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Abstract— Overlay multicasting technology is
now considered as a promising alternative to the na-
tive IP multicasting. While many studies are cur-
rently focused on how to build an overlay tree/mesh
on top of conventional networks in a self-organized
fashion, only limited attention has been directed to-
ward QoS provisioning. QoS can be provisioned by
leveraging the implementation of differentiated ser-
vices in the Internet. In this paper, we have proposed
an incremental insertion tree-building algorithm to
avoid extensive signaling overhead in differentiated
service domains. The simulation results depict that
on an average our approach produces a tree with a
cost of only 10% to 20% more than the fully cost-
optimized tree. The relative delay penalties gener-
ated by the incremental insertion algorithm is com-
parable to that of the previously proposed Narada
scheme. Although our scheme is designed for differ-
entiated services, the algorithm can also be adapted
to integrated services as well.

Keywords: Differentiated Services, Incremen-
tal Insertion Algorithm, Overlay Multicast, Quality
of Service.

I. I NTRODUCTION

It has been widely accepted that network layer is
the appropriate place to efficiently support multi-
cast services. However, the deployment of IP mul-
ticast still advances in a slow pace even after over
a decade of efforts. A number of reasons can be
attributed to this slowness. First of all, IP multi-
cast requires routers to maintain per group state,
which is fundamentally at odds with the conven-
tional stateless internet infrastructure, Second, IP
multicast routing look-up entries are hard to be ag-
gregated. Third, limited IP multicast address space
also hinders its deployment. Furthermore, IP mul-
ticast lacks flow control and authentication mecha-
nisms, which further slow down its process of be-
ing commercialy deployed.

This research was supported in part by the National Sci-
ence Foundation through the grants CCR-0296070 and ANI-
0296034.

To get around the inherent difficulties involved
in deploying IP multicast, an alternative solution
which is termed asoverlay multicastingor end-
system multicastinghas received a lot of atten-
tion. The overlay multicasting approach assumes
no multicasting support in the network layer, and
constructs a multicast delivery tree in the applica-
tion layer. An intuitive comparison of IP multicast,
multiple unicast and overlay multicast is illustrated
in Fig. 1.
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Fig. 1. Illustration of unicast, IP multicast and Overlay mul-
ticast.

In Fig. 1, host A is the sender while host B,
C and D are receivers. Node E and F are routers.
For the traditional unicast scheme, three identical
copies of the data will be sent from A to B, C
and D. While using IP multicast approach, only
one copy of data is sent on each on-tree link, i.e.,
A → E → C, E→ F → D, and F→ B. In over-
lay multicast scenario, the multicast tree is built at
the application layer. Sender A sends two identical
copies to C and D. Upon receiving, D makes a copy
and forwards it to B through links D→ F→ B. If
we ignore the network and application layer over-
heads and let the number on each link denote link
cost, then the total cost of IP multicast and overlay
multicast are 22 and 27, respectively, while that of
unicast is 38.

The advantages of overlay multicast includes
easier deployment, better scalability and support
of higher layer functionalities, such as security and
congestion control. On the other hand, it is less
efficient in terms of network resource usages and
leads to longer transmission delay.

Provisioning QoS in overlay multicasting is



helpful for several reasons. First, typical multicast
applications, such as video or audio conferencing,
distant learning, include multimedia data stream
transportation, and have certain bandwidth, delay
or jitter requirements. Second, we argue that QoS
provisioning in overlay multicasting is not merely
an add-on service which only improves the quality
of multicasting traffic. Rather, it helps to maintain
a more stable overlay multicast delivery tree. For
example, due to the dynamic changes in network
conditions and group membership, previously pro-
posed self-organized overlay multicast protocols
[4], [6] use adaptive mechanisms to re-construct
delivery trees by periodically evaluating the cost,
delay, and available bandwidth of the links among
each active end hosts. If the underlying networks
have certain QoS support to guarantee or assure
traffic on every on-tree multicast link, then such
an overlay tree structure will be much less sensi-
tive to the changes in network conditions. Ideally,
with the help of network layer QoS support, over-
lay multicast trees only need to change when there
are changes in group membership or node/link fail-
ures. In this context, many bandwidth or delay
probing packets could be eliminated and the main-
tenance of overlay trees could be simplified.

Two fundamental solutions for supporting net-
work layer QoS are Integrated Services (IntServ)
[1] and Differentiated Services (DiffServ) [2]. In
this paper, we focus on DiffServ architecture be-
cause of its scalability and ease of deployment.
However, the tree building algorithm proposed in
this paper could also be applied to IntServ as well.

The rest of paper is organized as follows. The
Network models and design issues are outlined in
Section II followed by a brief review of related
works in Section V. Section III describes our pro-
posed tree building technique and its performance
is evaluted in Section IV. The paper concludes in
Section VI.

II. N ETWORK MODELS AND DESIGN ISSUES

DiffServ architecture offers a number of fea-
tures that will affect the design of overlay multi-
casting. We will briefly review the major charac-
teristics of DiffServ model, and then address the
design issues.

A. DiffServ Architecture and its Features

In DiffServ architecture, packets are differenti-
ated into a series of QoS levels at the edge routers
by marking the TOS byte of their IP headers.
Packets are then grouped and mapped onto cor-
responding traffic aggregation. During transmis-
sion, higher level traffic aggregation will get better
forwarding treatments including more bandwidth,
less queuing delay, or both. When network con-
gestion occurs, mission critical traffic can thus be
protected in DiffServ environment by more aggres-
sively dropping low priority packets. To avoid
lower priority class of traffic from starvation, Ser-
vice Level Agreements (SLAs) should be set up be-
tween the host domain and the servicing domain.
Traffic that exceeds the specified SLA is termed
as out-of-profile. It will be either marked as low
priority or discarded. IETF has defined two major
classes of forwarding behaviors: Expedited For-
warding (EF) and Assured Forwarding (AF). The
former provides hard guarantee while the latter of-
fers a less expensive better than Best Effort (BE)
service.

When designing a scheme to support overlay
multicasting in DiffServ domains, we should be
aware of the following characteristics of Diff-
Serv:

• SLAs. As mentioned above, there is no ser-
vice guarantee for out-of-profile traffic. The
fanout of each end host should be bounded
by its maximum amount of traffic specified in
SLAs, which is less than the actual available
network bandwidth. As and when necessary,
SLAs can be renegotiated.

• Signaling overheads.In DiffServ domains,
dedicated nodes, termed as Bandwidth Bro-
kers (BBs), are responsible for any intra-
domain and inter-domain resource manage-
ment. According to current QBone BB de-
sign[10], end hosts need to request BBs for
resource allocation to ensure that SLAs are
not violated and sufficient resources are avail-
able along the path. It implies that every link
change in the overlay multicast tree may initi-
ate a BB signaling.

• Uni-direction. DiffServ only provides QoS
for one way traffic. In order to get a bi-



directional DiffServ link, both participants
should signal their BBs for resource alloca-
tion. As the actual SLAs and network uti-
lization could vary, such bi-directional links
could fail. Thus, constructing a shared tree in
DiffServ may not be feasible.

B. Design Issues

In this paper, we assume that the underlying
network can provide either premium service of
DiffServ or guaranteed service of IntServ. The
overview of design issues follows.

• Changes in tree topology.Since every change
of the tree topology would lead to BB sig-
naling, the tree-building algorithms should
construct a tree in a way such that it could
avoid extensive topology changes when group
members or network condition changes.

• Source specific tree.Since DiffServ is uni-
directional, we prefer to construct per-sender-
based multicast trees.

• Direct tree construction.There are two dis-
tinct approaches to construct overlay trees.
One approach is to first set up a richer con-
nected graph, termed asmesh. A tree is then
constructed using DVMRP like routing proto-
col. Mesh first approach is good for construct-
ing shared trees and is suitable when the un-
derlying networks performance or reliability
is undesirable. But it would be harder to de-
tect mesh partitions, and resulting tree topol-
ogy may changes dramatically from time to
time. For the above considerations, we have
chosen the other scheme, i.e. to build the tree
directly.

• Sub-optimized for tree cost.We favor min-
imal or sub-optimal tree-cost. Saving over-
all network resources is one of the major
strengths of multicast. However, fully op-
timized schemes, such as Minimum Span-
ning Tree, are less likely to be implemented
in practice, and would produce a deeper tree
with longer latency.

• Incremental join at proper place.Most over-
lay multicast protocols are self-organizing. It
is a desirable feature when there are no ser-
vice guarantees and no signaling overheads

associated with the changes in the tree topol-
ogy. In this paper, we present an approach
that tries to insert a new member at the appro-
priate place of the tree, while considering the
SLAs as well as the overheads associated with
topology changes.

C. Performance Metrics

In summary, the solution we are seeking should
yield fewer tree topology changes and have a good
balance between overall tree cost and individual la-
tency. In this paper, we use the following perfor-
mance metrics to evaluate different approaches:
• Tree Cost.Tree cost is defined as the sum of

the link costs. If we ignore the network layer
and application layer overheads, this metric
reflects the efficiency of system resource us-
age.

• Link Changes.The notation of link changes
refers to the number of different links between
the original tree and the new trees built after
new members join. In DiffServ overlay multi-
casting environment, link changes incur over-
heads associated with BB signaling.

• Relative Delay Penalty (RDP).RDP is de-
noted as the ratio of overlay multicast delay
to the unicast shortest-path delay. This metric
is defined from the perspective of each host.

III. G ROUPMANAGEMENT AND

INCREMENTAL INSERTIONPROTOCOL

To support overlay multicasting in DiffServ do-
main, there could be two approaches. One ap-
proach is to make QoS provisioning totally inde-
pendent of tree construction algorithms. That is,
after the tree is constructed, each member host
could signal the edge router for appropriate packet
marking. However, it may happen that by then
some of the nodes would have consumed all of
the resources specified in their SLAs. The marker
would then mark the multicast packets as out-of-
profile. Unless the SLAs are renegotiated suc-
cessfully, the QoS guarantee on certain branches
would be compromised, and the unfairness among
each multicast member would be aggravated. Thus
we adopt another approach by taking each mem-
bers available SLAs into account while building
the tree.



A. Group Management Overview

In order to achieve better scalability, we pro-
pose a two-level hierarchical scheme which in-
cludes inter-domain and intra-domain group man-
agement. Logically, a tree topology for a cross-
domain multicast group G with sender S, denoted
as (S,G), is shown in Fig. 2. At inter-domain level,
each domain except the source domain is assumed
to have exactlyone link connected with its parent
domain through which the multicast tree is formed.
There may or may not be other links connecting the
domains, but are not used for multicasting. For ex-
ample, link RA3→ RB1 is the cross-domain link
which hooks up domain B with its parent domain
A. In the source domain, the sender is the domain
multicast root. In other domains, the node respon-
sible for receiving inter-domain traffic is denoted
as the domainmulticast root. In Fig. 2, the do-
main multicast root for (S,G) at domain A, B, C
and D are S, RB1, RC1 and RD1, respectively. It
should be noted that the termdomainrefers to the
actual DiffServ domain as defined by IETF. We
do not propose the dynamic clustering approach
suggested in [8], [9], because in DiffServ, inter-
domain resources could be far more scare and its
resource management is much more complicated.
If the nodes from different DiffServ domains self-
organize to form aclusteras the basic tree building
block, then the resource management within each
cluster would be complex.
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Fig. 2. Logical view of tree topology for (S,G).

In this paper, we focus on studying intra-domain
group management and tree construction tech-
niques. We further assume that certain bootstrap
mechanisms exist such that any nodej desiring
to join a group (S,G) could obtain the address of
themulticast rootin its domain, and from which it
could get a list of active members in the domain.

B. Incremental Insertion Algorithm (IIA)

We have proposed anIncremental Insertion Al-
gorithm for building overlay multicast trees in a
DiffServ Domain by constructing the multicast tree
incrementally. Thus simultaneous joins should be
serialized and then be processed one by one. This
serialization could be accomplished by maintain-
ing a queue at a dedicated node such as the domain
multicast root.

As depicted in Fig. 2, each active member in
the multicast tree should maintain its parent node,
cost to its parent, children nodes and the number of
its children (denoted asfanoutin this paper). When
nodej wants to join a multicast group (S,G), it will
first evaluate its cost to all the active members in
the domain and then calculate the cost gain for two
cases. One case is to attach itself to nodei and be-
come a new leaf in the tree, which is denoted as
leaf-join. The other case is calledinsertion, that is
inserting nodej between nodei and andi’s parent
node. For instance, in Fig. 3.a, nodej is evaluating
its cost gain toward nodei. Leaf-join would pro-
duce a new tree structure as shown in Fig. 3.b, and
Fig. 3.c depicted the new tree structure if nodej
is inserted betweeni andi.parent. If numbers in
the figure denote costs of the links, the cost gain
for leaf-join will be 4, while insertion would be
2. Since insertion cost less, nodej will evaluate
cost gain toward nodei as 2, with an operationin-
sertion. After nodej goes through all the active
members, it will join to the node having minimum
cost gain with the corresponding operation. The
formal presentation of the algorithm is shown in
Algorithm 1.
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Fig. 3. Illustration ofleaf-joinandinsertion.

One of the problems associated with the IIA is
that it may increase the join latency. We have de-
fined a non-QoS working mode to allow a new
member to receive multicast traffic as quick as pos-
sible by joining a random node in the tree. The new



Algorithm 1 Incremental Insertion Algorithm at
nodej
Initialization: j.cost2parent ← ∞, j.parent ←
NIL, j.child ← NIL, j.fantout ← 0 {For
off-line mode only}
for every active memberi do

if i.fanout < FANOUT and
j.cost2parent > cost(i, j) then
j.cost2parent← cost(i, j)
j.parent← i
mode← leaf join

end if
if i.fanout < FANOUT and
i.parent.fanout < FANOUT then
insertCost ← (cost(j, i) +
cost(i.parent, j)− i.cost2parent)
if insertCost < j.cost2parent then
j.cost2parent← insertCost
j.parent← i.parent
j.child← i
mode← insertion

end if
end if

end for
addj as a new child ofj.parent
j.parent.fanout+ +
if mode = insertion then

removej.child from j.parent
j.parent.faout−−
addj.child as a new child ofj
j.fanout+ +

end if

member will leave the non-QoS mode after it fin-
ishes processing Algorithm 1.

C. Partition Repair

There are two situations that would create tree
partition problem: member leaves or a link/node
fails. In both cases, the tree should be re-
constructed. If we assume single point failure, it
could be detected if every node periodically ’ping’
its parent. Member leaving can be also handled in
same way. But it would be quicker if we let the
leaving node send a message to its children to trig-
ger the re-building process.

We have proposed both on-line mode and off-
line modes of repairing processes. The former
aims at fast repairing, but would generate a tree
with worse performance. The later process could
produce a tree with better performance, but is only
suitable when there is no multicast traffic on the
flight. Both repairing algorithms are straightfor-
ward. For example, in Fig. 4a, nodei leaves tree

T . In on-line mode,i’s childrenC1 andC2 will
execute a slightly modified IIA by consideringC1
andC2 as two nodes wanting to join the treeT .
The only modification is that when a node joins
during the on-line repairing mode, it should not go
through the initialization part. A possible on-line
repairing result is shown in Fig. 4.b. We can see
that the on-line repairing mode would not change
the trees rooted ati’s direct childrenC1 andC2,
and only require 2 link changes in the example.
On the other hand, in off-line mode, all the de-
scendants of nodei will be treated as new nodes
request to join and will carry out Algorithm 1 one
by one. Such repairing algorithms could produce
a quite different tree structure shown in Fig. 4.c,
where the trees originally rooted atC1 andC2 are
not retained.
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Fig. 4. On-line mode and off-line mode repair

IV. SIMULATIONS RESULTS

In our simulation, we use delay as the metric of
link cost. Three types of network topologies, i.e.
Waxman1, Waxman2, and Locality model, are cre-
ated by using GIT network topology generator [3].
Each type of network has 100 random graphs, and
each graph consists of 1024 node, with cost dis-
tributed in a 100x100 plane. For every graph, we
randomly pick a non-tree node and vary the group
size from 2 to 100. The maximum fanout of any
member is set to 6.

The proposed scheme is compared to Narada
tree, minimum-cost tree, and the minimum-leaf
join tree. In the implementation of Narada, we
use 0.75 as the threshold of utility gains for link
addition, and choose 0.25 as the lower bound of
consensus cost to drop a link. After each member
joins, we allow Narada tree to stabilize before pro-
cessing the next new member.



The performance metrics we used is described
in Section II-C. Since the results are similiar for
all three different type of networks, we present the
results of Waxman2 topology model in this paper.
Table I summarizes the statistic of the results while
the average results are ploted in Fig. 5

A. Tree Cost

Narada performs poorly for tree cost because it
produces a tree in a DVMRP fashion, which is not
optimized for overall cost. Another reason is that
the mesh that Narada constructs is on a shared-tree
basis. So the quality of the mesh may not be good
for a source-specific tree. In Fig. 5.a, Narada’s
tree-cost is more than two times of that of the op-
timal case. As expected, minimum-cost leaf-join
is worse than the IIA approach. Intuitively, IIA
can be conceived as another optimization on top
of leaf-join because it considers bothleaf-join and
insertion. The results show that the average tree
cost of IIA is roughly 10% more than the optimal
case, whereas the average tree-cost of minimum-
cost leaf-join is around 20% to 30% more than the
optimal case.

B. Link Changes

It is clear from Fig. 5.b that both Narada and
the optimal tree cause extensive link changes. It is
not a surprise since both of them do not consider
link change as an optimization objective. Narada
is even worse than the optimal tree in our results.
One reason for this behavior is that the mesh is
always changing, which makes the corresponding
tree topology change more aggressively. Another
reason is probably because of the threshold value
we chose in the simulation, which may not be good
enough. Minimum-cost leaf-join demonstrate the
best performance in terms of this metric. The av-
erage link changes is equal ton− 1 for IIA, where
n is the total number of members. Although IIA
causes nearly two times as many link changes as
that of the minimum-cost leaf-join, it still is a lin-
ear function of group members (n) with the upper
bound as3n− 3.

C. Cumulative Relative Delay Penalties (RDP)

Optimal-cost tree incurs the lowest RDP as
shown in Fig. 5.c. and Table I. Narada has slightly

less average RDPs than IIA up to the 80th per-
centile. But its average is a little higher than that of
IIA. MOreover, its worst case RDP is much larger.
The possible explanation lies in Narada’s shared
mesh, which implies that shared delay optimized
tree may not be fully optimized from each sender’s
perspective. Results also indicate that the IIA has
better performance than minimum-cost leaf-join
for all workload conditions.

V. RELATED WORKS

Narada [4]. Narada is an end system multi-
cast scheme that uses an elegant and practical self-
organized mesh-first approach. Narada can be con-
sidered as a generic solution for providing applica-
tion layer multicasting. Since we assume guaran-
teed services at the network layer, Narada does not
perform very well in such situation, as indicated in
the simulation results in Section IV.

Switch Tree Protocol[7]. Switch Tree Proto-
col (STP) defines a family of tree-first protocols.
The switch-any approach bears some similarities
with our on-line mode IIA Protocol. The major
difference is that STP is a self-organizing approach
which takes a longer time to produce a stable tree
structure and needs the support of loop avoidance
mechanisms.

Overcast[6]. The Overcast work is optimized
for bandwidth and the proposed Up/Down self-
organizing protocol is scalable. The limitation of
their approach is that it does not apply to the mul-
ticast applications with time constraints such as
video/audio conferencing. It should be noted that
when network resource (bandwidth) are sufficient,
overcast would yield a concatenated unicast tree.

VI. CONCLUSIONS

In this paper, we have proposed an heuristic al-
gorithm named Incremental Insertion to construct
source-specific multicast overlay tree for DiffServ
domains. The algorithm determines an appropri-
ate location for inserting a new joining node while
considering the QoS constraints. With the net-
work QoS support, it is easier to build and main-
tain QoS-aware overlay trees. The simulation re-
sults depict that the proposed scheme has a bal-
anced performance for various performance met-
rics analyzed on this paper. In the future, we will



TABLE I
STATISTIC OF 100 RUNS (100 MEMBER, WAXMAN 2 MODE)

Narada Leaf-Join IIA OPT
Tree Cost(ave) 3605.76 1919.52 1716.34 1540.72
Tree Cost(max) 4251 2114 1898 1382
Tree Cost(min) 2915 1681 1534 1723
Tree Cost(std) 24.01 8.82 8.27 7.44
Link Changes (ave) 665.80 99 165.96 295.77
Link Changes(max) 1155 99 192 371
Link Changes(min) 331 99 138 236
Link Changes(std) 19.69 0 0.99 2.7
RDP(ave) 2.55 2.56 2.43 3.26
RDP(50th percentile) 1.92 2.09 2.11 2.77
RDP(95th percentile) 4.66 4.71 4.34 6.58
RDP(worst case) 33.0 23.20 13.55 18.75
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Fig. 5. Results of Waxman2 model.

expand our intra-domain solutions to inter-domain
environments.
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