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Abstract—Live street-level air quality monitoring is important
application of sensor networks. Such application reveals human
exposure to hazardous air pollutants. It assists general public,
army troops, environment agencies and the Government in
decision-making every day. Live data visualization and data
fusion plays crucial role in presenting pollution updates ef-
fectively for end-users. We propose efficient interactive, live
data visualization in our application. Our application efficiently
renders pollution data fast in under 10ms. Users will be instantly
aware of pollution levels in their desired location. Continuous
data-logging at data centers from large-scale of sensor networks
poses major challenges. We use policy based network manage-
ment technique to reduce unwanted data-logging requests. We
implement novel policies in identifying and rejecting numerous
unwanted requests at data centers. Each data-logging involves
computationally expensive database operations and with our
policy specification we were able to cut down expensive operations
significantly (≥ 83% reduction, especially in denser regions like
traffic congested roads). Finally, we implement Lazy load scheme
to make our application more energy efficient. With this scheme
we save data and battery in end-users device over longer periods
of time. We conducted several real-life trials and we observed
negligible mobile data consumption ( ≤ 1MB for 1 − hour ).
Similarly, we observed negligible power consumption ( ≤ 4% in
1−hour run ) in end-users device. Our implementation of novel
policies and schemes provide real-life benefits to data centers
and end-users. Our end-users experience better, faster and lively
pollution updates. Our data centers experience relatively lesser
network load and less computation overheads on scaling up.
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I. INTRODUCTION

Excessive pollutants in the air are harmful. WHO[1] iden-
tified air pollution as one of the most significant global
health epidemics of our time. There is an increasing mortality,
respiratory disease like asthma, heart disease, and even cancer
[1]. As per WHO, NAAQ and U. S. APHC [1]–[3] recom-
mendations we observe that there is an important need for
air quality monitoring. Military Exposure Guidelines (MEG)
gives critical and recommended levels of air pollution for
army troops [4]. Hence air pollution monitoring is important
not only for general public but also for army troop’s health.
Our model as shown in Fig. I provides live air pollution
updates with energy efficient information processing at client-
side as well as smart network management at server-side. This
research is a small step towards smart energy efficient projects
that delivers safety for the people living under the constant
exposure of pollution.

Fig. 1. Demonstrating live air pollution level in smart phone for a motorcyclist
commuting between point A and B. Point A and B are starting point
and destination of journey. Travel mode can be DRIVING, WALKING or
BIKING. Pollution level can be Healthy(Green) to Severe(Maroon). In figure
travel mode is BIKING and indicates overall live pollution level of trip up-to
5 meter accuracy.

A. Motivation

With the recent advancements of air pollution monitoring
systems [5] and Government’s need [1]–[4] to implement it,
we are confident that government agencies will shortly deploy
such devices at an large-scale to monitor pollution. So we can
expect an sudden surge in number of such devices in every
city that will continuously upload pollutant data into server
every second. Hence server-side we will have high incoming
traffic of data, which we have to control efficiently. Parallelly
we can expect increasing number of users who want to view
live pollution updates. Hence we will have very high data
communication between millions of users and server, which
we have to handle efficiently as well. Users can neither feel nor
see harmful gases so effective data visualization plays a key
role which motivates us to develop interactive, user friendly,
faster application for users to visualize live pollution updates.
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B. Background

Notable amount of work is done by Google [6], [7] in
mapping neighbourhood-level air quality. Since 2014, Messier
et al.[6] used Google street car [7] for mapping pollutants
emitted from cars, trucks and other sources in the city of Oak-
land, California. They have captured 3 million measurements
spanning 15,000 miles every 31 days in the course of a year.
Apart from pollutants, they have extended project to methane
mapping to detect potential methane gas leakages.

Most of Messier et al.[6] research is focused in city of
Oakland with the help of Google street car. Messier et al.[6]
discuss briefly about scalability here we address scalability
challenges in depth when air pollution monitoring systems
are deployed in hundreds of thousands of cities across globe.
Messier et al.[6] captured million readings over a span of year
but in large-scale deployment we will receive several million
readings every minute. With large scale deployment comes
new set of challenges which we discuss further.

Google [6], [7] implementation gives us a glimpse of
pollution data visualization using two-color gradient. Live
data visualization plays critical role in presenting pollution
updates effectively to end-users. Pollution data is dynamic with
possibility to change every minute. To visualize effectively
such innumerable and dynamic pollution data is a challenging
task. In our model we aim to implement standard six-color
indicator as recommended by National Ambient Air Quality
Standard (NAAQS) [7]. However it evokes color-coding con-
flicts in Google maps i.e.some color-code overlap with other
data layer(s) such as traffic data layer. To solve this, we look
for simple and efficient data fusion. Data fusion makes end-
users interpret data from multiple sources or sensors much
better and easier without causing ambiguity [8]. We look in
how effectively we can implement such method to combine
pollution data-set with static or dynamic heterogeneous data-
sets.

Survey by Wei et al.[5] on air pollution monitoring sys-
tems suggests that we have various stable implementations
of wireless sensor network such as Static Sensor Network
(SSN), Community Sensor Network (CSN) and Vehicle Sensor
Network (VSN) for air pollution monitoring. For e.g.Google
street car is a type of VSN. We observed greater advancements
in networks with respect to mobility, data quality and main-
tenance. With these advancements and government’s interest
to deploy [1]–[4], we can expect high traffic of data-logging
requests to server from variety of networks deployed across
globe in near future.

Huge traffic of data-logging requests at data centers, if
mishandled can directly affects server performance. ProgME
[9] describe in their research that much of network traffic is
mishandled due to insufficient network in-built intelligence.
Networks inability to cope up with application-specific re-
quirements or inability to adapt to network traffic can result
inflexibility and limited scalability in server [9]. By efficiently
handling network traffic we can avoid unnecessary server
overloads.

With policy-based network management techniques we can
control server’s incoming traffic flexibly and in a simplified
manner by defining new set of policies to govern the network
traffic behavior [10]. Hence we attempt to devise new policies
to manage incoming traffic. This policy based network pro-
vides us one solution to tackle network congestion problem,
which frequently occurs in large scale of sensor networks.

Our end-user, who want to view pollution status continu-
ously receives best experience when both data and battery is
saved especially during longer journey. Hence we look for
efficient data download schemes which avoids unnecessary
data-downloads. Lazy load is an important design pattern com-
monly used in enterprise application architecture to defer ob-
ject loading until it is really needed [11]. We see performance
of this technique in operating systems to be significantly better
in terms of memory and time [12]. Lazy load can provide
us a solution by deferring data-download from server. Hence
we check if this technique can significantly reduces client-
server data-downloads. We implement and analyze the network
performance of this technique in our model.

The rest of the paper is organized as follows: Section I
present the motivation and background of the work. Section II
presents the proposed model. Section III presents the results
and analysis followed by conclusion section.

II. THE PROPOSED MODEL

In this section, we discuss the development phases of our
model:

A. Data Visualization and Fusion
B. Policy Based Network
C. Lazy load scheme

A. Data Visualization and Fusion

Fig. 2. Information fusion of several data layers: dynamic pollution data layer
overlay (a) With dynamic traffic data layer (b) With static Google satellite
images Map



Data visualization plays important role in presenting pol-
lution updates to users. Data visualization model by Google
[6], [7] and research done by Messier et al.[6] provides us
summary of pollution in Oakland. We add novel features to
make it practically usable in day-day lives. In our model we
put in efforts to make pollution monitoring more interactive,
lively and user friendly at the very best.

We demonstrate live air pollution mobile interface in Fig.
I for a motorcyclist commuting from point A to B. NAAQS
[7] standard six-color pollution level indicates pollution levels
from Healthy(Green) to Severe(Maroon) as shown in Fig. I.
User can choose commute mode (Either DRIVING, WALK-
ING or BIKING) at the tap of a button. WALKING is useful
for users exercising in outdoors. User can see the status and
plan accordingly. In few taps user can change route or change
mode and view live updates instantly.

Information fusion from multiple data sources gives us new
perspectives. It is possible in our model to fuse both static and
dynamic data-sets. We fuse dynamic pollution data-set with
static Google Maps data as shown in Fig. 2(b). We overlay
successfully by modifying line segment properties such as
opacity and stroke-width. This minor modification brings
amazing new information as shown in Fig. 2(b). Similarly we
do fusion of our live data-set with Google’s live traffic data-set
as shown in Fig. 2(a). This information fusion provides new
insights and draws interesting inferences such as possibility in
Fig 2(a) shows that lesser-traffic on (Mappedu Rd.) is prone
to heavy pollution at that moment.

Fig. 3. Multi-modal air quality monitoring capability in our model. The
information box shows reading captured by multiple sensorsat a particular
Latitude and Longitude. Depending on country model can be reconfigured to
accept different sensors, thresholds or even different logic

In our model we captured readings from Industry-standard
battery-powered Particulate Matter (PM) sensor [13] but our
model is futuristic with multi modality feature. Provision for
data logging from multiple sensor is possible. As different
countries have different pollutant monitoring standards, so this
feature plays a vital role. We demonstrate the same in Fig. 3,
we observe information box showing reading captured from
many sensors PM, CO2, CO, SO2, NOx, etc.,

In our model, one novel feature is history management. We
demonstrate it in Fig. 4, where user can replay/view entire
history of pollution in the route. Fig. 4a shows our intuitive

Fig. 4. Unique history management of pollution data. (a) Intuitive interface
to quickly navigate to current/past pollution level (b) Showing past pollution
levels dated 11.June.2018 12:40PM IST. In single tap, user can switch from
past to live mode (c) Live pollution level.

interface where user can pick any day in calender then tap on
any day of week and then slide to any time to view history.
Data queried is retrieved Fig. 4b shows the result. User can
switch back to Live mode just by tapping ’LIVE’ Tab as shown
in Fig. 4(a,c) shows the results of this action. This kind of
visualization narrates entire pollution history of selected route
in a unique way.

Our Data visualization implementation is very efficient, it
takes only 10 millisecond average to plot pollution data points.
Performance with various implementations are discussed fur-
ther in the results section.

B. Policy Based Network

In next few years smart air pollution monitoring devices
will be everywhere. There will be surge in network traffic
because these devices will continuously post recorded data
from sensor to server’s shared databases. This shared database
will be leveraged by other applications such as the read-
intensive application shown in Fig. I which shows pollution
levels to end-user.

To manage rising network traffic efficiently we need policy
based network management [10]. We propose four novel
policies in four-step sequence as shown in Fig. 5 that filters
out all unnecessary data-logging requests step by step. Policy
structure as shown in Fig. 5a is simple query to check whether
set of conditions are met. If met then request is processed else
request is rejected. All the incoming data-log requests first hits
Policy I. Policy I to III are read-intensive whereas Policy IV
is write-intensive. Policy I to III is least expensive database
(Fig. 5b) operations whereas Policy IV is most expensive and
time consuming database write (Fig. 5c) operation. Policy
I to III uses memcached high speed read-only database but
Policy IV does computationally expensive tasks like creation
of indexes, checking if record exists accordingly insert/update
record. Hence we carefully define policy in such a way that
all unnecessary requests filter out within Policy I to III. In this
manner, we execute Policy IV only for qualified requests and
not every data-logging request gets logged thus saving lots of
valuable network resources.



Fig. 5. Policy based network to streamline network load. (a) Represent policy
structure (b) Database for read intensive operations (c) Database for write
intensive operation. These novel policies I - IV schemes reduces network
overloads

Algorithm 1 Policy Collection
Input: R : HTTP Request Object
Entry Point: SECURE-ACCESS(R)

procedure SECURE-ACCESS(R) . Policy-I
id← R.UniqueDeviceIdentifier
key ← R.SecretAuthenticationToken
status← DATABASE-LOOKUP(id, status)
if status.registered and status.active then

if ISAUTHENTIC(key) then
return LOG-FOR-LIMITEDTIME(R, id)

return null
procedure LOG-FOR-LIMITEDTIME(R, id) . Policy-II

K1 ← 60 . Log device every 60 seconds only
record← DATABASE-LOOKUP(id, lastRecord)
if K1 ≥ ServerT ime− record.lastLogT ime then

return LOG-LIMITEDPOINTS(R)

return null
procedure LOG-LIMITEDPOINTS(R) . Policy-III

K2 ← 60 . Log region every 60 seconds only
L← 5 . Threshold limit of 5 points
M ← 110 . Rounding radius of 110 meter
latLng ← R.LatitudeLongitude
rLatLng ← ROUNDOFF(latLng,M)
records← DATABASE-LOOKUP(rLatLng, lastRecords)
if K2 ≥ ServerT ime− records.lastLogT ime then

if L ≤ records.count then
return DATA-LOGGING(R, rLatLng)

return null
procedure DATA-LOGGING(R, rLatLng) . Policy-IV

id← R.UniqueDeviceIdentifier
data← R.SensorV alues
DATABASE-WRITE(id, rLatLng, ServerT ime, data)
return 1

Policies Collection defined in Algorithm 1 has four sim-
plified policies procedures which we have implemented and
tested successfully. Policy-I SECURE-ACCESS(R) being the
entry point does the preliminary security checks. By cross-
checking in database we check device status and we verify
authenticity of the device with the help of secret key/password.
If request is authentic we proceed further else request is
rejected.

Policy-II LOG-FOR-LIMITEDTIME checks in database if
device has already logged past K1 time (Here 60 seconds).
If true, the request is forwarded to next policy else rejected.

Policy-III LOG-LIMITEDPOINTS is the most important
policy. It checks if requested region has already logged L
points in a radius of M meters within time-span of K2

seconds. We query mentioned condition in database and if
satisfied we proceed to Policy-IV else reject request. Policy-
IV DATA-LOGGING is the final policy where requested sensor
data along with coordinates and time-stamp is written into
database. This step involves most expensive database operation
so by filtering out Policy I-III we data-log only genuine and
qualified requests.

With our novel Policy schemes I-IV we improve quality of
service reducing unwanted use of network resources ultimately
lowering power consumption at data centers. We provide
detailed results and analysis in the results section.

C. Lazy load scheme

Pollution data is dynamic with possibility to change every
minute. In a map between point A and B as shown in Fig. 6
(inset) there is possibility of hundreds to thousands of dynamic
pollution data points. We do not want to download all data
at once, hence we apply Lazy load [11] to download data
fragment by fragment when needed.

Fig. 6. Figure shows Lazy loaded map where only necessary data points are
downloaded, updated and displayed. Image inset shows complete route map
from point A to point B where only small fragment of data is downloaded
when necessary.

At the same time we want to clear the pollution data of
explored tracks. In Fig. 6 you can observe black strokes
in explored route indicating data is cleared off map. In



comparison, Fig. I is map without Lazy load containing 500
data points and Fig. 6 is map with Lazy load containing only
20 data points at the moment. Now instead of updating 500
points we update only 20 points periodically. In this way
we significantly reduce download of unnecessary data points
therefore we save data, bandwidth, battery at client side and
stop unnecessary download requests at server. By this scheme
we bring higher efficiency in a large scale scenario where we
drastically cut down millions of unnecessary communication
between client-server thus saving millions of dollars. Detailed
one hour experimental run is presented in next section.

III. RESULTS AND ANALYSIS

A. Data Visualization Performance

There are many implementation to plot data points onto
static maps like Google Maps. We can either use either buffer
array or special files in GeoJSON format for loading Geo
Spatial data (Latitude, Longitude, Pollutant readings). We can
plot data either using Data Layer or without data layer [7]. We
see that these implementations perform significantly different
for larger data set as shown in Fig. 7. We have implemented
these methods in various combinations to plot 500 points and
conducted performance tests as shown in Fig. 7. Incrementally
numerous iterations has been done as shown in Fig. 7 and We
observe that Data Layer with GeoJSON file loading is efficient
and takes under 10ms on average to plot and display data.
Basically at this speed our pollution data gets displayed much
before Google maps static data. Hence we use this particular
implementation extensively in our model to improve efficiency

Fig. 7. Performance of various implementations for Mapping data onto
Data layer (a) using GeoJSON file (b) using buffer array. Mapping data
without Data layer (c) using buffer array (d) using GeoJSON file. The number
of iterations (X) verses average time (Y) to plot 500 Geo-spatial(Latitude,
Longitude, Data) points.

B. Policy Based Network Performance

As sensor networks across globe rise, there will be increas-
ing number of data-logging into server. During data-logging
data flows from sensor network to server. Before server logs
such request, four policy checks are performed as defined
in Algorithm 1. To simulate, we define density: sensors per
M ∗M meter2) (Here M = 110 meter). Fig. 8 shows plot

Fig. 8. Plot showing total expensive operations(%) at server vs. density of
network (Number of sensors per sq. meters)

of expensive operations vs. density. For e.g., density of 20
means there are 20 sensor network in a radius of 110 ∗ 110
m2). We observe in Fig. 8 that as networks gets denser,
server cuts down up-to 83% operations. The small bubble
in Fig. 8 indicates only 17% expensive operation happens
due to Policy-III condition where we already receive required
samples from sensors within radius of 110∗110m2. Less dense
sensor network areas (big bubble in Fig. 8) have relatively
lesser populations so we can conveniently execute all database
operations in such regions.

Fig. 9. Plot showing total number of requests (in million) at server vs. density
of network

Similarly we do analysis on amount of rejected requests,
accepted requests vs. density as shown in Fig. 9. We observe
in Fig. 9 that in denser areas we allow around 525 million
requests and reject 2.4 billion requests. In contrast in least
denser areas we allow 1 million requests and reject none.
However in reality and in both cases we will reject much more
requests due to Policy-I and II because some devices are not
authentic and some devices have already logged previously
within stipulated time.

C. Lazy load Performance

We tested on Android 8.0 (Orea) operating system having a
regular mobile data pack. We navigated across various routes



and captured 1st − hour application-specific usage snapshot
during the journey. This snapshot includes log of application
data usage and application power usage. With mobile data
toggled on during the entire trip, Fig. 10 shows 1st − hour
application data usage statistics.

Fig. 10. Application data usage plot in its 1st-hour in several Map modes

Four cases presented in Fig. 10 Trip with Map only mode,
Map with traffic data, Map with our pollution data and Map
with traffic as well as pollution data. We observe in Fig. 10
that in its 1st−hour we observed only (0.7MB in 1st−hour)
data was consumed which is very less unlike other dynamic
data such as traffic data which consumed triple more (2.2MB
in 1st−hour). This is because traffic data other than its main
route is also loaded during the trip.

Fig. 11. Application power usage plot in its 1st-hour in several Map modes

Similarly, Fig. 11 show plot of application power consump-
tion (since last charged) in its 1st − hour. We test in all map
modes at various time slots in a smart phone that solely runs on
battery during the entire trip. We observe in Fig. 11 that there
is low battery consumption in user’s device especially in longer
term. Power consumption is same as Map without any Data
layers, it is almost negligible because we transmit/receive very
less mobile data packets. Average of 85mAh was consumed
in the entire 1-hour trip. Hence we observed greater efficiency
in our Lazy load implementation.

CONCLUSION

We observed the consequences of air pollutants on our
health and find the importance of monitoring air pollution.
Live data visualization and fusion plays key role in presenting
pollution updates effectively to end-users. So user will be more
aware of the situation. Our model provides interactive, faster
and live pollutant updates which means our pollution data
appears to user much before Google maps data. Advancements
in sensor networks and governments interest to deploy across
globe suggests us that we can expect high traffic of data-
logging at server. We devise efficient policies in identifying
and rejecting millions of unwanted requests. Data-logging
involves computationally expensive database operations. With
our policies we are able to cut down such operations sig-
nificantly especially in a dense sensor network. Thus saving
valuable network resources, time and power in data centers.
End-user’s experience is faster and efficient with our Lazy
load scheme. Using this user’s both data and battery life is
saved especially during longer journey. In 1-hour trial run we
observed that not much data was consumed unlike other dy-
namic data such as traffic data. We observed almost negligible
power consumption as well. Our framework provides great
efficiency to both server and end-users. Thus saving millions
of dollars in maintenance at data-centers as well as our end-
users experience better, faster and live pollution updates.
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