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Mobile devices supporting the “Internet of Things” often have limited capabilities in computation, battery en-
ergy, and storage space, especially to support resource-intensive applications involving virtual reality, aug-
mented reality, multimedia delivery, and artificial intelligence, which could require broad bandwidth, low
response latency, and large computational power. Edge cloud or edge computing is an emerging topic and
a technology that can tackle the deficiencies of the currently centralized-only cloud computing model and
move the computation and storage resources closer to the devices in support of the above-mentioned appli-
cations. To make this happen, efficient coordination mechanisms and “offloading” algorithms are needed to
allow mobile devices and the edge cloud to work together smoothly. In this survey article, we investigate the
key issues, methods, and various state-of-the-art efforts related to the offloading problem. We adopt a new
characterizing model to study the whole process of offloading from mobile devices to the edge cloud. Through
comprehensive discussions, we aim to draw an overall “big picture” on the existing efforts and research direc-
tions. Our study also indicates that the offloading algorithms in the edge cloud have demonstrated profound
potentials for future technology and application development.
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1 INTRODUCTION

We are embracing the future world of 5G communication and the Internet of Things (IoT). Smart
mobile devices are becoming more popular and playing increasingly important roles in every
aspect of our daily life [30]. Various applications running on these mobile devices require not
only bounded latency, wide bandwidth, and high computation performance but also long bat-
tery life [10]. In these cases, mobile devices alone are insufficient, as they suffer from limited lo-
cal capabilities of computation and energy to deliver performant resource-intensive applications.
Therefore, such a resource gap is filled by remote and centralized data centers or clouds services,
such as Amazon Web Services [1], Microsoft Azure [3], and Google Cloud [2]. These centralized
clouds (CCs) can offer virtually unlimited computation, networking, and storage resources. For
many years, the cloud elasticity model has been widely successful and an added value for both
enterprises and cloud providers. However, recent advances in resource-intensive IoT applications,
such as face recognition, ultra-high-definition video, augmented reality (AR), virtual reality (VR),
and voice semantic analysis, are challenging the scalability and resiliency models of the traditional
cloud computing with more rigorous demands in response latency and data storage. Moreover, the
current limited bandwidth of the backbone network cannot afford the back-and-forth transmis-
sion of the exponentially increasing amount of data generated by the future IoT devices for the
ever-increasing mobile applications.

To tackle the above challenges, Edge Clouds (ECs) (also called “fog computing” [9] or “Mobile
Edge Computing” [33] in some articles) have been proposed. The core idea is to add resources at
the network edge; in particular, computation, bandwidth, and storage resource are moved closer
to the IoT devices to reduce the backbone data traffic and the response latency and to facilitate the
resource-intensive IoT applications. EC has relatively smaller computation capacity compared to
CC but takes advantage of short access distance, flexible geographical distribution, and relatively
richer computational resource than mobile devices.

Other than the common mobile applications, ECs are also more suitable for some special circum-
stances. For example, in disaster or battlefield environments, ECs can be very useful in providing
uninterrupted communication and handling intensive parallel tasks with high accuracy and low
communication latency even if the backbone network access is not available. The second example
is in health monitoring or remote access to medical devices [14, 34], where patients are equipped
with numbers of wearable sensors to monitor vital signs in real time. ECs could process the data
collected from these sensors to extend their battery life and generate quick responses in emergen-
cies to save lives. Finally, with the advent of IoT, ECs can play a key role to build a fundamental tier
of IoT systems for much more distributed applications in smart home, smart health, smart vehi-
cles, and even smart cities [30]. Recent research such as HomeCloud framework [31] and Incident-
Supporting Visual Cloud [16] concentrate on the combinative applications between EC and IoT.

In such an edge cloud vision, the EC offloading problem, i.e., the problem of transmitting a
workload from a mobile device to the ECs, is one of the principal challenges. Offloading algorithms
are of central importance for an efficient coordination between the ECs and the mobile devices.
There are the common and unique aspects between CC and EC in the offloading study. For the
common aspect, both of them consider the factors including device energy, bandwidth utilization
cost, network connectivity, cloud workload, and application latency. For the unique aspects, the
offloading of EC refers to the requirements of the real-time application, service availability, high
bandwidth for the huge volume of offloading data, context awareness of information in the device
level, and network level close to users and high mobility [8]. The uniqueness of EC comes from
the new heterogeneity problems of the variability of mobile or IoT applications, which requires
the cloud vendors to provide different services, infrastructure, platforms, communication media,
and enabling technologies for application offloading.
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Fig. 1. The whole process of offloading from mobile devices to an edge cloud.

Our article surveys the recent representative offloading algorithms. In particular, we adopt a
novel characterizing model that serves as taxonomy to study process of offloading from mobile
devices to the ECs. The process responsibility is divided among three main agents: mobile devices,
communication links, and ECs. Specifically, mobile devices are responsible for determining how
an application is partitioned, which parts should be executed locally or remotely, and the offload-
ing scheme. The communication link is influenced by fluctuation of bandwidth, connectivity, and
device mobility. EC servers handle the balance of the server load to achieve maximum service rates
and system throughput. Given this offloading model, we classify existing solutions using five di-
mensions: offloading destination, EC load balancing, user devices mobility, application partitioning,
and partition granularity, as illustrated in Figure 1 from right to left. Such classification covers the
whole offloading process in a sequential order from mobile devices to ECs. By analyzing the prob-
lem definition, mathematical models, and optimization solutions, each algorithm discussed in this
article stands for a typical and creative research direction. Several other survey papers related to
edge cloud [4, 26, 44] discuss edge cloud computing in different domains (such as edge computing
architecture, communication, computation offloading, and use case studies). However, our article
differs from them by collecting offloading algorithms and analyzing their mathematical models
from a holistic comprehensive perspective.

The rest of this article is organized as follows. Section 2 introduces scenarios of the single and
multiple servers as offloading destinations. Section 3 shows the online and offloading methods to
dynamically balance server load. Section 4 analyzes scenarios in which mobile devices lose con-
nectivity due to their continuous movement and the corresponding solutions. Section 5 presents
the schemes to offload partitioned components according to their internal execution order and
cost. Section 6 reviews the granularity of application partitioning and explains their advantages
and disadvantages. Section 7 discusses the related mathematical models, future challenges, as well
as technology trends. Finally, the conclusions follow in Section 8.

2 OFFLOADING DESTINATION—SINGLE SERVER VS. MULTIPLE SERVERS

Edge offloading is a strategy to transfer computations from the resource-limited mobile device to
resource-rich cloud nodes to improve the execution performance of mobile applications. The se-
lection of cloud servers is worth careful consideration at the beginning of the design phase of an
offloading algorithm. The workload of an application at the runtime could be offloaded to only one
server for sequential execution or to multiple servers for parallel execution to guarantee the user
experience including lower response latency and energy consumption. Figure 2 shows the frame-
work of mobile cloud computing that illustrates communication relationship among all functional
components. User devices are distributedly located at the edge of the network. They could offload
computation to EC servers via WiFi or cellular networks. If a single EC server is insufficient to
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Fig. 2. Mobile cloud computing framework.

meet the latency requirement, then other EC servers or CC servers are made available to assist the
application by sharing workload. Current studies on offloading focus on the multiple applications
environment, where the requirements of network and computing resources based on the type of
applications. For example, processes whose execution follow a sequential order are suitable to be
offloaded to one single server, since the communication among serialized parts is frequent. How-
ever, applications with repetitive computation are more suitable for parallelized servers. In this
section, we discuss some representative algorithms based on such offloading destination taxon-
omy dimension.

2.1 Single Server

In this section, we discuss MAUI [15] and CloneCloud [12] two algorithms that utilize a single-
sever offloading strategy.

2.1.1  MAUI. MAUL s a fine-grained approach that offloads parts of programs remotely to solve
the mobile energy problem [15]. The remote server could be a CC server or a nearby EC server
at a WiFi access point. As a pioneer of all offloading systems, the MAUI offloading strategy takes
advantage of program partitioning and full process migration, which also reduces developers’ pro-
gramming burden.

The architecture of MAUI follows a client-server model. Both the server and mobile devices
have three functional components: proxy, profiler and solver, as illustrated in Figure 3. The proxy
is used to transmit data and control instructions. The profiler retrieves the data about program
requirement, execution energy cost, and the network environment, while the solver decides the
program partitioning strategy. Under such an architecture, MAUI models communication cost and
computation cost with a 0-1 integer linear optimization problem that is derived from the method
called graph. The graph is a flow diagram that presents the computation cycles, energy cost, and
data size at each stage of the application execution. When a method is called and a remote server
is available, the optimization framework dynamically determines whether the method should be
offloaded to maximize the total energy saving or not. The problem is defined as follows:

D hxEL = > L~ Lo X Cy o,

veV (u,v)€E
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with the following constraints:

D =E)XTL+ (b xT0)) + >\ (I~ Il X Buo) < L,

veV (u,v)€E

where E! is energy cost by executing method locally; C, ,, is energy cost of tranferring data be-
tween nodes; By, ,, is time of transferring data; L is time latency limit; [ is locally; r is remotely; v, u
are vertices on the call graph; and I, is 0-1 choice.

Specifically, MAUI first helps program developers simply mark the methods as remotable that
could be considered offloading to a server, and then MAUI automatically decides which methods
should be offloaded with the aid of programming reflecting and type-safety to manage program be-
havior. Second, at runtime, the profiler starts to periodically collect system information from three
factors: device, program, and network. Third, based on the factors information, a linear program
solver uses data input by profilers to find a global optimization way for offloading. After obtain-
ing offloading strategy, the proxies on the mobile devices and the server starts to implement the
solution, while the mobile application performs simultaneously. Proxies handle the exchange of
priority to execute code locally or remotely. When the program on the server calls a method, which
is assigned to a local device, the server transfers the execution control to the mobile device, and
vice versa. Therefore, the synchronization between local and remote must work in serialization
even if there is corresponding data transmission overhead.

Besides the system framework and the offloading algorithm, the authors in MAUI also
investigated several approaches to evaluate the system’s macro and micro performance. The
macro-benchmarks contain energy consumption, performance of mobile applications and ability
of supporting resource-intensive applications. The micro-benchmarks evaluate the overhead of
each system components, the adjustment of each algorithm parameters, the change of network
environment, and the CPU costs. To test the effectiveness of MAUI, three kinds of popular
applications on mobile device are being researched: resource-intensive face recognition, latency-
sensitive video games, and voice language translation. With their implementation of MAUI,
authors demonstrate that 27% of the energy of the smartphone is saved for video games, 45% for
a chess game, and even more than 85% for face recognition. Meanwhile, the authors also show
how the latency improves by a factor of 4.8 times using nearby edge cloud servers.

2.1.2  CloneCloud. Similarly to MAUI, CloneCloud is also a fine-grained approach that auto-
matically identifies the communication and computation costs for migrating the workload from
local to edge cloud [12]. However, CloneCloud does not require any developer efforts in mark-
ing whether a part of the program can be offloaded or not. The application is unmodified, and
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the suitable portions of its execution are offloaded to the edge end. CloneCloud owns a flexible
application partitioner and executes the workload from mobile devices on the task-level virtual
machines (VM) such as Java virtual machine and .NET.

To establish a CloneCloud framework, a static analyzer, as the first step of partitioning mecha-
nism, is used to discover constraints of the application to be executed on edge servers. The analyzer
then determines the legal executable parts that qualify this set of constraints. If a code segment
performs expensive processing and satisfies the constraints, then it runs on the cloud server. There
are three kinds of constraints for the analyzer. First, the chosen methods should not use the specific
features that are pinned to the mobile machines such as GPS and various sensors. The methods of
these features are natively embedded with hardware. Second, the methods that shared native state
should be allocated to the same VM when they serve for the same application process. Third, the
caller-caller relation among methods is monitored. If a partition point is located in the caller, then
it should not be in the callee. Such nested migration is prohibited to avoid multiple triggerings of
the same migration at the same partition points.

The dynamic profilers collect the necessary data to build cost models based on the outputs of the
analyzer when the various applications adapt different execution configuration. The cost model of
an execution trace of an application is presented as a profile tree data structure, where nodes rep-
resent methods and edges represent cost values, such as execution time and energy consumption.
Next, a mathematical optimization solver determines the migration points where the workload is
offloaded at runtime to minimize the overall cost of the mobile devices.

Finally, the chosen program methods are offloaded to an available server with a clone VM in-
stalled. When the execution process on the mobile device reaches to the migration points, its pro-
cess is suspended, and its current state is packaged and transmitted. The clone VM will initiate
a new thread with the packaged state in the stack and heap objects. Then the application pro-
cess resumes on the cloud server. When the assigned tasks are completed, the application state is
repackaged and shipped back to the original mobile device, and then the process on mobile device
resumes.

With the help of the above offloading framework, CloneCloud achieves application partitioning
and seamless cooperation between the local and the remote virtual processing instance. Experi-
ments on tasks such as virus scanning and image search show that the algorithm helps applications
achieve up to 20 times speedup and a 20-fold decrease in energy consumption.

Aside from the advantages brought by offloading strategies, a set of new challenges appears. One
is the inability to easily offload the workload caused by native functional modules such as a camera,
GPS, and sensors. Second, when the offloading strategies try to permit perfunctory concurrency
between unoffloaded and offloaded workloads, the synchronization of application data should be
prudently considered to keep data updated.

2.2  Multiple Servers

With the prosperity of computation-intensive applications, we are facing more serious challenges
on the energy and latency-sensitive for applications such as multimedia, three-dimensional (3D)
modeling of a disaster site and unmanned driving. In these cases, the tolerance of execution la-
tency is relatively rigorous to meet customer requirements. Especially when the execution latency
constraints are severe, a single server or VM may be unable to provide sufficient communication
bandwidth and computing capability. To this aim, solutions handling parallel offloading on mul-
tiple servers have been proposed to distribute partitioned tasks to a cluster of servers that have
different capacities of computation and communication resources. In the next subsections, we dis-
cuss a few representative solutions that adopt this model.
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2.2.1 ThinkAir. After the publication of MAUI and CloneCloud, ThinkAir [21] was proposed
to cope with the disadvantages of these two systems; in particular, ThinkAir extends in new ways
for resource allocation and parallel task execution.

ThinkAir attains scalability by providing VMs that run the same smartphone execution environ-
ment on the edge nodes synchronously. Moreover, the system improves the performance compared
to CloneCloud by dynamically allocating cloud resources instead of statically analyzing partitions
of applications. ThinkAir achieves such scalability and flexibility through two perspectives. First,
parallel execution on several edge servers can satisfy the high computation requirements of mo-
bile applications such as face recognition. The system can divide a calculation problem into sub-
problems to execute on the multiple VMs to reduce the waiting interval of the tasks between cloud
and mobile devices. Second, the tolerance of energy consumption and latency fluctuates due to the
resouce types of applications, the hardware performance of mobile devices, the limited battery ca-
pacity, and the specific user configurations. Besides the above two advantages, ThinkAir also deals
with the unstable connectivity of cloud service to guarantee the precise execution of applications.

Similarly to MAUI, edge cloud application developers using ThinkAir would still need to modify
the code for running application smoothly. However, such a modification workload seems less than
the one required in MAUT’s, because ThinkAir provides programmers with a customized API and
a compiler. Moreover, ThinkAir provides an execution controller that determines the necessity to
offload a program method. When the method is executed for the first time, the decision is only
based on the environmental parameters. The subsequent execution decision is determined by the
combination of factors including latency and energy cost in the past invocation and environmental
data. There are execution controllers both on the user devices and cloud servers to determine the
offloading node according to the requirement of execution time and energy.

Figure 4 shows an overall ThinkAir system framework and components. In the architecture of
ThinkAir, the client handler and the profilers with rich resource are informed of the possibility
of performing code migration. The client handler is deployed on the cloud servers to execute the
tasks that require multiple VM clones in parallel. Moreover, the handler manages communication
protocol, network connection, receiving and executing offloading code, and return results that are
sent to the profiler for future offloading decision. The profilers consist of three modules: hardware,
software, and network. Specifically, the hardware profiler monitors the data of CPU, WiFi, and 3G,
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which are also integrated into an energy estimation model. The software profiler records the data
reported during application execution such as running time, CPU efficiency, and memory usage,
wherever in local or on cloud. The network profilers combine both intent and instrumentation
profiling including bandwidth, response time, and data of network interfaces. By utilizing the
dynamic information collected with the monitoring processes within profilers, the system uses an
energy estimation model so that the client handler can make efficient offloading decisions.

2.2.2  Cloudlet. In contrast to ThinkAir, the Cloudlet is located at the closest access point that
is the next hop to be connected to the Internet. The concept of cloudlet was initially proposed
by Satyanarayanan [36]. He introduced the cloudlets as resource rich servers at the edge of the
network located nearby WiFi access points. The mobile user could rapidly initiate VMs on the edge
servers to offload its resource-intensive computation. The main design goal of a cloudlet was to
reduce application latencies compared to a case in which mobile devices are left on their own.

Despite the significant technology advancement provided by such a cloudlet system, Verbelen
et al. [41] pointed out two drawbacks of this VM-based cloudlet strategy. First, the cloudlets are
provided by Internet Service Providers in their local area network (LAN) where cloudlets may have
reduced range of operation and their configurations may fail to meet the execution requirements of
some applications. Second, VM-based cloudlets run the whole application offloaded in a single VM.
However, the resources on the cloudlet are limited. When multiple applications are required to run
simultaneously on the cloudlet, the cloudlet service will be impacted, e.g., some user requests could
be declined. To overcome the above two limitations, the authors of Reference [41] further proposed
an elastic architecture of cloudlets. Their architecture not only provides original cloudlet servers
at the edge but also organizes ad-hoc clouds that involve other devices with available resource in
the same LAN.

To deploy these new cloudlets, mobile applications are divided into different components that
can be transmitted to other devices or basic cloudlet servers managed by a Cloudlet Agent (CA)
running on a powerful server within the ad-hoc network. Such a component-level framework
allows users to join and leave the cloudlet at runtime without severely impacting application per-
formance. Each available device is regarded as single node that carries on a Node Agent (NA) and
multiple nodes located in the physical proximity form a cloudlet that is monitored and controlled
by the CA. When the offloading request appears, the NAs will estimate the execution environ-
ment and share the information with CAs. Based on the global view of resources on the nodes,
CA can form a globally optimal solution. When nodes enter or quit the service coverage of the
current cloudlet, the CA would perform calculation again and decide whether to migrate again
some service components.

An augmented reality application is used to evaluate the cloudlet performance by splitting the
application into five components: video source, renderer, tracker, mapper, relocalizer, and object
recognizer. The experiment shows how such flexible cloudlets indeed boost application perfor-
mance. However, we must note that this kind of cloudlet needs to tackle execution scheduling
of components carefully. The data synchronization among many of mobile devices and cloudlet
servers can affect the global performance. In these cases, one cloudlet handles computation and
data transmission for multiple applications. Meanwhile, an application may also split workload
to multiple cloudlets. Given the complexity of offloading and high accuracy of synchronization,
application developers and algorithm designers may face additional challenges.

3 OFFLOADING BALANCE—ONLINE OR OFFLINE

In this section, we focus on offloading balance on solutions for distributed edge clouds despite their
location. Before or during the offloading, the amount and frequency of offloading requests from
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multiple end-users are dynamically floating in real time. Due to the resource limitation, the edge
cloud may not have enough available resources to meet the Service Level Agreements (SLA) of the
application where not all user or application requests would be accepted. The system needs the
online scheduling algorithms to determine the order of requests before the offloading process is
finally performed to improve users’ Quality of Experience (QoE). After the requests offloading, the
edge servers are partially or fully occupied by the computing workload. In these cases, the weak-
ness of the previous online offloading strategies may lead to unbalanced loads among the edge
servers, where some parts of them may work with very low loads while others are almost fully
utilized. Therefore, some researches focus on the offline balancing among the servers through
workload migrations to avoid servers overloaded and improve resource utilization. Under these
scenarios, we classify the literature into two types of algorithms, online and offline, whose differ-
ence lies in the time to perform the balancing algorithm, before or after the requests offloading.
Figure 5 presents the framework of the balanced offloading system and the relationship among its
functional components. An online controller distributes the tasks from users to edge servers and
an offline controller migrates the workload among edge servers according to the resource usage.
Next, we discuss a few relevant works based on such a system.

3.1 Online Balancing

Online balancing is a pre-processing or runtime method that ensures that the workloads are dis-
tributed to the appropriate servers when the user requests arrive at the cloud in real time. Online
algorithms consider both user configuration requirements and current servers’ available capacity
without any knowledge of future resource requests.

3.1.1 Online-OBO and Online-Batch. Considering limited resources and processing abilities on
the edge cloud, Xia et al. [48] proposed an online request admission algorithm to maximize the
system throughput. The offloading environment is a simple system where mobile devices connect
to the cloudlet through an access point. There are different types of resources on the cloudlet such
as network bandwidth, computing power, data storage space, and service time slots, where any
type of resource is associated with an estimated cost value.

The authors first propose an abstract admission cost model to determine different contributions
from different resources in a cloudlet with K types of resources. Then they propose and implement
a set of algorithms that handle the online requests admissions on the cloudlet without knowing
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the future request arrival rate according to the situation of resources occupancies on the cloudlet.
When a request arrives at the system, it will be rejected immediately if there is insufficient capacity
for every requested resource. Otherwise, the system verifies whether the cost is under a given
feasible threshold and, if yes, it admits the request. After completing each request, the allocation
mapping is updated, which contains all the functional components of the system.

Given the above admission control mechanism, the throughput maximization problem is mod-
eled using a reduction from the online K-dimensional bin packing problem, a reduction typically
utilized to solve space management problems. Two use cases are discussed in the Reference [48]:
one request arrival per time slot and multiple requests arrivals per time slot. The former use case is
implemented with the idea discussed above, referred to as Online-OBO. The latter use case adopts
a greedy strategy to try to handle a group of requests based on the system cost model, referred
to as Online Batch. Once a request is rejected, it will be removed for further consideration in the
current time slot. It is worth mentioning that these two algorithms dynamically adjust some pa-
rameters in their mathematical models to offer convenient configuration of server workload for
service providers.

3.1.2  Primal-dual Approach. Compared to the above online allocation approach where the
users offload their workload to a single cloudlet server, Hao et al. [18] proposed an algorithm
for allocating VMs in a distributed cloud that consists of geographically diversified small data cen-
ters close to users. The algorithm takes users’ specified constraints into consideration, including
server geographic locations, restrict on resource cost, and communication latency for achieving:

a. Balance between optimal revenue and cloud performance. From the aspect of revenue, the
system attempt to accept user requests as much as possible in the constant service time.
Meanwhile, the system must maintain good performance to satisfy the SLA.

b. Generate the optimal solution without information of future arriving requests. The algo-
rithms focus on obtaining the best allocations for the current requests based on the existing
cloud distribution.

c. Be flexible to handle different resource constraints such as VM location, VM service dura-
tion, Inter-VM distance, and cost policy of the service provider.

Due to the complexity of resource constraints and performance goals, the offloading is converted
into an NP-hard problem that could be solved by an approximate approach. Once a request is
receieved, the system tries to solve the primal solution and its dual solution, where the former
decides VM allocation and the later present the upper limit for the optimal allocation. The primal
and dual problem could be represented and solved by linear programming equations. Overall, this
algorithm is a generalized solution through a comprehensive NP-hard approximation, considering
the limits of server resources in both central and edge cloud architecture.

3.1.3  Stochastic Models. Besides the above method to transfer the offloading problem to a bin
packing problem, a stochastic model was proposed by Maguluri et al. with the aim of finding the
maximum system throughput under various theoretical or practical constraints. The model is sto-
chastic, since the authors assume that the user requests arrive by way of a stochastic process [27].
The authors studied two popular algorithms, pointed out their disadvantages, and improved the
MaxWeight method [46]. Offloading is in the form of VMs employed in multiple servers where
each VM contains various types of resources.

The authors analyze several algorithms using a centralized allocation strategy in which all user
requests are received and handled by a central scheduler. First, the Best-Fit method is proved
not optimal with a case study. Second, they show how the current MaxWeight approach [46]
is not optimal either, since it is only suitable for some ideal condition, where the offloaded
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workload can be migrated between cloud clusters without a high cost. However, the MaxWeight
algorithm is shown to be costly in practice, since the task execution may be disrupted when the
tasks are all allocated at the beginning of each time slot. Third, the author also present a non-
preemptive MaxWeight algorithm is designed to allocate workload based on the current server
capacity.

The article also discusses an online algorithm in which every server has an individual queue
for job requests to route workloads as soon as they arrive. When the global balancing is consid-
ered, the join-the-shortest-queue routing is utilized to cooperate with MaxWeight algorithms. The
scheduler allocates requests arrived according to the updated queue information and VM config-
uration. When the arrival rates of requests and the number of servers increase, the information of
queue length leads to considerable communication overhead. In this case, Power-of-two-choices
method with myopic MaxWeight helps reduce the costly overhead when all servers are identi-
cal. Specifically, two servers are randomly sampled, and the user request will be allocated to the
server whose queue has less delayed jobs. In contrast, the pick-and-compare scheduling randomly
chooses a server and compares it with the one allocated in the last time slot. All the above algo-
rithms provide us with optimal ways for throughput under specific system requirements to keep
online load balance.

3.2 Offline Balancing

Offline algorithms aim at balancing over-utilized resources on the edge servers. Since different
servers contain a variety of services, they may have different occupancy percentages for computa-
tion and communication resources. When a server is overloaded, load migration may be performed
to avoid service disruptions and wasting of resources, i.e., a user request may be rejected because
one type of the required resource cannot be satisfied. The traditional cloud VM migration mainly
aims at maintaining higher system utilization and lowering the energy consumption for the phys-
ical server that is underloaded. Besides, the VM migration of edge cloud to guarantee the flexible
resource provisioning and quality of cloud service since the type and number of resource requests
from user devices are fluctuating.

3.2.1 Resource Intensity Aware Load. VMs are deployed on the physical machines (PMs) that
have limited hardware resources. When one type of resources on the PM is close to be completely
occupied, the new requests for VM initiation will be rejected even if the usage of other resources
is at a low level. Due to this dilemma, such unbalanced allocation leads to waste of computation
and energy resources of PMs and the system cannot reach the optimal throughout performance.
Therefore, the Resource Intensity Aware Load (RIAL) balancing algorithm is proposed to efficiently
migrate VMs among cloud severs while ensuring low migration cost at the same time [11].

Considering resource intensity, we mean that the amount of resource type is demanded for
the service. A program may ask for several VMs simultaneously to support different functions,
leading to intensive communication between these VMs. RIAL dynamically allocates the offloaded
workload to the edge servers based on their current usage of computing resources. However, the
VMs that exchange data commonly will be deployed in the same server to avoid migration cost.
Meanwhile, the migration among PMs also maintains minimum performance degradation.

For reducing the possibility of overloading, RIAL periodically checks the resource usage on each
PM, seeking and migrating the VMs among PMs. Both the migrated VMs and the PMs as a destina-
tion are derived by the multi-criteria decision-making method (MCDM), which establishes decision
matrix within all types of resources. The ideal VM to migrate owns the highest occupancy of one
type of resource and lowest utilization rate of another, as well as the least data transmissionamong
other VMs.
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MCDM calculates the Euclidean distance between each VM and PM based on the corresponding
migration cost. The VM with the shortest distance is selected. The detailed equation of Euclidean
distance is as follows:

K
D = | > [wik (eijic = ria) 12 + (wi Tip)?,
k=1
where K is types of resources, w;i is the weight of resource k in PM i where weight represents
the priority of migration, x;ji is the usage of resource k of VM j in PM i, r;i is the largest percent-
age of occupancy of resource k in PM i, w; is the weight of data exchanging rate, and Tj; is the
communication rate of VM j with other VMs in PM i.

3.2.2 Bandwidth Guaranteed Method. From what we have discussed above, the algorithms con-
sidered scenarios where users continuously appear and require some (network or application) ser-
vice at a specific time interval for a specific task. However, offloading can also be performed during
extended time periods, for example, during an entire day. In this case, multiple edge servers could
work cooperatively to serve customers in daytime, but the quantity of user requirements will dra-
matically decrease as the midnight approaches. When the load is low, the resources using the VMs
are utilized inefficiently. Hence, the distributed active VMs can be migrated to one server while
their original physical machines could be turned off to reduce total energy consumption. However,
migration can also lead to new challenges. The VMs migration technology requires sufficient band-
width to copy the current memory state to the destination server to initiate new VMs that resume
the original service. At the destination server, existing VMs should keep the minimum bandwidth
for the current users. Therefore, both the migration and the maintenance of current services share
the same physical link. The bandwidth guaranteed method described in Reference [29] aims at
solving such bandwidth competition to migrate VMs in the shortest time while maintaining the
minimum bandwidth for user traffic. The migration time is defined as

M
T=——,
B, - W
where M is the size of memory used by VMs, B,, is total network bandwidth, and W is the current
occupied network traffic. When B,,, < W, migration is impossible. When B,,, > W, the migration
time depends on B,,, — W.

In the proposed method, the order of the VM migrations is also considered. When the available
bandwidth for VM migrations is abundant, the VM that has a large amount of state changes is
migrated. Similarly, when the amount of available bandwidth is limited, the VM a small amount of
state changes is migrated. The bandwidth guaranteed method has a very practical contribution in
achieving a reduction of electric power consumption of the service provider, which may be widely
deployed as an elastic scheme to perform cloud control automatically.

4 MOBILITY OF DEVICES

Mobility poses new challenges to the offloading algorithm designer. As a mobile user moves across
different service areas, the device may leave the service coverage area of its original edge server.
Such mobility will lead to two problems: First, we need to decide whether the edge service should
be migrated out of the original server to a new server to keep the communication efficient. The
migration deciding factor needs to resolve a tradeoff between the cost of long-distance commu-
nication and migration cost. Second, the network signal, e.g., in WiFi and 3G/4G/5G, may be af-
fected by large objects data transfers, heterogeneous network environments, and the connection
policies of smart devices, especially in the overlapped service areas. Persistent connectivity is not
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guaranteed and the intermittent connection is possible. In this section, we will discuss four rep-
resentative approaches to handle the mobility challenges from four aspects: (1) path selection for
offloading traffic, (2) multi-tier edge computing architecture, (3) edge service migration, and (4) ad
hoc cloudlets.

4.1 Path Selection for Offloading Traffic

The aim of path selection is to minimize the transmission delay and guarantee service continuity
between users and edge nodes. The works [6, 32] proposed a handover mechanism based on the
Manhattan distance considering the quality of communication links. The path selection is formu-
lated as Markov Decision Process considering the transmission delay and energy caused by the
transmission of offloading data. However, the path selection algorithms are not sufficient enough
if the user device is too far away from the computing location since the transmission delay may
reduce the QoS. In this case, the handover mechanisms to seek the new service server is neces-
sary and more efficient. The authors of Reference [52] study how to balance the handover fre-
quency and effectiveness to mobility management by performing handover decisions, which are
formatted as a non-cooperative game model with the help of edge computing. The work [7] investi-
gated an SDN-based method to decouple the mobility management and data forwarding functions.
The SDN-based architecture was proposed, and a novel handover scheme is designed to improve
the efficiency of the frequent handover between edge nodes and users caused by users’ mobility.
The SDN controller can pre-compute the optimal path by estimating the transmission delay of
each possible option.

4.2 Offloading in Two-Tiered Mobile Cloud

To improve the performance while satisfying the SLA of mobile applications, Xia et al. [49] pro-
posed a two-tiered mobile cloud architecture that contains both the edge clouds and center clouds.
Even if the edge cloud has the advantages of low latency and high scalability, the capacity of an
edge cloud may run into an over-utilization problem when too many users offload their workloads
to the same edge cloud, which then could suffer from longer delays and heavier energy consump-
tion (such peak-load situation may happen when the assemblies are held by big groups of people
in public place). The proposed algorithm aims at offloading location-aware tasks of mobile appli-
cations to local or remote servers to ensure fairness of energy consumption that the battery life of
each mobile device is prolonged equally. In this case, each device should consume the same portion
of energy regarding its total energy capacity.

The two-tiered architecture supports an opportunistically flexible approach called Alg-MBM to
help each mobile device choose the appropriate cloud server. The Alg-MBM constructs a weighted
bipartite graph to find a weighted maximum matching offloading destinations including remote
data centers, local edge servers, and even mobile device itself. It is worth noting that executing
locally on the mobile device instead of offloading may be the best choice when the outside com-
putation resources are heavily costly due to poor network conditions.

4.3 Follow Me Cloud

Follow Me Could (FMC) is a framework in which the mobile devices move across edge severs while
the cloud service smoothly supports the user applications [38]. Because of the unpredictability
of user mobility, VMs migration as the key technology for continuous cloud services breaks the
limitation of geography. However, there are unresolved technical issues, since migrating VMs may
have two restrictions: the latency of converting a VM to be ready for migration and the latency to
transmit VM state over the network among edge servers. However, if the destination servers use
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Fig. 6. Self-organized ad hoc mobile cloud. Fig. 7. Offloading choice control flow graph.

different hypervisor with the original server or the bandwidth is not qualified, then the service
migration becomes more costly and may even be rejected.

An algorithm based on Markov Decision Process (MDP) is proposed to determine whether such
migrations should be performed when the user device is at a given distance from the original
server [22]. The authors defined a Continuous Time MDP (CTMDP) that contains the state of user
devices and their transition probabilities and cost information. Moreover, they propose a Decision
Time MDP (DTMDP) based on CTMDP with limited state spaces, which is regarded as a 1D model.
Such a MDP is a static way to derive the optimal offloading since the migration cost function is
pre-defined. Moreover, the finite state space will lead to high response time in solving the MDP.

To overcome the limitation of a static time cost calculation, a new dynamic service migration
method is proposed to solve the restrictions of MDP by Wang et al. [43]. The authors considered
a 2D mobility model that considers a MDP with arbitrarily larger state space. Two-dimensional
mobility means that the user moves in a 2D space. Since both network topology and user mo-
bility continuously change, the cost function and transition probabilities of MDP may fluctuate
frequently. Therefore, the MDP should be solved in a dynamic manner. The 2D mobility algorithm
can obtain an approximate solution by applying the distance-based MDP. Meanwhile, it decreases
one order of magnitude of the overall complexity in each MDP iteration to improve time efficiency.

4.4 Ad Hoc Cloud-Assisted Offloading

Besides the two-tiered mobile cloud and FMC, mobile ad hoc networks are important applications
that motivate researchers to pursue higher resource utilization and deal with user mobility. When
the intermittent connectivity happens, a type of ad hoc self-organized mobile cloudlet helps mo-
bile devices obtain close computation resources from other idle terminal devices, including smart-
phones, laptops, and desktop computers, to form a self-organized mobile cloud, as illustrated in
Figure 6. As discussed in Section 2, Cloudlet provides such an ad hoc architecture that integrates
ad hoc mobile device cloud with infrastructure-based edge servers [41, 42].

Based on such a mobile cloud at network edge, an up-to-date centralized task scheduling (CTS)
algorithm was proposed by Wu et al. to guarantee SLA and achieve energy consumption bal-
ance [47]. As discussed in the algorithm, the execution of mobile application could be represented
by a control flow graph that contains the computation components working in flow. A collab-
orative task execution scheme is implemented to determine where the components execute, in
the local device or edge cloud, as illustrated in Figure 7. Aside from computation cost, the data
transmission cost between edge and local is considered.

Under such a collaborative scheme, offloading is more flexible. When the infrastructure-based
cloudlet is unavailable to execute assigned work tasks, the centralized task scheduler starts to
seek the available mobile devices resource in the certain range by qualification judgement based
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on the current usage of resource on the mobile cloud. The judgement process is formulated as a
0-1 integer linear programming problem and approximately solved by the greedy algorithm to get
a solution and keep complexity to a minimum.

5 OFFLOADING PARTITION

Under the premise that the offloading achieves low latency, researchers make their best endeavors
to prolong the battery life. Since the increases of battery capacity cannot catch up with the fast
advances of program and application technologies like virtual reality and augmented reality, it is
impossible to run all the parts of such applications only on the mobile device. The division and
organization of partitioned components are the foundations to design an offloading algorithm. For
some applications following the pipeline workflow such as VR streaming, the dependent relations
between different functional components should be considered. For the applications with many
human interactions such as voice control, the response latency is the most significant factor to
guarantee the user experiments. Therefore, the algorithms of computation partitioning are further
studied to determine which parts of the user application are offloaded and how they executed in
order. The current partition strategies can be divided into three aspects: static, dynamic, and a
combination of static and dynamic.

5.1 Static Partition

In the early years of research on cloud offloading, research studies were proposed on offloading
computation of mobile devices to a close powerful server in the same LAN through a wireless con-
nection. Li et al. [23] proposed a static partition approach based on the cost graph generated by
the data of computing time and data sharing at the level of procedure calls. The cost graph stati-
cally divides the application program into server tasks and mobile device tasks to minimize energy
consumption of handheld devices. Moreover, the program execution follows the order of sequen-
tial control flow. The data shared between two tasks is sent by the push-and-pull method, which
guarantees that the server and client continuously update the most recent data modifications.

Based on such a scheme, the cost graph contains computation and energy information during the
whole execution of sequential tasks. Then a Branch-and-Bound algorithm defines the offloading
problem by linear expression to calculate optimal solution. However, the worst-case complexity
of Branch-and-Bound is unacceptably costly according to the cost graphs of some applications. In
this case, a pruning heuristic method is proposed to reduce the calculation time by only focusing
on the components with heavy workload. The scheme is static, because all the profiled information
is based on the intrinsic characteristics of the program, which leads to only one optimal solution.
Figure 8 presents a flow graph used to the partitioning algorithms discussed above.

Besides the study on offloading partition from the standpoint of single application, Yang et al.
[50] investigated the multi-user computation partitioning problem that jointly considered the task
scheduling on the cloud servers side and the partition on the applications side. The applications are
divided into task modules with the attributes including computation time of modules on devices
or cloud servers and data transmission time while the computation resource on the cloud servers
is constrained. The authors focused on latency-sensitive applications to minimize their average
delay with a global view of all devices. The partitioning problem is solved by a static heuristic
algorithm, SearchAdjust, by improving the performance of the classical list scheduling algorithms
in the heterogeneous computingby 10% [40].

5.2 Dynamic Partition

While the static method considers all the parameters of the system and generates a globally optimal
solution, the dynamic methods are more flexible, as they also evaluate network and server states.
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The Dynamical Offloading Algorithm (DOA) proposed by Huang et al. [19] focuses on achieving
energy saving given the change of communication environment. Meanwhile, the interdependency
of the partitioning application components should be considered because of the different execu-
tion latency constraints and data sharing cost with each other. In Reference [19], Huang et al.
proposed a DOA to offload partitioned components with the change of wireless connection. They
also created a cost graph where the vertices present application modules and the directed edges
are data sizes from the source vertex to the destination vertex. In this case, the data transmission
rates based on a wireless environment take dynamic effect on the decision of offloading, locally
or remotely. The energy consumption and the total application execution time are formulated as
a Lyapunov optimization problem that introduces a control parameter to take a tradeoff between
energy and latency.

Besides the uncertainty of network connectivity, the dynamic partitioning for saving energy
should take more heterogeneous factors into account [13]. Such factors include device operating
systems, network types, cloud availability, and user workload. For example, an image matching
program contains three stages: image feature generation, similarity calculation against a database,
and classification. The content complexity of images are various, and the size of the matching data-
base is changing so that the image processing may take a longer or shorter time during different
stages. Given such an application, its device platform can be smart phones, tablets, or laptops with
a wide variety of CPU, memory, and storage resources. The network is assumed to be a 3G/4G
cellular network or a WiFi with different bandwidth. The cloud providers are assumed to have dif-
ferent prices and performance for their services, while the workload is dynamic at different stages.
Additionally, another algorithm is proposed [53] that systematically discusses the factors affect-
ing the performance of real-time video-based applications in dynamic wireless network conditions.
The partitioning strategies should be dynamically adjusted during the execution of applications
due to the changing of device and network status [51]. The initial partitioning at the beginning of
execution may not hold for the whole process. In Reference [37], an algorithm based on dynamic
programming with hamming distance terminations is proposed, which mainly focuses on avail-
able network bandwidth. Considering the workload of edge servers, the authors of Reference [50]
utilized the proposed SearchAdjust static methods to deploy a dynamic solution in the practical
system by performing the partitioning algorithms in every timeslot instead of one by one. The
timeslot is small enough compared to the execution time of the offloaded tasks. This dynamic al-
gorithm tries to maintain the balance between provisioning enough resource for current tasks and
preparing for the future requests.

5.3 Combination of Static and Dynamic Partition

We could also combine the static and dynamic approaches to build a model for optimal offloading
partition. Giurgiu et al. [17] propose a cost flow graph that is established based on the functional
units and interdependency degree in terms of resources consumption such as data sharing, code
size, and memory cost, similarly as in Figure 8.
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Table 1. Offloading Granularity Comparison

Granularity Advantages Disadvantages

Application | 1. thin workload on mobile devices |relatively long time of VM initialization
2. easy VM configuration on servers

Task 1. offer flexibility to developers low reuse posibility of execution environment
2. less synchronization work
Method wider authority to developers 1. high complexity to achieve optimal offloading

2. harder data synchronization
3. more fragmented user requests

Two partitioning algorithms in Reference [17] are proposed to derive static and dynamic opti-
mization separately: ALL and K-step. ALL determines the best partitioning by evaluating all offline
information of application and network. In addition, K-step performs partitioning of applications
in real time when the mobile devices request services from cloud servers with their specific re-
quirements. The algorithm starts estimating one node at a time by combining a depth-first and
breadth-first method to the last node. Compared to ALL, K-step is faster, because it considers only
areduced set of configuration and less accurate. If there is a new configuration on nodes that offers
a better solution, then a new local optimum will be updated.

6 PARTITIONING GRANULARITY

Before offloading computation to the edge servers, we must also consider the rational size of com-
ponents that could run remotely. Given that different applications consist of the customized func-
tional components designed by their developers, the partition granularity is a significant factor to
improve the global execution performance. The granularity of partitioning is defined as the differ-
ent sizes of offloading components. In this section, we classify the granularity of partitioning into
three levels (from the biggest scale to smallest): Application, Task Module, and Method. Figure 9
offers an overview of their relationship. The more fine-grained the granularity, the more flexible
and complex the offloading system is. Meanwhile, the comparison of advantages and disadvan-
tages are summarized in Table 1.

6.1 Application Level

The computation components at the application-level contain the whole functionalities of soft-
ware; this is the case, for example, for face recognition and voice translation applications. The
partitioning algorithms at the application level impose a very thin workload to the mobile devices.
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The corresponding software has already existed on the server that only needs to configure ini-
tialization data. Virtual machines (VMs), whose images are preinstalled on the servers, are most
commonly utilized to meet the requirements at this granularity level. One of the advantages of
application-level partitioning is an easier system configuration on the server side where the initi-
ated VMs can be simply removed and new clean VMs can be ready for the next service timeslot. In
this case, the mobile devices do not need to upload any functional parts, because the entire com-
putation is executed on servers. Meanwhile, the less-intensive tasks, such as user interface and
system data management, run on mobiles devices without a high energy cost. The Cloudlets [36,
41] we introduced in the previous sections adopt this application-level partitioning for offloading.

6.2 Task Module Level

The offloaded parts in the task module level are the application elements whose responsibilities
are separated in a sequential or parallel order. A typical example is a face recognition program,
which sequentially executes face detection, face verification, and face identification. As discussed
in References [19] and [35], the cost model for task control flow, which is derived from the specific
system features, displays the tasks partitioning at this granularity level. Such task modules gener-
ally execute in the containers of code running environment such as a Java virtual machine (Java
Run Environment), a .Net framework, and a self-built running platform. Task module-level offload-
ing is relatively more flexible than application-level partitioning, since the developer is allowed to
make decisions to maximize performance using the edge cloud. Moreover, every task module is
relatively enclosed, which means it receives input data from the previous stage and return its state
to the next stage where there is not much synchronization work between the mobile devices and
edge cloud. However, a task module as a medium granularity form puts forward more rigorous de-
mand to the cloud servers, where the running environment faces more diverse requests from users.
The environment configuration from user requests may ask for different classes of libraries, which
leads to the lower possibility of container reuse. However, the programming languages available
to developers are also relatively limited by running platforms.

6.3 Method Level

Method is in a lower level than task module for partitioning, which can also be presented in the
form of functions as a code fragment. MAUI [15] and ThinkAir [21] require the developers to
manually or semi-automatically annotate the methods as offloading permitted. The advantage of
method level partitioning is that the developers have wider authority to improve their applications.
However, such low-level granularity brings several challenges to achieve offloading optimization.
First, the high complexity of obtaining an optimal solution may take longer because of a large
number of methods. Second, the data synchronization between local devices and remote servers is
harder to guarantee while they should share the same execution results. A synchronizing scheme
runs periodically or in real time to collect and update the method data. Third, the service deployed
on the server will handle more fragmented requests, which requires a robust identification mech-
anism to distinguish their source applications.

7 DISCUSSION AND PERSPECTIVES

After presenting the above research from five perspectives, in this section, we present some anal-
ysis and discussions on the mathematical models of existing algorithms, potential challenges, and
technological trends for future offloading on an edge cloud.

Mathematical Models: We further summarize and compare the algorithms discussed in this ar-
ticle into Table 2. Besides the proposed five categories, we classify the related work also based on
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the mathematical models and optimization methods utilized. Examples of such methods include
0-1 integer linear programming problem, K-dimensional bin parking, a Markov decision process,
and Lyapunov optimization. Since most of these optimization models attempt to solve an NP-hard
problem, the approximation solutions with higher performance and lower complexity are designed
and evaluated in many cases. When researchers try to include more factors or constraints in their
offloading algorithms to meet specific performance requirements, the algorithms need to be im-
proved to be more flexible. Moreover, the offloading strategies should be dynamically adjusted with
the change of the edge server’s workload during the offloading process. The server could increase
the resource provisioning to the device to speed up the application execution. For example, a hier-
archical edge cloud architecture was proposed to solve the offloading problem during peak hours
[39]. A dynamic voltage scaling technique was implemented to vary the energy supplement of mo-
bile devices based on the computation loads [45]. To address the potential requirements of future
applications, the existing algorithms should be adjusted, and new approaches need to be explored.

User Mobility: The mobility influences the offloading decision, since the change of device location
and distance from edge servers may cause a decrease of communication quality and an increase
of device energy consumption. The existing works focus on the user mobility from the aspects of
path selection, multi-tier edge cloud, edge service migration, and ad hoc cloudlets. Moreover, the
prediction of future trajectory should be further studied to achieve the pre-migration of the VM
to reduce the migration delay and service interruption. However, the current migration studies
mostly assume that a single VM provide computing service to one user and how to perform the
migration when the computation of one user is offloaded to multiple servers. Therefore, new ad-
vanced methods should be developed to meet the latency requirement for the user devices, even
for real-time application.

EC Offloading for Future IoT Environment: The Internet of Things is estimated to bring the
next major economic and societal revolution by turning billions of independent electric devices
into an enormous interconnected community where the data are shared more frequently and
faster than ever before [30]. According to the forecast of IHS and Mckinsey [20, 25], devices
connected to the IoT network will increase from 15.4 billion in 2015 to 30.7 billion in 2020. We
can imagine that the future society will be boosted by seamless intelligent cooperation among
smart devices, and the creation of smart-x applications such as smart health, smart home, smart
city, smart energy, smart transport, and smart farming and food security.

Under the background of IoT, edge computing can potentially support significant progress to
solve problems, including communication latency, energy saving, user mobility, the variety of per-
sonalized applications, support of real-time applications, and network heterogeneity. However, the
research in this aspect is not mature enough yet to accommodate various IoT standards, and the
current work still covers only a limited range of application scenarios. Many smart-x applications
have not yet adopted corresponding customized cloud computing models very effectively. There-
fore, the future research can focus on implementing a specific class of IoT systems and related
algorithms.

EC Offloading for Big Data: With the development of Big Data technologies, media transmis-
sion and targeting delivery of customized content can improve the service efficiency and accuracy
for mobile users. In conjunction with edge cloud computing, applying Big Data techniques, re-
searchers can improve the performance of data processing such as collecting, capturing, analyzing,
searching, exchanging, transmiting, and protecting. e.g, a cloud platform for the medical education
to measure patients’ personal big data [5]. By offloading heavy workloads to edge servers, both
computation and communication latency are guaranteed to extract valuable information from data.
Facilitated by edge clouds, the application of Big Data could be conveniently accessed by terminal
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users. In this case, how to maximize the advantages of EC by effective offloading approaches to
boost Big Data technology is still an unexploited field.

EC Offloading for 5G: In the future, 5G will bring us broader network bandwidth and greater
convenience of device connectivity that allows a larger number of mobile users per area unit. The
mobile devices are also provided with high availability and speeds of network access. However,
the spectrum resource is limited, which could bear a heavier burden in the 5G era. It may increase
costs when cloud resources are accessed through the 5G network. Currently, there are some re-
lated researches of offloading in such situations. For example, a time-adaptive heuristic algorithm
with multiple radio access technology (Multi-RAT) is proposed [28]. A distributed computation
offloading algorithm solves the offloading decision-making problem in a wireless network with
multi-channel to avoid mutual interference [24]. To improve the performance of offloading in a
5G network, EC can play an important role to enhance its upper bound.

8 CONCLUSIONS

In this article, we collected and investigated the key issues, methods, and various state-of-the-art
efforts related to the offloading problem in the edge cloud framework. We adopted a new char-
acterizing model to study the whole process of offloading from mobile devices to the edge cloud,
which consists of the basic categorizing criteria of offloading destination, load balance, mobility,
partitioning, and granularity. The overall goal of offloading is to achieve low latency and better en-
ergy efficiency at each step of computation offloading. An integrated offloading system of an edge
cloud should be a well-balanced combination of these five perspectives to properly solve offloading
issues. The factors of algorithms such as environment constraints, cost models, user configuration,
and mathematical principles were discussed in detail. We endeavored to draw an overall “big pic-
ture” for the existing efforts. Embracing future network development, we plan to continuously
explore emerging technologies and creative ideas that improve offloading performance.
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