
IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS , VOL -, NO. -, - 2013 1

Hardware Architecture for Video Authentication

using Sensor Pattern Noise
Amit Pande Member, IEEE, Shaxun Chen, Prasant Mohapatra Fellow, IEEE, and Joseph Zambreno, Senior

Member, IEEE

Abstract—Digital camera identification can be accomplished
based on sensor pattern noise which is unique to a device and
serves as a distinct identification fingerprint. Camera identification
and authentication has formed the basis of image / video foren-
sics in legal proceedings. Unfortunately, real-time video source
identification is a computationally heavy task, and does not scale
well to conventional software implementations on typical embed-
ded devices. In this paper, we propose a hardware architecture
for source identification in networked cameras. The underlying
algorithms, an orthogonal forward and inverse Discrete Wavelet
Transform (DWT) and Minimum Mean Square Error (MMSE)
based Estimation have been optimized for 2D frame sequences in
terms of area and throughput performance. We exploit parallelism,
pipelining and hardware reuse techniques to minimize hardware
resource utilization and increase the achievable throughput of the
design. A prototype implementation on a Xilinx Virtex-6 FPGA
device was optimized with a resulting throughput of 167 MBps,
processing 30 640× 480 video frames in 0.17 second.

Index Terms—digital camera identification, hardware architec-
ture, video security

I. INTRODUCTION

D IGITAL camera identification has multiple applications

in real-world scenarios. For example, when presenting a

video clip as evidence in a court of law, identifying the source

(acquisition device) of the video is as important as the video

itself [1]. Not doing so can lead to legal challenges which

may render the evidence invalid. Another example is the movie

industry, where significant revenue losses are caused every year

by secretive recording in movie theaters and the subsequent

illegal distribution. Video source identification can be employed

to track down such piracy crimes [2], [3]. Similarly, images or

videos shared using Flickr, Facebook or other social networking

sites or through personal email can be authenticated and tied

to the user device (in this case, the smartphone or personal

camera).

Easier access to high-quality digital camcorders and sophis-

ticated video editing tools further motivates the improvement

of video source identification techniques. The issue of digital

image or video authentication can be approached in several

different manners.

A. Pande, S. Chen and P. Mohapatra are with the Department of Computer
Science, University of California Davis, 2063 Kemper Hall, One Shelds Ave,
Davis, CA-95616 USA. Phone: (530) 752-0870, Fax: (530) 754-4767, e-mail:
{pande, sxch, pmohapatra}@ucdavis.edu,

J. Zambreno is with the Department of Electrical and Computer Engineering,
2215 Coover Hall, Iowa State University, Ames, IA-50011, USA. e-mail:
zambreno@iastate.edu

Manuscript received 7 March, 2013; revised 28 April and 11 June 2013;
accepted 07 July 2013

Copyright (c) 2013 IEEE. Personal use of this material is permitted. However,
permission to use this material for any other purposes must be obtained from
the IEEE by sending an email to pubs-permissions@ieee.org.

The simplest strategy would be to inspect the digital file itself

and look for header clues or any other attached information. The

EXIF header format [4], supported by many camera manufac-

turers contains information about the digital camera type and

geo-location. However, this header data is unavailable if the

video is transcoded or re-compressed. Moreover, such tags can

trivially be modified by software.

Another strategy is to equip digital cameras with an invisi-

ble, yet fragile watermark carrying information about camera,

location, time and personal biometric data. Such approaches are

used in some high-end cameras by Epson, Kodak and Canon [5],

[6]. However, not every camera is equipped with such sensors.

The existing deployments such as surveillance camera networks

or commercial image sharing in smartphones are not equipped

with such ‘secure-cameras’.

The most reliable method reported so far for video source

identification is based on the sensor pattern noise which is

unique to each camera. This noise results from the non-

uniformity of each sensor pixel’s sensitivity to light, and can

be treated as the inherent fingerprint of a video capture device

[7].

The scheme presented in [7] involves image denoising using

the Discrete Wavelet Transform (DWT) followed by subband

level denoising using MMSE estimation procedure. In our

experiments, we found computational requirements leading to

large processing time (in the order of seconds per frame on

multicore desktops for small resolution videos). The ‘db8’ DWT

filter used in [7] has high computational requirements owing

to the presence of irrational coefficients and a large number of

taps. The MMSE estimation task uses 2D processing and is the

most computationally expensive task (taking 99% of the entire

processing time). Processing a single video frame (640 × 480
resolution) on an Intel core i7 laptop takes about 5 seconds,

giving an effective throughput of only 184 KBps.

The expensive computation overhead will become a bottle-

neck when fast identification is needed. An example is detecting

video camera spoofing attacks using source identification tech-

niques. An adversary can compromise a legitimate camera, and

then send fake video to the sink using the victim’s identity. Such

an attack is called camera spoofing attack, which introduces

severe security threats if the camera is used for surveillance or

other security purpose. Moreover, given the increasing popular-

ity of wireless video cameras, such attacks are becoming easier

to launch. The sensor pattern noise based source identification

method is naturally a good candidate to detect this attack;

however, it requires performing source identification in a real-

time fashion.

In this paper, we propose a hardware architecture for video

authentication using a pixel-non-linearity noise scheme, and

illustrate an acceleration of this task using a conventional

hardware implementation. Our prototype implementation was

mapped to a Xilinx Virtex-6 FPGA XC6VLX75. The main

features of our hardware implementation are as follows:

1) We propose a modified filter bank based implementation

of the orthogonal ‘db2’ DWT filter and compare its perfor-

mance with the existing ‘db8’ filter for image denoising.

With an insignificant decrease in authentication or source

identification accuracy, we find enormous savings in hard-

ware (7× savings in number of multipliers in design) and

improvements in clock frequency (2.65×).

2) We propose a 2D systolic array based implementation of

an ‘image denoising’ algorithm. The proposed architecture

uses parallelism, pipelining and hardware reuse to obtain

a clock frequency of 397 MHz. This implies a processing

time of 0.07 second per 1 second of video at 640 × 480
resolution and 30 fps, making it possible to identify source

cameras in real-time scenarios.

The rest of the paper is organized as follows: Section II

gives an overview of existing work in this direction. Section III

presents an overview of existing algorithm and our approach.

Section IV describes architectural details of DWT implementa-

tion while Section V gives details for MMSE implementation.

Section VI evaluates the performance of proposed implemen-

tation in terms of accuracy in detection of source cameras

and shows the results of prototype implementation on a Xilinx

Virtex 6 XC6VLX75 FPGA. Section VII concludes the paper.

II. LITERATURE REVIEW

A. Source Identification in Images and Videos

The research on image source identification emerged a few

years prior to video source identification, and the techniques

are often similar. Kharrazi et al. [8] proposed a novel idea

for camera identification based on supervised learning. They

compute image features in spatial and wavelet domain and then

train a Support-Vector-Classifier to find camera model. A multi-

class SVM classifier is used to identify and classify images from

5 different cameras with an accuracy of 78 − 85%. Similarly,

Celiktutan et al. [9] defined a set of similarity measures using

KNN and SVM for classification operation. Choi et al. [10]

include intrinsic lens radial distortions as part of the features

and improve classification. Popescu [11] uses the Expectation

Maximization algorithm to identify the demosaicing algorithm

that a camera uses, based on which different image sources

are classified. However, all these methods are only capable of

detecting the model or the manufacturer of the device, instead

of identifying the individual camera that produced the image.

The following techniques focus on the specific device iden-

tification, which is desirable for the forensic applications. The

Canon Data Verification Kit [6] calculates the hash of images

and uses a special secure memory card to enable tracing the

image to a camera, but only high-end Canon DSLR cameras

support this solution. The same applies to embedding wa-

termarks into images, which is only applicable for specially

designed devices rather than commodity devices.

Geradts et al. [12] proposed to utilize sensor hot pixels or

dead pixels to identify the image source. It performs nicely

even for JPEG compressed images. However, all cameras do

not have such defective pixels, and many cameras post-process

to remove such defects from output images.

Kurosawa et al. [13] measured the dark current noise of the

sensor and used it as the device fingerprint. Since the dark

current noise can only be extracted from dark frames, this

method is restricted to the videos that contain dark frames.

Lukas et al. [7] employed sensor pattern noise as an inher-

ent fingerprint of the camera for source identification. More

specifically, they use Photo-Response Non-Linearity (PRNU)

noise to identify the individual video camera. So far, the sensor

pattern noise based schemes report the most reliable results.

Kang et al. [14] model this noise as a white noise signal to

improve the detection statistics in cases of images suffering

from interference and losses by JPEG compression and the

camera signal processing. Li [15] proposed to use adaptive

weighting to improve the performance of this approach. Recent

work by Li et al. [16] consider the interference caused by

interpolation process in color filter arrays in PRNU extraction

and propose a color-decoupled PRNU extraction process.

Chen et al. [3] extend this prior work to networked videos.

However, they require as long as 10 minutes of processing

time for low resolution (264× 352) and 40 seconds for higher

resolution (536× 720) videos. The work of [17] improves this

value to 10 seconds (∼ 300 − 400 frames) using network

characteristics.

Houten et al. [18] uses this algorithm to classify multiply

compressed networked videos of length 30 s with satisfactory

performance. Hyun et al. [19] propose a new MACE (Mini-

mum Average Correlation Energy) filter to improve correlation

efficiency in Chen’s algorithm.

B. Hardware Architectures

To the best of our knowledge, there is no related work in

this direction. There has been work in direction of optimizing

the DWT implementation in hardware [20]–[22], but it mainly

focused on image and video compression applications, not on

denoising. There are a few implementations of image denoising

using FPGA [23], [24]. The underlying algorithm used for

denoising [25] is based on DWT and MMSE estimation and

has been shown to be efficient to extract PRNU noise. Burg et

al. [26] present a VLSI architecture for MMSE estimation with

a focus on MIMO-OFDM systems.

III. OVERVIEW

An overview of the basic algorithm is explained in Fig. 1.

A surveillance camera or smartphone takes still images or

video frames (N) and transmits them to a central station

using the network infrastructure. The camera has the following

elements: lens, Color Filter Array (CFA), sensor, demosaicing

algorithm and compression Codec. The lens captures light rays

from the view and passes it on to CFA. The light is next

passed through sensor which adds various noise to the image

or video frames, namely shot noise, fixed-pattern noise and

Photo-Response Non-Uniformity (PRNU) noise. Shot noise is

a random component which can be averaged out and removed.

It varies amongst subsequent frames shot from a camera and is

therefore not reliable. Fixed-pattern noise is caused by pixel-

to-pixel difference when the sensor is not exposed to any light.

However, real-life images and videos do not correspond to such

scenes as they are typically full of real-world information. Also,

this technique is affected by humidity and temperature, and is

therefore non-reliable for video authentication.

Fig. 1. Block Diagram of video communication and authentication setup. A surveillance camera / smartphone takes shots (N) and transmits it to a central station
using the network infrastructure. The camera inherently inserts a PNU (P) into the captured image/ video which can be extracted to authenticate that the video
is shot using desired camera. The extraction step involves Forward and Inverse Discrete Wavelet Transform (DWT and IDWT), image denoising using Maximum
Likelihood Estimation (MLE) and Minimum Mean Square Estimation (MMSE) and PNU estimation (P 1). It is then compared (correlated ρ) with reference PNU
P . Multiple frames are averaged before correlation in the case of video, due to the small resolution and high compression ratios.

The PRNU noise has a low frequency component caused

by light refraction in air, dust and optical surfaces and zoom

settings. Apart from this, it has a Pixel Non-Uniformity (PNU)

Noise (P) component due to the varying sensitivity of pixels to

light caused by the inhomogenity of silicon wafers and imper-

fections during the sensor manufacturing process. Thus, PNU

noise is unique to the device and independent of temperature and

humidity, making it an excellent choice for video authentication

purposes. Detailed description of these noises and modeling is

presented in [7].

The camera inherently inserts a PNU footprint (P) into the

captured image or video which we plan to use for authentication

purposes. The extraction step involves Forward and Inverse

Discrete Wavelet Transform (DWT and IDWT) to convert

the image to frequency subbands which are then processed

independently. The denoising model assumes mixture process

of independent component fields having zero mean, unknown

variance Gaussian distribution and is shown to be highly ro-

bust and effective. A Maximum Likelihood Estimate (MLE)

is used for variance estimation of each subband followed by

Minimum Mean Square Error (MMSE) estimation procedure.

The denoised frame is subtracted from the extracted frame to get

an estimate of the PNU watermark. P 1
i stands for the estimated

PNU of the i-th image of a camera. The reference watermark

P is not directly accessible from most cameras, therefore we

estimate it by averaging the past values of P 1
i over a large

number of past samples (N ≥ 50).

P =
1

N

N∑

i=1

P 1
i

For high resolution images, P 1 itself can be computed from

single image. For low resolution videos, P 1
i stands for the

estimated PNU of the i-th frame of a video camera averaged

over a window of M consecutive frames .

P 1
i =

1

M

M∑

j=1

P 1
i+j

Additional details of algorithm and hardware implementation

are presented in subsequent sections.

The process of denoising typically removes all noise and

extracts the original image or frame. Wavelet-domain denoising

using MMSE estimation has been found to be very efficient

in this task and takes care of natural image boundaries which

appear in other denoising algorithms as part of noise pattern.

The denoised frame I ≈ N is subtracted from the extracted

frame (EF) to obtain an estimate of the PNU (P 1)

I = N + P + noise

P 1 = I − I = P + noise

IV. DISCRETE WAVELET TRANSFORM

The obvious first and last step in denoising is the forward

and inverse Discrete Wavelet Transform operation.

A. Background

Applying a 2-D DWT to an image of resolution M×N results

in four images of dimensions M
2
× N

2
: three are detailed images

along the horizontal (LH), vertical (HL) and diagonal (HH), and

one is a coarse approximation (LL) of the original image. LL

represents the low frequency component of the image, while

LH, HL, and HH represent the high frequency components.

This LL image can be further decomposed by DWT operation.

Three levels of such transforms are applied and shown in Fig. 2.

The coarse information is preserved in the LL3 image and

this operation forms the basis of Multi-Resolution Analysis for

DWT [27].

Bi-orthogonal Wavelet Filter Banks (BWFBs) are commonly

used for DWT for image compression but as they have irrational

coefficients, the associated DWT requires a high precision im-

plementation, leading to an increased computational complexity.

In a hardware implementation, rational binary coefficients can

help in achieving a multiplier-free implementation of filter coef-

ficients [21], [28], [29]. These multiplier-free implementations

Fig. 2. Result of three level 2-D wavelet transform operation on an image

Fig. 3. Extra distortions are obtained when using optimized biorthogonal
wavelets for image denoising. (a) Original image, (b) Denoised using biorthog-
onal filter [21], (c) orthogonal filter [7]

and other optimizations [30]–[32] involve image reconstruction

quality trade-offs and have not been tested for denoising appli-

cations.

B. Hardware Implementation of DWT

Much research has been done in the development of DWT

architectures for image processing [21], [29], [30], [33]–[35]. A

good survey on architectures for DWT coding is given by [36],

however the focus has been primarily on image compression

applications.

The DWT architectures can be broadly classified into lifting

based, convolution-based and B-spline based architectures. The

lifting based architectures are popular and became the main-

stream because they need fewer multipliers and adders and

have a regular structure. Similarly B-spline-based architectures

have been proposed to minimize the number of multipliers by

using B-spline factorization [37]. However, the lifting based

architecture has a larger critical path. Convolution-based ap-

proaches have a lower critical path but require a larger number

of multipliers.

These filters designed for image compression and efficient

implementation degrades quickly for image denoising applica-

tions. The 9/7 poly-DWT filter in [21] has best known image

compression and hardware-efficient implementation. Figure 3

shows this effect where denoising causes distortions when using

9/7 filter. This is because denoising applications typically use

orthogonal wavelets while compression codecs use CDF 9/7

and similar filters which are based on bi-orthogonal wavelet

construction.

C. Filter Design

In [7], the authors propose using ‘db8’ orthogonal wavelet

for denoising operation. Named after Ingrid Daubechies who

did monumental research on wavelets and their applications,

‘db8’ is an orthogonal and asymmetric wavelet filter. The

filter coefficients are irrational and asymmetric and 16 taps are

present in both decomposition low pass LoD and high pass HiD
filters. The coefficients are given in Table I. They are all distinct

TABLE I
COEFFICIENTS OF ‘DB8’ WAVELET FILTER

i LoD HiD
1 -0.000117477 -0.054415842

2 0.000675449 0.312871591

3 -0.00039174 -0.675630736

4 -0.004870353 0.585354684

5 0.008746094 0.015829105

6 0.013981028 -0.284015543

7 -0.044088254 -0.000472485

8 -0.017369301 0.128747427

9 0.128747427 0.017369301

10 0.000472485 -0.044088254

11 -0.284015543 -0.013981028

12 -0.015829105 0.008746094

13 0.585354684 0.004870353

14 0.675630736 -0.00039174

15 0.312871591 -0.000675449

16 0.054415842 -0.000117477

0 2 4 6 8 10 12 14 16
−1

−0.5

0

0.5

1

LO

D

HI
D

1 2 3 4
−1

−0.5

0

0.5

1

Fig. 4. ‘db8’ and ‘db2’ filter coefficients respectively: Low pass LoD and high
pass HiD

and irrational (truncated values are shown). Consequently, a

direct implementation in hardware will require 16 multipliers

and subsequent 15 adders to get a high or low pass output. The

filter is asymmetric and no coefficients are same across high

and low pass filter (see Figure 4). Use of 32 multipliers and 30

adders to obtain a single level of wavelet decomposition will

lead to significant area and computational requirements. It is

also possible to represent ‘db8’ filter coefficients using lattice

implementation as follows:

[
LoD(z)
HiD(z)

]
=

8∑

i=2

([
1 −αi

αi 1

] [
1 0
0 z−2

])[
1 −α1

α1 1

] [
1

z−1

]

(1)

where αi, i ∈ {1, ...8} are the lattice coefficients. This im-

plementation on hardware will require 16 multipliers but will

greatly reduce the throughput and latency owing to large critical

path (for low pass filter).

We want to simplify this design, leading to area, com-

putational and power savings in the design. For denoising

applications, it is not possible to simplify the coefficients, an

approach presented in [21], [38], because that will lead to

visible distortions.

Rather, we propose to use ‘db2’ filters. The filter coefficients

for the ‘db2’ filter are represented as:

LoD(z) = a1 + a2z
−1 + a3z

−2 + a4z
−3

HiD(z) = b1 + b2z
−1 + b3z

−2 + b4z
−3

TABLE II
HARDWARE REQUIREMENTS OF DWT FILTERS

‘db8’ FB ‘db2’ lattice ‘db2’ FB ‘db2’ MFB

Add. 32 5 6 6

Mult. 30 5 8 4

where a1, a2, a3 and a4 are low pass filter coefficients and b4 =
a1, b3 = −a2, b2 = a3 and b1 = −a4 respectively. The lattice

representation of the same filter is given by following equations:
[
LoD(z)
HiD(z)

]
= K

[
1 −α2

α2 1

] [
1 0
0 z−2

] [
1 −α1

α1 1

] [
1

z−1

]

(2)

where K is a constant and α1, α2 are coefficients for lattice

representation. It can be seen that ‘db2’ filter requires fewer

adders and multipliers than ‘db8’ filter. For the ‘db2’ filter, the

lattice approach requires only five multipliers while Filter Bank

based approach requires 8 multipliers.

Figure 5(a) shows the basic architecture for lattice im-

plementation of ‘db2’ filter. Figure 5(b) shows architecture

for Filter Bank implementation of ‘db2’ filter. We observe the

redundancy in multiplications (the eight multipliers perform

only four distinct unsigned multiplications). Thus, we introduce

additional buffers to present a Modified Filter Bank (MFB)

implementation which reuses the multiplier computations and

re-uses them using time-buffers. This design is shown in Fig-

ure 5(c) and it leads to a saving of four multipliers in the

design. It introduces three cycles of delay in high-pass filter

calculations. Mathematically, we can write it as follows:

A1 A2 A3 A4

LoD(z) =
︷︸︸︷
a1 +

︷ ︸︸ ︷
a2z

−1 +
︷ ︸︸ ︷
a3z

−2 +
︷ ︸︸ ︷
a4z

−3

HiD(z) = b1 + b2z
−1 + b3z

−2 + b4z
−3

= −A4z
3 +A3z

1 −A2z
−1 +A1z

−3

= z3
(
−A4 +A3z

−1 −A2z
−3 +A1z

−6
)

This implementation is shown in Figure 5(c). The hardware

resource requirements of direct implementation of the above

discussed filters are provided in Table II.

D. Image Parsing

Because the image is effectively parsed through a one-

dimension linear systolic array, it is important to efficiently

parse the two-dimensional frame. We use the periodic extension

mode of DWT which effectively generates least wavelet coeffi-

cients and thus maximizes throughput. The raster scan order of

coefficients is followed i.e. parsing the image from left to right,

then top to bottom with accompanied padding for periodization

of pixels. This ensures efficient usage of pipelining registers and

flushing them only at the end of a given row.

V. PNU EXTRACTION

After the DWT operation, we next perform denoising of

subbands using MMSE estimation. Four levels of DWT were

(a) Lattice implementation

(b) Filter Bank implementation

(c) Modified Filter Bank implementation

Fig. 5. Proposed DWT architectures for image denoising using ‘db2’ filter.
The MFB implementation is neatly pipelined, requires the fewest number of
multipliers and achieves the highest clock frequency.

considered in this scenario and all subbands except LL4 (see

Figure 2) are passed independently through MMSE estimaton

and denoising process. Let S(i, j) denote the pixel in a subband.

In each subband, we estimate the local variance of the

original noise-free image for each wavelet coefficient. This

is done using the Maximum A Posteriori (MAP) estimation

performed for 4 sizes of a square N×N neighboring mask. The

MAP can be used to obtain a point estimate of an unobserved

quantity on the basis of empirical data. It employs an augmented

optimization objective which incorporates a prior distribution

over the quantity one wants to estimate. It is a regularization

of ML Estimation. The value of this mask is selected to be

N = {3, 5, 7, 9} [7]. Although rectangular masks can also be

chosen, square masks are chosen for generality. Typically a

large mask is adaptively chosen for general low detail regions

of image while a small mask is chosen for edge regions. For

each mask, the variance is calculated as σ̂W
2
.

̂σW (i, j)
2

= max

(
0,

∑
all i,j S

2(i, j)− σ2
0

N2

)
(3)

for the W th mask where N is the number of pixels in the mask.

The minimum value is chosen over these masks, indicating

that the chosen mask is good for noise estimation. The MMSE

Estimation obtains the estimated variance σ using the following

relation:

min
W∈{1,2,3,4}

{
σ̂W

2
}

(4)

Under the assumptions of independence and Gaussianity,

the optimal predictor for a denoised subband is given by the

following relation:

S(i, j) =
S(i, j)× ̂σ2(i, j)

̂σ2(i, j) + σ2
0

(5)

The value of σ0 is chosen as 5 for 8 bit pixels. This process is

done to recover all denoised subbands which are then applied

with inverse DWT to obtain denoised image (I). Subtracting

denoised image from extracted image gives us an estimate of

PNU P 1.

Maximum Likelihood Estimation

This is the most computationally-expensive portion of the

algorithm. This requires estimation of the underlying variance

field, which is estimated based on local neighbourhood of the

data point in the wavelet domain [25]. Lukas et al. [7] use a

square mask for image denoising, following the trend of [25]

and employ masks of size 3 × 3, 5 × 5, 7 × 7 and 9 × 9 for

uniformity. However, we observe two irregularities with this

choice:

1) A rectangular mask, biased towards horizontal pixels

should give a more accurate description of image since

regularity in natural images is maintained more along the

horizontal direction. Consider a scenery or a human snap-

shot, the horizontal information changes less frequently as

the vertical information. For a sunset scene, we find similar

pixels along the horizontal line than the vertical line and

same for objects like tables and walls.

2) A square-sized mask leads to larger I/O overhead than a

rectangular mask of same size. More pixels need to be read

simultaneously for a single pixel output.

For these reasons, we propose use of rectangular masks, of

size 3× 3, 3× 5, 3× 7, 3× 9 and 3× 11. Since these masks

are only used for variance estimation, their impact on denoising

performance should be minimal.

A. Architecture

There are many choices for implementing a PNU extraction

module in hardware. Direct implementation of the scheme is

fairly tedious. We need different masks to implement computa-

tion for each window size, then compare the minimum of them

and select it for MMSE estimation.

The architecture for PNU extraction is shown in Figure 6. It

consists of three blocks which are explained below:

1) DWT: As previously discussed in last section.

2) Pre-processing: In this stage each pixel is squared and

subtracted with variance to obtain X(i, j) value. Three

instances are used in our case to remove the need of

any extra buffer and facilitate coordination with next stage

where a 2D systolic array of width 3 is used.

3) PE array: A 2D systolic array of Processing Elements

(PEs) is used to make the MLE computations identified

previously. It is described in next subsection. The output

of this module is a numerical value corresponding to the

minimum of the values outputted by rectangular masks.

4) Post-processing: The final stage computes the PNU es-

timate from the original pixel value and the denoised

estimate which is correlated with a stored reference value

and compared to a threshold (frame-wise). A correlation

higher than a pre-defined threshold implies successful

authentication.

Pre-processing

We introduce a pre-processing block to reduce redundant

computations in our PE array and introduce hardware reuse.

The squaring operation (of subband coefficient done for each

computation) is redundant. Hence, instead of squaring for each

operation, we input squared values of the pixels themselves

and normalize them with the input variance value. The pre-

processing stage is described below:

X(i, j) = S(i, j)2 − σ2
0

This leads to significant computational and power savings. We

need to buffer these values and then input them to the 2D

array. This implementation is referred to as a Full buffered

(F-B) implementation. However, such an implementation will

significantly increase the usage of input buffers which need to

buffer an entire subband worth of values. Since we are using a

rectangular mask, we can efficiently remove the need of such

a buffer by implementing three pre-processing blocks, one for

each row.

PE array

The PEs are arranged in a 2D systolic array. We note

some interesting properties which help us to optimize the

implementation of the MLE block:

1) Pipelining: Since the computations between subsequent

pixels reuse most of the pixels (except one row / column

which needs to be input), we use a pipeline which inputs

along the short edge (row/ column). Thus, effectively only

three pixels are input every clock cycle. We refer to this

as our Naive implementation.

2) Parallelism: The larger windows overlap over smaller

windows, making it possible to do the computations con-

currently. This step leads to 5X speedup because the

number of computations required are greatly reduced and

can be reused amongst the masks.

3) Scan pattern: Typical image-parsing algorithms use a

raster scan to parse the elements. With this approach, the

buffer needs to be refreshed with every new row. We

refer to this as our Raster implementation. We propose an

alternate implementation, where we parse odd rows from

left to right. At the end of odd row, we parse top-bottom

one pixel and then we parse right to left for even row.

When we reach the beginning of an even row, we parse

top-bottom one pixel again and continue the process. This

leads to a faster implementation.

A PE consists of no functional units, but instead is used

simply to route the input values efficiently to other pixels (see

Figure 7). There is an input mux which collects input X(i, j)
values from one of the four directions and passes it to the adder

below. These values are passed on the next PE in next cycle,

with the direction of traversal depending upon the image parsing

scheme. The edge PEs may have unconnected edges (or inputs).

The input mux and output demux are controlled by 2 bit signals

each which select the direction of PE to receive input and to

Fig. 6. Architecture for PNU extraction. The pre-processing stage squares and normalizes the input pixels (obtains X values). The PE array has a number of
processing elements which are interconnected to yield the MLE outputs for different masks concurrently. The third stage performs MMSE estimation and PNU
prediction for each pixel which is correlated and compared to a threshold to complete the source identification problem.

forward input to. In case of left to right traversal, the mux input

will be on the left while demux output will be on the right.

The five sums are computed corresponding to the five square

masks and then averaged and then the minimum is computed.

To compute the minimum, we just parse the unsigned values

obtained earlier bit-wise and maintain a flag (counter modulo

5). As we reach the first ‘1’, we eliminate that variable. In case

of a ‘crucial-tie’ (for example, two or three ‘1’s for same bit

positions for all two or three variables remaining in the list),

we ignore it and continue parsing. This is implemented using a

simple reduction circuit.

Post-processing

The denoised subband pixel is obtained as described in

equation 5 above using the MMSE value from the PE array

and the subband value. Then, the PNU estimate is obtained as

P 1

P 1(i, j) = I(i, j)− I(i, j)

where image I is obtained after inverse DWT operation on

the denoised subbands. We skip discussion on IDWT in this

section, as it is implemented similar to DWT in last section,

with orthogonal filter coefficients.

I = IDWT
(
all subbands S

)

Next, we compute the correlation between pixels in PNU P

and P 1. If this correlation is above a specific threshold, the

source is considered matched.

ρ = corr(P, P 1) =

(
(P 1 − P 1)(P − P)

‖P 1 − P 1‖‖P − P‖

)

Fig. 7. Inner schematic of a Processing Element (PE).

where P , P 1 denotes mean value of pixel in P and P 1 re-

spectively. The value of ρ above a pre-defined threshold (0.1,

obtained from exhaustive experiments) indicates successful

authentication of the video by identification of correct camera.

VI. IMPLEMENTATION

In this section, we would like to discuss the performance of

our algorithm and proposed architecture.

We used 6 available surveillance cameras along with 1 laptop

camera for the experiment. The details of camera models is

given in Table III. They are the most popular brands in the

market and have very similar specifications, which places a

higher requirements on the source identification algorithm (to

distinguish amongst these cameras). We applied the sensor

pattern noise extraction algorithm to every channel (every

component) of the video frames, and then joined them together

as a whole, which is later used to calculate the correlation

coefficient. In these experiments, we assume no packet loss

conditions and connect these cameras to a Cisco Linksys

WRT160N V2 wireless-N router which is connected to our

processing modules. To make the experimental settings close to

physical settings, we set the resolution to 640× 480 at a frame

rate of 30 frames per second. This is the maximumm resolution

TABLE III
DETAILS OF CAMERA MODELS USED FOR EXPERIMENTS

Model Number

LinkSys WVC80N 4

D-link 942L 1

Axis M1011-W 1

Lenovo X301 webcam 1

of Linksys, D-link and Axis commercial grade surveillance

cameras used in our experiments. Thus, the X301 webcam was

also set to the same settings. MPEG-4 codec was used, with

the GOP size set between 15 to 20 depending on the camera

model. The distance between two anchor frames (I or P) is 2 or

3. At 30 fps, it requires about 26.7 MBps throughput to process

them in real-time. The software implementation, on the other

hand, takes 5 seconds per frame on a core I7 computer. Hence,

we look towards hardware acceleration to make real-time video

authentication available in commercial scenarios. We conducted

tests over 140 such samples collected in a number of trials and

then check the accuracy and throughput of our approach.

We evaluate our approach on the Xilinx Virtex 6 XC6VLX75

FPGA by generating the different architectures proposed earlier.

We prefer FPGAs because they provide a means for rapid

implementation of proposed architectures and support functional

parallelism. However, the designs presented don’t use any

reconfiguration-specific properties and can be further acceler-

ated for performance in VLSI technology. The architectures

presented in this paper have been analyzed in terms of kernel

area clock frequency and throughput considerations.

Our design is written in VHDL and synthesized using Xilinx

ISE Design Suite 12.4. iSim simulations were performed to test

the waveforms. The extracted frame can be loaded to the FPGA

using Xilinx framebuffer module onto SRAM allowing us to

make row and column accesses to extracted frame in single

cycle.

A. DWT

The DWT and IDWT operations are identical and can be

performed using a similar architecture (by minor modification

in signs of coefficients). Before we move ahead, we would like

to ensure that simplifying the filter design from ‘db8’ to ‘db2’

will not have any significant impact on our PNU extraction

process.

Foremost, we compare the authentication performance of

‘db2’ filter over the ‘db8’ filter. Figure 8 shows the results of

this test with varying length of each clip. It can be observed

that the two filters perform similarly in terms of identification

accuracy. With 100 frames of a video, we obtain an average

accuracy of 60% with ‘db2’ while this is 63% with the ‘db8’.

To obtain a reasonable accuracy, we need a larger number of

video frames. We need roughly 500 frames to achieve 100%

accuracy with the ‘db8’ filter while about 525 frames give this

accuracy with the ‘db2’ filter.

DWT Implementation

A direct implementation of the ‘db8’ filter using Filter Bank

scheme requires 32 DSP slices, where each slice consists

of multiplier-accumulate unit. The design achieves a clock

100 200 300 400 500 600
50

60

70

80

90

100

Number of frames

Id
en

ti
fi

ca
ti

o
n

 a
cc

u
ra

cy

’db8’

’db2’

Fig. 8. Comparison of identification accuracy of the two DWT filters. The
results are averaged over 140 video samples of resolution 640 × 480 from
4 cameras. The ‘db2’ filter performs almost as good as ’db8’ filter in source
identification while enabling significant hardware savings.

TABLE IV
IMPLEMENTATION OF DWT FILTERS IN XILINX XC6VLX75 FPGA

‘db8’ ‘db2’ lattice ‘db2’ MFB

slices 112 88 96

LUTs 48 99 138

Registers 112 88 96

DSP48E1 32 5 4

Frequency (MHz) 45.56 105.94 166.5

frequency of 45.56 MHz. The detailed hardware resources

are shown and compared in Table IV. We implemented the

‘db2’ filter using both the lattice approach and the Filter Bank

approach. The lattice DWT kernel achieves a clock frequency

of 106 MHz while requiring 5 DSP slices on-board. The

architecture for lattice, Filter Bank (FB) and Modified Filter

Bank (MFB) implementations is shown in Figure 5(a-c).

The MFB implementation is neatly pipelined and it achieves

a higher clock frequency of 167 MHz (corresponding to 167

MBps) on target device while requiring 4 DSP slices. Details

of other resources (LUTs, slices and registers) is given in

Table IV. Multiple independent kernels can be launched for

DWT kernel to accelerate processing. Since each kernel requires

little hardware resources and an 8-bit (pixel) input every cycle,

loop unrolling gives linear improvements in performance.

B. MMSE Estimation

After DWT, the image is buffered and the subbands are parsed

to denoise them using MMSE estimator.

We first test our earlier assumption that rectangular masks

should give better performance than square masks. [7] use four

square masks of size 3 × 3, 5 × 5, 7 × 7 and 9 × 9 each to

make ML Estimation and then compute MMSE values. This

requires processing 81 values to output a single coefficient. A

2D systolic array implementation would require 9 inputs per

cycle while other values can be reused.

Instead, we propose using rectangular masks of size 3 × 3,

3× 5, 3× 7, 3× 9 and 3× 11 respectively. The width of 3 is

chosen to consider one pixel border around top and bottom

of the current value. The length of mask is varied from 3

to 11. This implementation would require only 3 inputs per

cycle (along three rows) while other 30 values can be reused.

Moreover, only 33 computations need to be made to compute

the MMSE value.

100 200 300 400 500 600
60

70

80

90

100

Number of Frames

Id
en

ti
fi

ca
ti

o
n

 A
cc

u
ra

cy

square mask

rectangular mask

Fig. 9. Comparison of identification accuracy for square vs. rectangular masks.
With almost similar identification accuracy, rectangular masks simplify and
accelerate the architectural implementation. Input per cycle is reduced by 3X
while hardware requirements (number of multiplications) is also reduced by
2.5X.

TABLE V
IMPLEMENTATION OF MMSE FILTERS IN XILINX XC6VLX75 FPGA

Design Naive Proposed

Adders 32 35

Multipliers 33 3

Registers 69 72

Mux 165 165

Slice Registers 1778 2306

LUT flip flops 3504 3503

Frequency (MHz) 240 397

Next, we compare the identification accuracy of source videos

using these masks. Figure 9 shows the identification accuracy of

rectangular mask, as compared with using large square masks.

The curves overlap for except one data-point. This is noteworthy

because we are able to obtain almost same classification accu-

racy with an input reduction by 3 and computational savings of

2.46.

As discussed earlier, the pre-processing module squares the

magnitude, normalizes it by subtracting σ2
0 and inputs them to

the PE Array. This reduces the multiplication operations per

input from 33 to 3. We implemented the individual PEs onto

VHDL and them constructed a PE Array of size 3x11, which

can traverse in any of the four directions. The values for each

mask is computed in parallel and the minimum is found using a

reduction circuit. The divide operation was implemented using

Xilinx Coregen program which uses the Radix2 algorithm to

allow it to be efficiently implemented using flip-flops instead of

multipliers. This is used for computing the denoised subband

value.

On a Xilinx XC6VLX75 FPGA device, the module requires

3 DSB48E1 slice, 3503 LUT flipflop pairs and 2306 slice

registers. It achieves a clock frequency of 397 MHz. Details are

given in Table V. Compared to the naive implementation, we

achieve a savings of over 30 hardware multipliers and an 65%

improvement in clock frequency. The F-B scheme achieves the

same throughput but requires an extra buffer to store subbands

value (1.4 Mb on chip memory). The proposed scan architecture

is 5% faster than the Raster scan implementation (due to

reductions in pipelining flush at end of rows).

Table VI gives the details of identification accuracy using

our modified scheme versus the original scheme. There is a

slight decrease in identification accuracy as reported. However,

TABLE VI
IDENTIFICATION ACCURACY FOR ORIGINAL ALGORITHM AND PROPOSED

ALGORITHM (USING ‘DB2’ FILTER AND RECTANGULAR MASKS). THERE IS

A SLIGHT DECREASE IN IDENTIFICATION ACCURACY BUT MANIFOLD

IMPROVEMENT IN IMPLEMENTATION SPEED

Frames 100 200 300 400 500 600

‘db8’ & ‘square’ 63 82 92 9 100 100

‘db2’ & ‘square’ 60 81 89 96 99 100

‘db8’ & ‘rect.’ 63 82 90 97 100 100

‘db2’ & ‘rect.’ 58 76 89 92 97 98

the scheme uses a significantly lesser number of pixels and

hardware resources than the original. We obtained a throughput

of 167 MBps for DWT kernel (which is the limiting factor

for entire implementation) which makes it feasible to use

commodity Virtex 6 FPGA for real-time video authentication.

VII. CONCLUSIONS

In this paper, we proposed architectures for hardware acceler-

ation of video authentication algorithm using pixel-nonlinearity

noise to identify the original camera. Our algorithm is able to

accurately authenticate source camera using 650 frames from

source video.

We proposed a modified filter bank approach for DWT and

IDWT implementation which reduces the hardware require-

ments and achieves a clock frequency of 167 MHz. We also

presented a 2D systolic array architecture for wavelet subband

denoising which was optimized for hardware requirements

and performance using rectangular masks and suitable design

choice. It achieved a clock frequency of 397 MHz with 3

multiplers and 5 dividers in the design. The overall system

will run at the lower of the two (167 MHz) clock frequency

processing one pixel every second. Hardware prototyping was

done on Xilinx Virtex-6 FPGA XC6VLX75.

REFERENCES

[1] O. Kerr, “Searches and seizures in a digital world,” Harvard Law Review,
vol. 119, p. 531, 2005.

[2] F. Lefèbvre, B. Chupeau, A. Massoudi, and E. Diehl, “Image and video
fingerprinting: forensic applications,” Media Forensics and Security, pp.
725 405–725 405–9, 2009.

[3] M. Chen, J. Fridrich, M. Goljan, and J. Lukas, “Source digital camcorder
identification using sensor photo response non-uniformity,” in Proceedings

of the SPIE, vol. 6505, 2007.

[4] K. Cohen, “Digital still camera forensics,” Small Scale Digital Device

Forensics Journal, vol. 1, no. 1, pp. 1–8, 2007.

[5] P. Blythe and J. Fridrich, “Secure digital camera,” in Digital Forensic

Research Workshop, 2004, pp. 11–13.

[6] “Canon data verification system,” online, http://cpn.canon-europe.com/
content/education/infobank/image verification/canon data verification
system.do, 2013.

[7] J. Lukas, J. Fridrich, and M. Goljan, “Digital camera identification from
sensor pattern noise,” IEEE Transactions on Information Forensics and

Security, vol. 1, no. 2, pp. 205–214, 2006.

[8] K. Mehdi, H. Sencar, and N. Memon, “Blind source camera identification,”
in International Conference on Image Processing, vol. 1. IEEE, 2004,
pp. 709–712.

[9] O. Çeliktutan, B. Sankur, and I. Avcibas, “Blind identification of source
cell-phone model,” IEEE Transactions on Information Forensics and

Security, vol. 3, no. 3, pp. 553–566, 2008.

[10] K. Choi, E. Lam, and K. Wong, “Automatic source camera identification
using the intrinsic lens radial distortion,” Optics Express, vol. 14, no. 24,
pp. 11 551–11 565, 2006.

[11] A. Popescu and H. Farid, “Statistical tools for digital forensics,” in
Information Hiding. Springer, 2005, pp. 395–407.

[12] Z. Geradts, J. Bijhold, M. Kieft, K. Kurosawa, K. Kuroki, and N. Saitoh,
“Methods for identification of images acquired with digital cameras,”
Enabling technologies for law enforcement and security, vol. 4232, no. 1,
pp. 505–512, 2001.

[13] K. Kurosawa, K. Kuroki, and N. Saitoh, “CCD fingerprint method-
identification of a video camera from videotaped images,” in Proceedings

International Conference on Image Processing, vol. 3. IEEE, 1999, pp.
537–540.

[14] X. Kang, Y. Li, Z. Qu, and J. Huang, “Enhancing source camera
identification performance with a camera reference phase sensor pattern
noise,” IEEE Transactions on Information Forensics and Security,, vol. 7,
no. 2, pp. 393–402, 2012.

[15] C. Li, “Source camera identification using enhanced sensor pattern noise,”
IEEE Transactions on Information Forensics and Security, vol. 5, no. 2,
pp. 280–287, 2010.

[16] C.-T. Li and Y. Li, “Color-decoupled photo response non-uniformity for
digital image forensics,” IEEE Transactions on Circuits and Systems for

Video Technology, vol. 22, no. 2, pp. 260–271, 2012.

[17] S. Chen, A. Pande, K. Zeng, and P. Mohapatra, “Video source identifi-
cation in lossy wireless networks,” in IEEE International Conference on

Computer Communications, (Infocom) mini-conference. IEEE, 2013.

[18] W. Van Houten and Z. Geradts, “Source video camera identification for
multiply compressed videos originating from youtube,” Digital Investiga-

tion, vol. 6, no. 1, pp. 48–60, 2009.

[19] D. Hyun, C. Choi, and H. Lee, “Camcorder identification for heavily
compressed low resolution videos,” Computer Science and Convergence,
pp. 695–701, 2012.

[20] T. Acharya and C. Chakrabarti, “A survey on lifting-based discrete wavelet
transform architectures,” The Journal of VLSI Signal Processing, vol. 42,
no. 3, pp. 321–339, 2006.

[21] A. Pande and J. Zambreno, “Poly-DWT: Polymorphic wavelet hardware
support for dynamic image compression,” ACM Transactions on

Embedded Computing Systems, vol. 11, no. 1, pp. 6:1–6:26, Apr. 2012.
[Online]. Available: http://doi.acm.org/10.1145/2146417.2146423

[22] P. Tseng, Y. Chang, Y. Huang, H. Fang, C. Huang, and L. Chen,
“Advances in hardware architectures for image and video coding-a survey,”
Proceedings of the IEEE, vol. 93, no. 1, pp. 184–197, 2005.

[23] M. Katona, A. Pižurica, N. Teslić, V. Kovačević, and W. Philips, “Fpga
design and implementation of a wavelet-domain video denoising system,”
in Advanced Concepts for Intelligent Vision Systems. Springer, 2005, pp.
650–657.

[24] M. Katona, A. Pizurica, N. Teslic, V. Kovacevic, and W. Philips, “A
real-time wavelet-domain video denoising implementation in FPGA,”
EURASIP Journal on Embedded Systems, vol. 2006, no. 1, pp. 6–6, 2006.

[25] M. Kivanc Mihcak, I. Kozintsev, and K. Ramchandran, “Spatially adaptive
statistical modeling of wavelet image coefficients and its application to
denoising,” in Proceedings IEEE International Conference on Acoustics,

Speech, and Signal Processing, vol. 6. IEEE, 1999, pp. 3253–3256.

[26] A. Burg, S. Haene, D. Perels, P. Luethi, N. Felber, and W. Fichtner, “Algo-
rithm and VLSI architecture for linear MMSE detection in MIMO-OFDM
systems,” in Proceedings IEEE International Symposium on Circuits and

Systems. IEEE, 2006, pp. 4–pp.

[27] M. Vetterli and J. Kovačevic, Wavelets and subband coding. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 1995.

[28] D. Redmill, D. Bull, and R. Martin, “Design of multiplier free linear
phase perfect reconstruction filter banks using transformations and genetic
algorithms,” in Proc. Intl. Conf. Image Processing and Its Applications,
Jul. 1997.

[29] M. Martina and G. Masera, “Multiplierless, folded 9/7 - 5/3 wavelet VLSI
architecture,” IEEE Trans. Circuits and Systems II, vol. 54, no. 9, pp. 770–
774, Sep. 2007.

[30] J. Ritter and P. Molitor, “A pipelined architecture for partitioned dwt based
lossy image compression using FPGAs,” in Proc. Intl. symposium on Field

Programmable Gate Arrays (FPGA), 2001, pp. 201–206.

[31] M. Alam, C. Rahman, W. Badawy, and G. Jullien, “Efficient distributed
arithmetic based dwt architecture for multimedia applications,” in Proc.

Intl. Work. SoC for Real Time Applications, 2003, pp. 333–336.

[32] M. Martina and G. Masera, “Low-complexity, efficient 9/7 wavelet filters
implementation,” in Proc. IEEE Intl. Conf. Image Processing (ICIP), Sep.
2005.

[33] A. Benkrid, K. Benkrid, and D. Crookes, “Design and implementation of
a generic 2D orthogonal discrete wavelet transform on FPGA,” in Proc.

IEEE Symp. Field-Programmable Custom Computing Machines (FCCM),
Apr. 2003, pp. 162–172.

[34] A. Benkrid, D. Crookes, and K. Benkrid, “Design and implementation
of a generic 2D biorthogonal discrete wavelet transform on an FPGA,”
in Proc. IEEE Symp.Field-Programmable Custom Computing Machines

(FCCM), 2001, pp. 190–198.

[35] K. Kotteri, S. Barua, A. Bell, and J. Carletta, “A comparison of hardware
implementations of the biorthogonal 9/7 DWT: convolution versus lifting,”

IEEE Trans. Circuits and Systems II, vol. 52, no. 5, pp. 256–260, May
2005.

[36] P. Tseng, Y. Chang, Y. Huang, H. Fang, C. Huang, and L. Chen, “Advances
in Hardware Architectures for Image and Video Coding - A Survey,” Proc.

IEEE, vol. 93, no. 1, pp. 184–197, Jan. 2005.
[37] C.-T. Huang, P.-C. Tseng, and L.-G. Chen, “VLSI architecture for discrete

wavelet transform based on B-spline factorization,” Proc. IEEE Work.

Signal Processing Systems, 2003. SIPS 2003, pp. 346–350, Aug. 2003.
[38] S. Murugesan and D. Tay, “New techniques for rationalizing orthogonal

and biorthogonal wavelet filter coefficients,” IEEE Transactions on Cir-

cuits and Systems I: Regular Papers, vol. 59, no. 3, pp. 628–637, 2012.

