfoi (i.e., all above fields)
and then use its private key K−

i to sign it.
Confidentiality Assurance: Certain information in the

provenance record may be sensitive, such as the identity of the
processing node, the information about a proprietary algorithm
used, etc. We desire to keep these fields or subfields to be
accessible only by some trusted auditor individuals or groups.
If all auditors can be trusted, then providing confidentiality
for these sensitive fields would be straightforward. We could
just encrypt all of them by a single public key, and give the
private key to all the auditors. If a user only trusts auditors in
a certain security group or certain specific auditors, we could
make several copies of the sensitive fields, encrypt each copy
with the public key of a different trusted auditor or security
group, and include all of them in the provenance record.
However, this wastes lots of space and the asymmetric key
encryption/decryption is not efficient. We adopt the similar
broadcast encryption scheme as in [7] to selectively regulate
the access for different auditor individuals or groups. Instead
of encrypting the sensitive fields of the record with the
individual or group public keys, we encrypt them once with a
single symmetric key ks generated by the node, make multiple
copies of the symmetric key, and then encrypt each copy with
the public key of a trusted auditor or security group. In this
scheme, the new provenance record contains the encrypted
sensitive fields plus several versions of the encrypted secret
key, stored in the SKey field. An auditor can subsequently
read the record and extract the secret key using its own private
key or the group private key.

Alg.2. An auditor’s verification steps:

1: Auditor ⇐ P1| · · · |Pn
(Auditor gets the provenance chain)

2: Verify: PubKeyn/K
+
n+1 = K+

Auditor

3: Auditor ⇒ Hash[In]
(Auditor produces the hash of In)

4: Verify: Hash[In] = PLHashn

5: For all Pi ∈ P2| · · · |Pn

5.1: Verify:
PLHashi−1 = ProsessInfoi/InHashi,1

6: For all Pi ∈ P1| · · · |Pn

6.1: Auditor ⇒ Hash[PInfoi]
(Auditor produces the hash of PInfoi)

6.2: If Pi = P1 Auditor ⇐ PubKey2/K
+
1

Else Auditor ⇐ PubKeyi−1/K
+
i

(Auditor gets the public key K+
i)

6.3: Auditor ⇒ DecryptK
+
i [SIGi]

(Auditor decrypts the SIGi with K+
i)

6.4: Verify: DecryptK
+
i [SIGi] = Hash[PInfoi]

Integrity and Availability Assurance: An auditor must be
able to detect whether any attackers have tampered, removed
or inserted records from the chain and whether a chain has
been switched from one information item to another. This
is achieved through the hashes and the SIG fields in the
provenance chain. Algorithm 2 is a step-by-step explanation
of how an auditor verifies a provenance chain. For simplicity
and clarity, Algorithm 2 only shows the verification process
for single provenance chains (i.e., every node takes one input
information item for one output information item). In the case
when a certain node on the provenance graph aggregated mul-
tiple input information items, the above verification process

also applies with minor modifications. First, Step 5.1 requires
multiple comparisons to make sure every input information
item’s hash value can be found in any of the fusion node’s
ProcessInfo/InHash fields. In addition, each of the inputs’
PubKey fields has a copy of the fusion node’s public key. The
auditor has to compare all these keys and make sure they are
consistent.

B. Advantages of the Public-key Linked Chain
We can see our provenance records are interconnected

together as a “linked chain” by the PubKey fields, in that
every provenance record’s PubKey contains the public key
of the next processing node. Hence, we name our solution as
the Public-key Linked Chain (PKLC) scheme. It is simple to
be implemented and has many advantages.

First of all, the PKLC scheme provides better protection
against selective provenance dropping than the Onion scheme.
The Onion scheme cannot protect its outermost layers since
each layer has no reference of who the next user is. For
instance, when an adversary received an information item with
a provenance P1| . . . |Pn, he/she can remove the provenance
records Pi| . . . |Pn where 1 < i 6 n, wrap the signature
of Pi−1 in his/her own signature and then append his/her
provenance record after Pi−1. Future auditors are unable to
detect this malicious dropping. Our PKLC scheme solves this
problem because any selective dropping will break the chain
and the next auditor can easily detect it (Proposition 5).

More importantly, by using our PKLC scheme, the auditors
can perform their provenance verification without knowing
the identity-key correspondence. In a distributed information
network, users may not know each other. The verification in
the Onion scheme requires the identity-key correspondence
must be obtained from a trusted external source. This violates
the confidentiality and may not be feasible especially when
the provenance chain has a long-history. It is possible that
the public keys of certain nodes in the provenance chain have
already been revoked/refreshed, or certain nodes already left
the network. In these cases, the original public keys may
become impossible to be obtained by the auditors and thus
makes the verification very hard. Our PKLC scheme enables
every auditor to easily obtain an authenticated public key of
every node on the provenance chain and then perform the
verification without knowing the real identity of the node.
This improves the confidentiality assurance and makes the
verification process easy and trustworthy even when the key
pairs are dynamically changing in the network. In addition,
any attacks that try to use fake key-pairs without collusion
will also be detected.

V. ANALYSIS OF SECURITY ASSURANCE

In this section, we will analyze our scheme and prove that
an adversary cannot achieve his/her goals outlined in Section
III-B without being detected by the subsequent auditor.

Proposition 1. Users cannot repudiate their own prove-
nance records even with a fake or another user’s private key.

Every node has to use its private key to sign the SIG field,
which serves as a digital signature that no other nodes can
forge. Every node has the previous node (or the following
node in case the node is an source) providing its public key
as an evidence in the PubKey field for verifying the signature.
If adversary uses an invalid private key or even a stolen valid
private key to repudiate his/her own records, the next auditor
will be able to detect it at the verification step 6.4.

Proposition 2. An adversary cannot claim that a valid
provenance chain belongs to a different information item
without being detected by the next auditor.

In a valid provenance chain, PLHash of each provenance
record contains a hash of the corresponding output information

5

payload, which is then authenticated using the SIG field.
Suppose an adversary extracts the provenance meta-data from
its information item Ii and appends it to another information
item Ij and then sends Ij out. If the subsequent node is an
auditor, he/she can detect that Hash[Ij] does not match with
the PLHashi in Pj at the verification step 4. Otherwise if
Ij goes through a sequence of non-auditors and then reaches
an auditor, the auditor can detect PLHashi in Pj does not
match with value stored in ProcessInfoj+1/InHashj+1,1,
which will fail the verification step 5.1.

Proposition 3. An adversary cannot tamper other nodes’
provenance records in the preceding provenance chain without
being detected by the next auditor.

All the PInfo fields in a provenance record is hashed and
signed by the corresponding node in SIG. If any fields is
tampered by another adversary, the Hash[PInfo] will fail to
match with Decrypt[K+

i] at the verification step 6.4.
Proposition 4. An adversary cannot add fake records at the

beginning or in the middle of the preceding provenance chain
without being detected by the next auditor.

First, let us assume an adversary has inserted a provenance
record Pi (either its own record or another node’s record)
at the beginning of the provenance chain so that the chain
becomes Pi|P1| · · · |Pn. When the auditor verifies the records,
he/she will not be able to get K+

i from PubKey1 at the
verification step 6.2 and thus not be able to successfully
pass the verification step 6.4. This indicates Pi is not the
original source of the information item. Next, let us assume
the adversary has inserted Pi in between Pj and Pj+1 where
j > 1. Similarly, Pj’s PubKey field does not have K+

i but
instead it contains K+

j+1. This again will fail the verification
step 6.4 and indicate that Pi is an illegally inserted record.

Proposition 5. An adversary cannot selectively remove
other nodes’ records from the preceding provenance chain
without being detected by the next auditor.

First, let us assume a valid provenance chain P1| · · · |Pn
is supposed to be received by an auditor. Suppose that an
adversary has removed the provenance records P1| · · · |Pi
where 1 6 i < n, the auditor will assume the Pi+1 is from the
original source and thus expect PubKeyi+2 to have to K+

i+1.
Then the verification step 6.4 will fail. Next, let us suppose
an adversary has removed the provenance records Pi| · · · |Pj
where 1 < i 6 j < n. When next auditor verifies the records,
again the verification step 6.4 will fail because the auditor
cannot obtain K+

j+1 from PubKeyi−1. Finally, let us suppose
an adversary has removed the provenance records Pi| · · · |Pn
where i > 1. The verification will fail at the verification step
2 because PubKeyi−1/K

+
i is not the auditor’s public key,

which indicates a part of the provenance chain is missing.
Proposition 6. An adversary cannot alter the order of the

provenance records in the preceding provenance chain without
being detected by the next auditor.

According to Proposition 4 and Proposition 5, we know
altering the order of the provenance records in the provenance
chain will be detected by the next auditor since order altering
consists of a sequence of deleting and adding actions.

Proposition 7. An auditor can only access provenance
details for what he/she is authorized but still can perform
integrity and availability verification.

The symmetric key used to encrypt the provenance details
is accessible only to users that can retrieve it by decrypting
one of the encrypted symmetric keys in SKey. Therefore,
only these auditors are able to see all the data encrypted with
the symmetric key. Chain verification involves only public
key signature operations and no other secret values. All the
public keys can be found in the neighbor provenance records’
PubKey fields. To verify a node’s record, an auditor does

not need to know the identity or the identity/public key cor-
respondence. Therefore, even if the identities of certain nodes
are inaccessible, an auditor can still perform the verification.

VI. PERFORMANCE EVALUATION

Besides the security assurance capabilities, the computa-
tional overhead is of significant concern. In this section, we
give an empirical evaluation on the overheads of our scheme
and compare it with the Onion scheme.

We implemented both our PKLC scheme and the Onion
scheme with Java version 1.6 to measure and compare the
performance of these two approaches. We executed the pro-
grams on a Linux machine (Ubuntu 10.04 with kernel ver-
sion 2.6.32) with Intel Core 2 Duo 2.93GHz processor and
3.0GB main memory. Since the information and provenance
transmission process is not our concern in this work, we
simulated multiple nodes on the same machine. We used 1024-
bit RSA for digital signatures and asymmetric encryptions,
128-bit AES for symmetric encryptions and SHA-1 as the hash
function. Each provenance chain for a particular information
item was created as a separate XML file. It is one of the
most commonly used ways to record, store and exchange
provenance for different information networks and systems.
For the information payload, we used files of 5kb (plain text),
50kb (XML document), 500kb (JPEG image) and 5mb (MP4
video) to measure how the performance varies with different
sizes and types of the payload.

The overhead to create, store and verify a provenance
record could vary due to different level of provenance de-
tails, different number of encrypted fields and authorized
groups/individuals. We run our tests based on the following
three provenance settings:

P1 NodeInfo has 1 annotation which is confidential;
ProcessInfo has 1 process with 1 plaintext annotation;
OptInfo is empty; Skey contains 1 symmetric key.

P2 NodeInfo has 3 annotations and 1 of them are con-
fidential; ProcessInfo has 3 processes each with 3
annotations and 1 of the annotations is confidential;
OptInfo contains 2 plaintext annotations; Skey con-
tains 3 symmetric keys.

P3 NodeInfo has 3 annotations which are all confidential;
ProcessInfo has 3 processes each with 3 confidential
annotations; OptInfo contains 2 confidential annota-
tions; Skey contains 5 symmetric keys.

Provenance Construction Overhead: The first experiment
we conducted is to measure the computation time to create
a provenance record when the payload file size varies based
on the above three provenance settings. Figure 4 (a) shows
the results with our PKLC scheme. As expected, we can see
that as the provenance setting gets more complicated, it takes
more time to create a provenance record. Another observation
is the P2 and P3 curves are very close to each other whereas
they are farther from the P1 curve. Hashing the payload file
is a significant component of this difference as it takes a large
portion of the total computation time, and P2 and P3 both
have three processes in ProcessInfo and each has to at least
compute a hash of its output payload while P1 only has one
process in ProcessInfo.

Figure 4 (b) shows how much our PKLC scheme re-
duces the provenance construction time as compared with the
Onion scheme. The improvement comes from the fact that
our scheme does not need to include the previous record’s
signature before signing it. Basically both of the two ap-
proaches require the same cryptographic building blocks. The
construction time reduction is not significant when the payload
is large, because most of the time would be spent on the
payload hashing, which is exactly the same for both schemes.
However, the payload is usually small in many cases, e.g.,

6

0	

500	

1000	

1500	

2000	

2500	

3000	

5	 kb	 50	 kb	 500	 kb	 5	 mb	

Ti
m
e	
to
	 c
re
at
e	
a	

pr
ov
en

an
ce
	 re

co
rd
	 (m

s)
	

Payload	 file	 size	

	 P1	 	 P2	 	 P3	

(a) Time to create a provenance
record with PKLC scheme

0.0%	

2.0%	

4.0%	

6.0%	

8.0%	

10.0%	

12.0%	

5	 kb	 50	 kb	 500	 kb	 5	 mb	

Re
du

ce
d	
3m

e	
in
	

pe
rc
en

ta
ge
	

Payload	 file	 size	

P1	 P2	 P3	

(b) Reduced time to create a prove-
nance record by the PKLC scheme as
compared with the Onion scheme

Fig. 4. Provenance construction time of the PKLC scheme and the reduced
time as compared with the Onion scheme

0	

100	

200	

300	

400	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

Ve
rifi

ca
3o

n	
3m

e	
(m

s)
	

Number	 of	 provenance	 records	

	 PKLC	 (payload	 hash)	 	 PKLC	 (signature)	
	 Onion	 (payload	 hash)	 	 Onion	 (signature)	

(a) Payload file of 50kb

0	

100	

200	

300	

400	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

Ve
rifi

ca
3o

n	
3m

e	
(m

s)
	

Number	 of	 provenance	 records	

	 PKLC	 (payload	 hash)	 	 PKLC	 (signature)	
	 Onion	 (payload	 hash)	 	 Onion	 (signature)	

(b) Payload file of 5mb

Fig. 5. Comparing the provenance verification time for an entire provenance
chain of the PKLC scheme and the Onion scheme

emails, descriptive reports, etc. When the payload is small,
our scheme can reduce the construction time by about 10%.

Provenance Verification Overhead: The next experiment
we conducted is to measure the computation time for an
auditor to verify an entire provenance chain. Figure 5 shows
the results on payload file of 50kb and 5mb. We only measure
the time of payload hash verification and signature verification
since only they incur costly cryptographic computations. We
obtained the computation time of these two steps separately.
Since the payload hash verification only requires hashing the
received payload file and then comparing with the PLHash of
the most recent provenance record, it takes an approximately
constant time for both of the PKLC scheme and Onion scheme.
The signature verification process is where our approach
makes a significant improvement. The Onion scheme requires
an auditor to verify the provenance records sequentially from
the very first one because each provenance record’s validity
depends on the validity of the preceding provenance chain. For
our PKLC scheme, the verification of a provenance record
does not depend on the verification results of the previous
records, and thus the verification can be executed concurrently
for all the records. As observed in Figure 5, the greater
the number of provenance records in the provenance meta-
data, the larger improvement our scheme achieves. The ideal
signature verification time for our PKLC scheme is constant.
However, we can see a small uptick in the verification time
needed as the number of records increases. This is due to
additional overhead incurred by thread creation and execution
in the programs when multiple threads run the verification
concurrently.

Storage and Communication Overhead: The entire prove-
nance file can be considered as storage and communication
overhead. Our provenance scheme only requires the prove-
nance to contain the hashes of the information payloads and
the hashes are of fixed size no matter how large the payload
files are. Hence, the size of the provenance XML file is
independent of the size of the payload. Our experiment results
confirmed that the size of a provenance chain has a linear
relationship with the number of provenance records on the
chain for a certain provenance setting.

VII. CONCLUSION AND FUTURE WORK

Provenance is very important in digital information analysis
and forensics. In this paper, we investigated the unique proper-
ties of provenance security in distributed information networks
and presented the challenges and requirements in assuring
provenance security. We proposed a Public-key Linked Chain
provenance framework to protect the provenance meta-data as
a whole and proved that our approach can properly provide
the expected assurances. We gave empirical assessments for
the provenance construction, verification and storage overhead.
Compared to the Onion scheme, our scheme solves some
implementation difficulties, provides better protection and has
better performance in terms of computational overhead.

Our scheme depends on the transitive trust to assure the
integrity of the data provenance. The transitive trust requires
two neighboring nodes not to collude with each other. If
two colluding adversaries are not neighboring nodes, their
communication can be verified by the intermediate node(s)
in between. In the future we will look into the solution
of detecting colluding neighbors as well. A good potential
direction is to involve a witness when information transaction
happens between two adjacent nodes, similar to the con-
ventional Watchdog [11] approach used to mitigate collusion
attacks in routing protocols. In addition, we will implement our
scheme in a real distributed information network application
and carry out more in-depth security and performance analysis.

ACKNOWLEDGMENT

This work was sponsored by the Army Research Laboratory
and was accomplished under Cooperative Agreement Number
W911NF-09-2-0053. The views and conclusions contained in
this document are those of the authors and should not be
interpreted as representing the official polices, either expressed
or implied, of the Army Research Laboratory or the U.S. Gov-
ernment. The U.S Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding
any copy right notation here on.

REFERENCES

[1] Y. Simmhan, B. Plale, and D. Gannon, “A survey of data provenance
in e-science,” ACM SIGMOD Record, vol. 34, no. 3, pp. 31–36, 2005.

[2] R. Hasan, R. Sion, and M. Winslett, “Introducing secure provenance:
problems and challenges,” in ACM Workshop on Storage Security and
Survivability, pp. 13–18, 2007.

[3] U. Braun, A. Shinnar, and M. Seltzer, “Securing provenance,” in
Proceedings of the 3rd Conference on Hot Topics in Security, pp. 1–
5, 2008.

[4] S. Xu, Q. Ni, E. Bertino, and R. Sandhu, “A characterization of the prob-
lem of secure provenance management,” in ISI ’09: IEEE International
Conference on Intelligence and Security Informatics, pp. 310–314, 2009.

[5] L. Gomez, A. Laube, and A. Sorniotti, “Trustworthiness assessment of
wireless sensor data for business applications,” in AINA ’09: Proceed-
ings of the 2009 International Conference on Advanced Information
Networking and Applications, pp. 355–362, 2009.

[6] X. Wang, K. Govindan, and P. Mohapatra, “Collusion-resilient quality
of information evaluation based on information provenance,” in SECON
’11: IEEE 8th Communications Society Conference on Sensor, Mesh and
Ad Hoc Communications and Networks, 2011.

[7] R. Hasan, R. Sion, and M. Winslett, “The case of the fake picasso:
preventing history forgery with secure provenance,” in Proccedings of
the 7th Conference on File and Storage Technologies, pp. 1–14, 2009.

[8] L. Gadelha and M. Mattoso, “Kairos: An architecture for securing
authorship and temporal information of provenance data in grid-enabled
workflow management systems,” in eScience ’08: IEEE 4th International
Conference on eScience, pp. 597–602, 2009.

[9] R. Lu, X. Lin, X. Liang, and X. Shen, “Secure provenance: the essential
of bread and butter of data forensics in cloud computing,” in ACM
Symposium on Information, Computer and Communications Security,
pp. 282–292, 2010.

[10] B. Wu, J. Wu, and Y. Dong, “An efficient group key management scheme
for mobile ad hoc networks,” International Journal of Security and
Networks, vol. 4, no. 1, pp. 125–134, 2009.

[11] S. Marti, T. Giuli, K. Lai, M. Baker, et al., “Mitigating routing
misbehavior in mobile ad hoc networks,” in Proceedings of the 6th
annual international conference on Mobile computing and networking,
pp. 255–265, 2000.

