
Hardware Architecture for Simultaneous Arithmetic Coding and
Encryption

Amit Pande1, Joseph Zambreno2, and Prasant Mohapatra1
1Department of Computer Science, University of Calofirnia, Davis, CA, USA

2Electrical and Computer Engineering, Iowa State University, IA, USA
email: amit@cs.ucdavis.edu, zambreno@iastate.edu, prasant@cs.ucdavis.edu

Abstract— Arithmetic coding is increasingly being used in
upcoming image and video compression standards such as
JPEG2000, and MPEG-4/H.264 AVC and SVC standards.
It provides an efficient way of lossless compression and re-
cently, it has been used for joint compression and encryption
of video data. In this paper, we present an interpretation of
arithmetic coding using chaotic maps. This interpretation
greatly reduces the hardware complexity of decoder to use
a single multiplier by using an alternative algorithm and
enables encryption of video data at negligible computational
cost. The encoding still requires two multiplications. Next,
we present a hardware implementation using 64 bit fixed
point arithmetic on Virtex-6 FPGA (with and without using
DSP slices). The encoder resources are slightly higher than
a traditional AC encoder, but there are savings in decoder
performance. The architectures achieve clock frequency of
400-500 MHz on Virtex-6 xc6vlx75 device. We also advocate
multiple symbol AC encoder design to increase through-
put/slice of the device, obtaining a value of 4.

Keywords: arithmetic coding, hardware implementation, chaotic
maps, multimedia encryption

1. Introduction
The state-of-the-art video coding standards such as SVC

(technically Annex G of MPEG-4/H.264 AVC) [1] is been
widely adopted in current video application systems due to
its outstanding coding performance, and scalable properties
which allow deployment in fluctuating channel conditions
and to serve heterogeneous clients. There are three entropy
coding tools adopted in H.264/SVC. One is Context-based
Adaptive Binary Arithmetic Coding (CABAC), based on
arithmetic coder. The other are Context-based Adaptive
Variable Length Coding (CAVLC) and Exp-Golomb coding
(to code syntax elements). CABAC can achieve averaged
bit-rate savings of 9% to 14% at the cost of higher com-
putational complexity in comparison to CAVLC. However,
the increased computational complexity and strong data
dependencies significantly restrict the throughput of CABAC
decoder. This restriction becomes a challenge in hardware
design of CABAC coder making CAVLC more suitable for
decoding in low-power embedded systems.

Arithmetic coding is a data compression technique that
encodes data by creating a code string which represents a
fractional value on the interval [0, 1). When a string is com-
pressed using arithmetic coder, frequently-used characters
are stored with fewer bits and not-so-frequently occurring
characters are stored with more bits, resulting in fewer bits
used in total [2]

This paper discusses arithmetic coding from a slightly
different perspective. Recent work has established how arith-
metic coding can be viewed as an iteration on piece-wise
linear chaotic maps [3], [4]. Further, many researchers have
studied the use of arithmetic coding for joint encryption
and compression [5], [6], [7]. For example- In [8], a chaos-
based adaptive arithmetic coding technique was proposed.
The arithmetic coder’s statistical model is made varying in
nature according to a pseudo-random bitstream generated
by coupled chaotic systems. Many other techniques based
on varying the statistical model of entropy coders have been
proposed in literature, however these techniques suffer from
losses in compression efficiency that result from changes
in entropy model statistics and are weak against known
attacks [9]. Recently, Grangetto et al. [5] presented a Ran-
domized Arithmetic Coding (RAC) scheme which achieves
encryption by inserting some randomization in the arithmetic
coding procedure at no expense in terms of coding efficiency.
RAC needs a key of length 1-bit per encoded symbol. Kim
et al. [6] presented a generalization of this procedure, called
as Secure Arithmetic Coding (SAC). The SAC coder builds
over a Key-Splitting Arithmetic Coding where a key is used
to split the intervals of an arithmetic coder, adding input and
output permutation to increase the coder’s security.

In this paper, we extend this discussion to hardware
community - to study the hardware optimizations in design
of such schemes. Particularly, we study the implementation
of arithmetic coding using piece-wise chaotic maps [3], [4].
As we shall study, this implementation has lower decoder
requirements than the commercial implementations. Apart
from these, chaotic maps have also been used in cryptogra-
phy and for pseudo random number generation [10].

The reduced decoding efficiency of arithmetic coding al-
lows it to trend towards the low computational complexity of
Huffman coders, allowing BAC to enter embedded systems
market. The aspects of context-modeling and adaptation



Fig. 1: Block diagram of CABAC coder

and renormalization, as done in CABAC coder are beyond
the scope of this work, where we focus on architectural
optimizations on encoder and decoder processes.

Why another design?
An inquisitive question which comes to mind at this

point is the need for hardware implementation of chaotic
maps. When arithmetic coding is already been done using
traditional ways, why do we need yet another architecture?

The motivation to develop a hardware architecture for
chaotic maps iterations is summarized below:

1) Arithmetic coding done using chaotic maps is asymmet-
ric in nature, (explained in later sections) making the
decoder architecture simpler than existing framework
for AC. The reduced decoder complexity is highly
desired to reduce the power and computational require-
ments of video decoding in low power mobile devices.
Current mobile video profiles use Huffman coding
instead of Arithmetic coding to reduce the computa-
tional complexity, which leads to average compression
inefficiency of 15%, particularly poor performance in
coding events with symbol probabilities greater than
0.5, due to the fundamental lower limit of 1 bit/symbol
on Huffman coding [11].

2) Recently, arithmetic coding based encryption schemes
have been proposed in research literature for joint
compression and encryption purposes [7], [12]. It would
be interesting to integrate both coding and encryption
using chaotic maps at a computational complexity lower
than existing implementations. This motivates the need
of coding and encryption architecture using chaotic
maps.

3) Chaotic maps can be used to Pseudo-Random Number
Generation (PRNG) [10] and stream ciphers [13], apart
from arithmetic coding. These have been found to be
light weight and simple.

Contributions
The main contributions of this paper are as follows:

1) We introduce arithmetic coder architecture using
chaotic maps which has potential advantages in reduc-
ing decoder complexity and allows combined encryp-
tion.

2) We present two architectures for FPGA implementation
of the proposed scheme: one using explicit multipliers

from DSP48E1 slices on Virtex-6 FPGA, while other
using reconfigurable multipliers and mapping to hard-
ware 6-LUTs.

3) We advocate the multiple-symbol encoding which
makes sense for throughput/ area.

Scope of the work
In the regular coding mode, prior to the actual arithmetic

coding process the given binary data enters the context
modeling stage, where a probability model is selected such
that the corresponding choice may depend on previously
encoded syntax elements. Then, after the assignment of a
context model, the bin value along with its associated model
is passed to the regular coding engine, where the final stage
of arithmetic encoding together with a subsequent model
updating takes place (see Figure 1). We shall restrict the
focus of further discussions on the final arithmetic encoding
(and decoding) stages of CABAC coder.

2. Literature Review
Adaptive minimum-redundancy (Huffman) coding is ex-

pensive in both time and memory space, and is handsomely
outperformed by adaptive AC besides the advantage of AC in
compression effectiveness [14]. FenwickŠs structure requires
just n words of memory to manage an n-symbol alphabet,
whereas the various implementations of dynamic Huffman
coding [15], [16] consume more than 10 times as much
memory [17].

Hardware architectures have been proposed in research
literature for arithmetic coding using CACM model [18] or
related works [14], [19], [20]. CABAC or Context-Adaptive
Binary Arithmetic Coder is used in H.264 AVC and SVC.
The critical path of coder is the multiplier, which is removed
in CABAC and recent implementations [21], [22], [23] by
using a look-up approximation (leading to some compression
inefficiency).

There has been little work [24], [25], however, in im-
plementation of chaotic maps on hardware. However, the
recent trend toward joint compression and encryption using
chaotic maps and arithmetic coding for low power embedded
systems would be greatly complimented by an efficient
hardware architecture, as presented in this paper.

Binary Arithmetic Coding (BAC)
Binary arithmetic coding is based on the principle of re-

cursive interval subdivision. We start with an initial interval



[0,1) and keep dividing it into subintervals based on the
probability of incoming symbols. A good detailed overview
of BAC is presented in [14]

3. How do we interpret AC using Chaotic
Maps?

A description of equivalence between binary arithmetic
coding and chaotic maps is given in earlier works [4], [7].
In this section, we gave a brief overview of N-alphabet
arithmetic coding to familiarize the reader with coding using
piece-wise linear chaotic maps.

Scenario: We have a stringS = x1, x2, ...xM consisting
of M symbols (N unique symbols) to be encoded. The
probability of occurrence of a symbolsi, i ∈ 1, 2, ...n is
given bypi such thatpi = Ni/N andNi is the number of
times the symbolsi appears in the given stringS.

Description: Consider a piece-wise linear map (ρ) with
the following properties:

• It is defined on the interval[0, 1) to [0, 1) i.e.

ρ : [0, 1) −→ [0, 1)

• The map can be decomposed into N piece-wise linear
parts̺k i.e.

ρ =

N⋃

k=1

̺k

• Each part̺ k maps the region on x axis[begk, endk) to
the interval[0, 1) i.e.

̺k : [begk, endk) −→ [0, 1]

The last two propositions lead to:

N⋃

k=1

[begk, endk) = [0, 1)

• The map̺k is one-one and onto i.e.:

∀x ∈ [begk, endk)

∃y ∈ [0, 1) : y = ̺k(x), and

∀y ∈ [0, 1)

∃x ∈ [begk, endk) : ̺k(x) = y

• ρ is a many-one mapping from[0, 1) to [0, 1). This
implies that the decomposed linear maps (̺k) don’t
intersect each other i.e.

∀(k 6= j) : [begk, endk)
⋂

[begj , endj) = 0

• Each linear map̺ k is associated uniquely with one
symbolsi. The mapping̺ k −→ si is defined arbitrarily
but one-one relationship must hold.

• The valid-input width of each map (̺k), given by
(endk − begk) is proportional to a probability of oc-

Fig. 2: A sample piece-wise linear map for arithmetic coding
like compression (a) The entire map is shown (ρ) (b) A
single linear part of the map (̺k) is zoomed. It can have a
positive or negative slope depending on choice

currence of symbolsi.

endk − begk ∝ pi

⇒ endk − begk = C × pi

We recall that
∑N

k=1
(endk−begk) is same as the input

width of
⋃N

k=1
̺k = ρ, which is 1. Also,

∑N

i=1
pi = 1.

Thus, we get the value of constant C to be1.

⇒ endk − begk = pi

Figure 2 shows a sample map fulfilling these properties. Fig-
ure 2(a) shows the full map with different parts̺1, ̺2, ...̺N
present while Figure 2(b) zooms into individual linear part
̺k. The maps are placed adjacent to each other so that each
input point is mapped into an output point in the range[0, 1).

Encoding/ Decoding
The decoding process is quite simple. The encoded value

is considered as an initial valueIV . This value is iterated
over the piece-wise linear mapρ, M times to get M iterated
valuesIVi. Each value is mapped to piece-wise linear part
̺i and thus to correspondingsi.

The encoding process is done by reversing the input
string to xM , xM−1, ...x1. Each input character is mapped
to unique symbolssi and then to piece-wise linear maps
̺i. Thus, we get a sequence of piece-wise linear maps
corresponding to input string̺xM

, ̺xM−1
...̺x1

. We start
with the initial interval [0,1) and back-iterate this interval
over chaotic maps using the string̺xM

, ̺xM−1
...̺x1

to get a
final interval. The output codeword is chosen as the shortest
binary number from final interval.

Compression Efficiency and Equivalence
Arithmetic coding has been shown to be achieve Shan-

non’s limit on compression efficiency asymptotically. The



same result holds true for coding using piecewise linear maps
because of the following observations:

The width of final interval is given by⌈
∏N

i=1
fni

i ⌉, where
fi is the probability of occurance of symbolsi, and ni

is the frequency of occurance of symbolsi. This value
asymptotically approaches Shannon’s value for maximum
entropy []. It can be observed that while CAC scales the
codeword or initial value to map them to the intervals
corresponding to different symbols, the standard arithmetic
coder keeps the codeword constant and instead scales the
map in every iteration to find the symbol. It is immaterial -
whether one scales the map to suit the codeword or scales
the codeword to suit the map - the relative ratios remain the
same, hence output of both procedures is the same.

Use of Chaotic Maps in Encryption
[12], [7] present two different scenarios of using chaotic

maps for arithmetic encryption. The first case uses N-ary
arithmetic coding and has high cryptographic strength and
implementation cost, while the second case uses binary
arithmetic coding to encrypt data with low computational
resources. In both the cases, the choice of multiple piece-
wise linear maps to encode the input symbol is used for key
generation. This property is used for encryption, for without
knowledge of the correct map, an adversary cannot decode
the input stream correctly.

Applications
The CAC can be used as a joint compression-cum-

encryption technique for data encryption. It is particularly
beneficial for data-intensive tasks such as multimedia en-
cryption and compression and can be integrated into the
standard video compression algorithms such as JPEG2000,
JPEG, MPEG etc.

CAC can be used for full or selective encryption of
multimedia data. For full encryption, the entire volume of
multimedia data is passed through BCAC (Binary CAC)
encoder while in case of selective encryption only the
important parts of data are passed through BCAC encoder.
If we reveal the first K bits of the key publicly, then a part of
the bitstream can be decoded correctly while decoding the
entire bitstream will require knowledge of the entire key.
Thus, BCAC can be used to provide conditional access to
the multimedia content.

4. Hardware architecture
In this section, we discuss the hardware architecture for

arithmetic coding using chaotic maps, and N-ary chaotic
arithmetic encryption.

The chaotic encoder operation inverse inverse mapping of
interval [0,1) on the chaotic map according to input symbol.
For binary arithmetic coder, we have a fixed map to be
iterated in each cycle.

Figure 3(a) shows the basic architecture for coding using
chaotic maps. The control unit receives the input bit stream,
which is passed on to the chaotic map Iterator (CMI). The
control unit passes the bitstream, one symbol per cycle
(unless in the case of multiple symbol encoding, which will
be discussed later). For encoding, the initial interval passed
to CMI is [0,1), which is transmitted as the beginning (Bn)
and end (En) interval values. Both the intervals are then
iterated over CMI (using two instances of CMI), and then
the output is sorted so thatBn < En. If the difference
(Dn = En − Dn) is lower than a threshold, we need to
renormalize the encoder. The renormalization procedure for
arithmetic coding has been discussed in [14]. A similar
extension of renormalization procedure may be possible for
chaotic maps. But, for the evaluation designs considered in
this work, we have considered 64 bit encoder without any
renormalization procedure.

In case of decoding, Control Unit (CU) transmits the
coded symbol into CMI, which is then iterated over Piece-
wise linear map and reported back to CU. The CU makes
a comparison with chaotic map indicated by the key and
outputs a single bit output.

CMI has a multiplier and an adder to perform chaotic
iteration. The internal details of this operation are given
in Figure 3(b). The multiplication and addition coefficients
are obtained from a look-up table/ RAM collating the input
symbol, key value and probability value as the input address.
The Look-ed up value or a word is demultiplexed to obtain
the multiplication and addition coefficients. This option can
work fine for at most binary case, and for the case wherep
value is limited to fixed precision, say 8 bits. Such fixed pre-
cision approximations have been introduced in CABAC [11],
however it leads to approximation of results. Alternatively,
we can use a multiplexer which can implement look-up using
physical circuits to compute the return values. The second
approach has been implemented in this work, as it allows
more flexibility in design and accuracy in computation.

For implementation, the input and output intervals to the
Chaotic Map Iterator are represented in 64 fixed point (0 bits
integer and 64 bits fraction, shortly I.F0.64) arithmetic. The
symbol probability has been quantized to8 bits (I.F 0.8).

Binary Arithmetic Coder (BAC) architecture
To implement BAC in proposed architecture, we target a

design with processes 1 symbol (1 bit in this case) per cycle.
The CMI has 1 bit symbol input, 8 bit symbol probability
and no bits for choice of chaotic map (there is only one
map in this case). The 9 bit lookup can be implemented
using a 512 words RAM or Look-up Table. One word is 16
bits - 8 bits each for multiplication and addition coefficients.
Alternatively, this can be implemented using a multiplexer
and hardware adder/ subtracter to obtain the coefficients.
The later approach was used for BAC implementation. The
design was synthesized in Xilinx Virtex-6 XC6VLX75t



Fig. 3: Generalized Hardware Architecture for Chaotic Maps. (a) Generalized architecture and (b) Circuit details for Chaotic
map Iterator

FPGA using Xilinx ISE Design Suite 12.0 environment. The
same target FPGA, which is one of the low end Virtex-6
family member is used in all synthesis/ translate/ map/ place
and routes.

The two 64x8 bit multiplications are mapped in hardware
into 10 DSP48E slices. A slice usage of 302 was obtained
and the design achieved a clock frequency of 510 MHz, with
one symbol per clock cycle. The optimized implementation
of multiplication, using carry-chains of FPGA fabric was
synthesized to remove the use of DSP slices. This implemen-
tation requires 1585 slices and achieves a clock frequency
of 500 MHz. The throughput of this implementation is 1 bit
per cycle with a 500 MHz clock, i.e. 500 Mbps.

Binary Chaotic Arithmetic Coder and Encryp-
tion (BCAC) architecture

The architecture for BCAC differs from binary arithmetic
coder in the sense that, the choice of chaotic map is made
based on a key value, and is not precomputed. For this
implementation, the CMI has 1 bit symbol input, 8 bit
symbol probability and 3 bits for choice of chaotic map (for
binary caseN = 2, hence number of different chaotic maps
is N2N = 8. The 12 bit lookup can be implemented using
a 512 words RAM or Look-up Table, with 16 bits word.
Alternatively, we used 8-to-1 multiplexer to obtain the coeffi-
cients corresponding to a key, each cefficient being generated
based on value in Table 1 in [7]. The implementation on
target FPGA gave a clock frequency of 500 MHz, utilizing
321 slices and 10 DSP48E1 slices (which have optimized
multiplier and accumulator operation implemented in VLSI).
Mapping these multiplication to FPGA logic increased the
slice usage to 1474, without any change in achievable clock
frequency.

The BCAC decoder hardware utilization was 173 slice
LUT with 5 DSP slices (806 slice LUTs with LUT mul-
tiplier) with a clock frequency of 510 MHz (500 MHz).
The 64x8 bit multiplier is implemented by ISE into 5
DSP slices. However, the same multiplier can be optimized
and implemented without hardware multipliers using other

multiplier such as square root multiplier, reconfigurable
constant multipliers etc. The hardware requirements are ba-
sically dependent on size of Look-up logic which increases
exponentially with increase of N. The throughput of this
implementation is 1 bit per cycle with a 510 MHz clock,
i.e. 510 Mbps. To consider the area effectiveness of this
design, we consider throughput per slice, with the second
implementation where we implement multiplication in LUTs
rather than using DSP48E1 slices present in device. The
throughput/ slice for this design is obtained as 322 Kb/slice.

Cost of encryption

Comparing the BAC and BCAC architectures, we obtain
a zero latency, same throughput and little hardware overhead
(20 slice LUTs) in implementing this encryption scheme
against AES or other schemes which have significant over-
head. For instance,Chang et al. [26] reports AES implemen-
tation using 156 slices, 2 Block RAMs to obtain a lower
clock of 306 MHz.

To increase the throughput per slice for a bitstream, we
intuitively consider the dimension of increasing the number
of symbols in dictionary used in arithmetic coding. For
example - considering 3 or 4 symbols in the dictionary.

N-ary Chaotic Arithmetic Coder and Encryp-
tion (NCAC) coding

N-ary arithmetic encryption using the entire possible
key space quickly turns out-of-bounds for a FPGA device.
Moving from 2 to 3 piece-wise linear maps, we have a
tremendous increase in key-size. We implemented tri-nary
CAC coder in FPGA device to obtain a device usage of
492 slices and 10 DSP48E slices (1800 slices without
DSP slices), but the achievable clock frequency dropped
to 127 MHz. The tri-nary decoder hardware utilization was
419 slice LUT with 5 DSP slices (1052 slice LUTs with
LUT multiplier) with a clock frequency of 442 MHz (369
MHz). The hardware requirements are basically dependent
on size of Look-up logic which increases exponentially with



Fig. 4: N-ary arithmetic coding and encryption architectures:
Comparative performance. The # of slices, # of DSP slices
(x100), clock frequency (MHz) and throughput per slice
(x1000) are reported in the figure. It can be observed that
increasing the size of dictionary significantly reduces the
throughput. The figure is drawn by scaling the through-
put/slice legend to consider the fact that a 4 symbol dic-
tionary will require half the words as a 2 symbol dictionary.

increase of N (N |!2N ), making it infeasible to scale-up the
throughput/slice.

A simple way to restrict this bandwidth explosion is to
used the algorithm for encryption proposed in [12]. They
restrict the keyspace and instead use only a small fragment
of keys from the entire range, for encryption. However,
the approach presented in [12] has other computationally-
inefficient parts.

The results are shown in Figure 4. The number of slice
LUTs is reported directly, number of DSP slices is scaled
directy and clock frequency is measured in MHz. The
throughput comparison is tricky because using a 4-symbol
dictionary (4-ary coding) will lead to reduced bitstream
(around 50% reduction) than the bitstream generated by
2-symbol dictionary. Thus, to compare these values on a
graph, we multiply each throughput withN value (2 for
binary) to indicate relative throughput. It can be observed
that increasing the size of dictionary significantly reduces the
throughput, even after such considerations due to exponential
increase in hardware usage for key implementation.

Although our experiment to scale to multiple-symbol
dictionary failed, the reason is not the same as for traditional
designs for arithmetic coding [11]. Rather, the key explosion
is the main reason for such limitations. We next consider in-
creasing the system throughput by encoding multiple binary
symbols in a single pass. This approach is different than
the previous approach in the sense that multiple probability
values are not involved.

Multiple symbol per cycle arithmetic coding
Let us consider the case of arithmetic coding where we

want to encode two symbols in a single iteration of chaotic
map. In this case, the chaotic map will spit into multiple
(four instead of two) piece-wise maps. Arithmetic coding
with encryption is still going to suffer with band-width
expansion, but we observe that the bandwidth expansion is
much less (or order of2N ) instead ofN2N . Consider, for
example the case where we want to encode two symbols
together (‘01’ instead of ‘0’ and ‘1’ in two separate itera-
tions) using BAC. In this case, the resultant chaotic iterator
will have 4 (instead of 2) piece-wise linear maps and their
precision of implementation will be increased (16 instead of
8 bits). This analysis can be extended to three, four or more
symbols.

In this case, the increase is caused by increase in fixed
point precision of coefficients (and hence multipliers and
adders), and increase in number of piece-wise maps. How-
ever, against the case of MCAC where there was a band-
width explosion due to increase in key size, we observe a
considerable different result of implementation on Virtex-6
device. These results are reported in Figure 5. The results are
interesting to note, because contrasting with the traditional
notion of one-symbol per cycle, we show that we can scale
upto 4 symbols per cycle and achieve a higher throughput
per slice. As we go from 2 to 4 case, we observe a increase
in throughput which is then checked by the exponential
increase in hardware resources caused by multiple sym-
bols use. This value of 4 cannot be a device constraint
(restrictions due to finite area or size of device) because
the pure LUT mapping based implementation requires only
5480 slices out of 43000 slices present in target xc6vls75
device. The highest throughput achievable is 431 Kbits per
slice for 4 symbols case.

For the sake of brevity, we have restricted our discussion
in last sections to NCAC and multiple symbol BAC encoder,
but the same trend follows for the decoder also.

5. Conclusion
In this paper, we presented architecture for simultaneous

coding and encryption using chaotic maps. After presenting
the hardware requirements and computations involved in
chaotic maps, we mapped these designs into a Virtex-6
FPGA to obtain a performance analysis on real hardware.
We investigated the key-explosion problem which avoided
the implementation of simultaneous coding and encryption
using larger dictionaries. However, we found that the hard-
ware resource explosion is not much in case of multiple
character coding using BAC (indicating 5 symbols be en-
coded simultaneously). This work is one of the earliest
hardware implementation of chaotic maps, first reported
implementation of chaotic maps for simultaneous coding and
encryption. It achieves encryption at insignificant hardware



Fig. 5: Multiple symbols per cycle (BAC): Comparative
performance. The # of slices, # of DSP slices (x10), clock
frequency (MHz) and throughput per slice (x1000) are
reported in the figure. It can be observed that 4 symbols
per cycle achieve highest throughput before LUT explosion
due to increased precision and maps.

cost, against use of encryption ciphers such as AES which
require separate modules for encryption operation.

We are looking for, and encourage other readers also for
future work in two directions:

1) Looking for ways to solve key-explosion problem using
circuit level techniques.

2) Incorporating re-normalization and context to this en-
coder, so that it can be added to CABAC or other
encoders.

Acknowledgement
This research is supported by the National Science Foun-

dation under Grant #1019343 to the Computing Research
Association for the CIFellows Project.

References
[1] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable

video coding extension of the H. 264/AVC standard,”IEEE Transac-
tions on Circuits and Systems for Video Technology, vol. 17, no. 9,
pp. 1103–1120, 2007.

[2] G. Langdon and J. Rissanen, “Compression of black-white images
with arithmetic coding,”IEEE Trans. Communications, vol. 29, no. 6,
pp. 858–867, Jun 1981.

[3] M. Luca, A. Serbanescu, S. Azou, and G. Burel, “A new compression
method using a chaotic symbolic approach,” inProc. IEEE Commun.
Conf. Citeseer, 2004, pp. 3–5.

[4] N. Nagaraj, P. Vaidya, and K. Bhat, “Arithmetic coding as anon-
linear dynamical system,”Communications in Nonlinear Science and
Numerical Simulation, vol. 14, no. 4, pp. 1013–1020, 2009.

[5] M. Grangetto, E. Magli, and G. Olmo, “Multimedia selectiveen-
cryption by means of randomized arithmetic coding,”IEEE Trans.
Multimedia, vol. 8, no. 5, pp. 905–917, Oct. 2006.

[6] H. Kim, J. Wen, and J. Villasenor, “Secure arithmetic coding,” IEEE
Trans. Signal Processing, vol. 55, no. 5, pp. 2263–2272, May 2007.

[7] A. Pande, J. Zambreno, and P. Mohapatra, “Joint video compression
and encryption using arithmetic coding and chaos,” inIEEE Interna-
tional Conference on Internet Multimedia Systems Architecture and
Application, 2010.

[8] R. Bose and S. Pathak, “A novel compression and encryptionscheme
using variable model arithmetic coding and coupled chaotic system,”
IEEE Trans. Circuits and Systems I, vol. 53, no. 4, pp. 848–857, April
2006.

[9] G. Jakimoski and K. Subbalakshmi, “Cryptanalysis of some multime-
dia encryption schemes,”IEEE Trans. Multimedia, vol. 10, no. 3, pp.
330–338, April 2008.

[10] T. Stojanovski and L. Kocarev, “Chaos-based random number
generators-part I: analysis [cryptography],”Circuits and Systems I:
Fundamental Theory and Applications, IEEE Transactions on, vol. 48,
no. 3, pp. 281–288, 2002.

[11] D. Marpe, H. Schwarz, G. Blättermann, G. Heising, and T. Wieg,
“Context-based adaptive binary arithmetic coding in the h.264/avc
video compression standard,”IEEE Trans. Circuits and Systems for
Video Technology, vol. 13, pp. 620–636, 2003.

[12] K.-W. Wong, Q. Lin, and J. Chen, “Simultaneous arithmeticcoding
and encryption using chaotic maps,”IEEE Trans. Circuits and
Systems, vol. 57, pp. 146–150, February 2010. [Online]. Available:
http://dx.doi.org/10.1109/TCSII.2010.2040315

[13] S. Lian, J. Sun, J. Wang, and Z. Wang, “A chaotic stream cipher and
the usage in video protection,”Chaos, Solitons & Fractals, vol. 34,
no. 3, pp. 851–859, 2007.

[14] A. Moffat, R. Neal, and I. Witten, “Arithmetic coding revisited,” ACM
Transactions on Information Systems (TOIS), vol. 16, no. 3, pp. 256–
294, 1998.

[15] G. Cormack and R. MORSPOOL, “Algorithms for adaptive Huffman
codes,”Information Processing Letters, vol. 18, no. 3, pp. 159–165,
1984.

[16] J. Vitter, “Design and analysis of dynamic Huffman codes,” Journal
of the ACM (JACM), vol. 34, no. 4, pp. 825–845, 1987.

[17] A. Moffat, N. Sharman, I. Witten, and T. Bell, “An empirical eval-
uation of coding methods for multi-symbol alphabets,”Information
Processing & Management, vol. 30, no. 6, pp. 791–804, 1994.

[18] I. Witten, R. Neal, and J. Cleary, “Arithmetic coding fordata com-
pression,”Communications of the ACM, vol. 30, no. 6, pp. 520–540,
1987.

[19] P. Howard and J. Vitter, “Analysis of arithmetic coding for data
compression,”Information Processing & Management, vol. 28, no. 6,
pp. 749–763, 1992.

[20] G. Langdon, “An introduction to arithmetic coding,”IBM Journal of
Research and Development, vol. 28, no. 2, pp. 135–149, 1984.

[21] R. Osorio and J. Bruguera, “Arithmetic coding architecture for H.
264/AVC CABAC compression system,” 2004.

[22] T. Chuang, Y. Chen, Y. Chen, S. Chien, and L. Chen, “Architecture
Design of Fine Grain Quality Scalable Encoder with CABAC forH.
264/AVC Scalable Extension,”Journal of Signal Processing Systems,
vol. 60, no. 3, pp. 363–375, 2010.

[23] C. Lo, S. Tsai, and M. Shieh, “Reconfigurable architecture for entropy
decoding and inverse transform in H. 264,”Consumer Electronics,
IEEE Transactions on, vol. 56, no. 3, pp. 1670–1676, 2010.

[24] T. Addabbo, M. Alioto, A. Fort, S. Rocchi, and V. Vignoli, “Low-
hardware complexity prbgs based on a piecewise-linear chaotic map,”
Circuits and Systems II: Express Briefs, IEEE Transactionson, vol. 53,
no. 5, pp. 329 – 333, May 2006.

[25] A. Pande and J. Zambreno, “Design and hardware implementation
of a chaotic encryption scheme for real-time embedded systems,”in
Signal Processing and Communications (SPCOM), 2010 International
Conference on. IEEE, 2010, pp. 1–5.

[26] C.-J. Chang, C.-W. Huang, K.-H. Chang, Y.-C. Chen, and C.-C. Hsieh,
“High throughput 32-bit aes implementation in fpga,” inCircuits and
Systems, 2008. APCCAS 2008. IEEE Asia Pacific Conference on, 30
2008.


