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Abstract—Arithmetic Coding (AC) is widely used for the
entropy coding of text and multimedia data. It involves re-
cursive partitioning of the range [0,1) in accordance with the
relative probabilities of occurrence of the input symbols. In this
paper, we present a data (image or video) encryption scheme
based on arithmetic coding, which we refer to as Chaotic
Arithmetic Coding (CAC). In CAC, a large number of chaotic
maps can be used to perform coding, each achieving Shannon
optimal compression performance. The exact choice of map
is governed by a key. CAC has the effect of scrambling the
intervals without making any changes to the width of interval
in which the codeword must lie, thereby allowing encryption
without sacrificing any coding efficiency. We next describe
Binary CAC (BCAC) with some simple Security Enhancement
(SE) modes which can alleviate the security of scheme against
known cryptanalysis against AC-based encryption techniques.
These modes, namely Plaintext Modulation (PM), Pair-Wise
Independent Keys (PWIK), and Key and ciphertext Mixing
(MIX) modes have insignificant computational overhead, while
BCAC decoder has lower hardware requirements than BAC
coder itself, making BCAC with SE as excellent choice for
deployment in secure embedded multimedia systems. A bit
sensitivity analysis for key and plaintext is presented along
with experimental tests for compression performance.

I. INTRODUCTION

The issue of real-time multimedia delivery has gained

an increased importance in a world dominated by portable

multimedia-capable devices, as well as with the emergence

of the cloud computing paradigm. The technical challenges

involved in such scenarios include providing a delivery

mechanism that is highly scalable, secure, easily search-able

and index-able, all without losing the important compres-

sion properties. Providing security in a video communication

context is especially challenging, as the security require-

ments tend to be application and platform-specific, and the

input data is characterized by large storage requirements,

real-time processing latencies, and the use of standardized

video codecs.

Arithmetic coding is a data compression technique that

encodes data by creating a code string which represents

a fractional value on the interval [0, 1). When a string

is compressed using an arithmetic coder, frequently-used

characters are stored with fewer bits and not-so-frequently

occurring characters are stored with more bits, resulting in

fewer bits used in total [1]. It typically enables very high

coding efficiency as multiple symbols are coded jointly, and

has been adopted for use in image compression standards,

including JBIG-2, JPEG-LS, and JPEG2000, as well as

video standards, including H.264/AVC, to provide lossless

entropy coding.

Arithmetic coding is extremely efficient for compression

efficiency in large data-sets and it achieves the Shannon

compression efficiency for large chunks of data. However,

as conventionally implemented, it is not particularly secure.

A naive choice is to use well-known encryption meth-

ods such as the Advanced Encryption Standard (AES) in

combination with a traditional arithmetic coder to satisfy

both compression and security needs. However, this concept

leads to increased computational complexity and the useful

properties of compressed bitstream such as rate-adaptive

transmission, scalability and DC-image extraction for con-

tent searching are lost [2]. These approaches encrypt the

output of a compression system into cipher text, which is

completely random and uncorrelated to the compressed bits.

This makes it impossible to retain the desired properties of

the compressed bitstream into the encrypted bitstream. The

scheme presented in this paper overcomes these limitation

because it doesn’t modify any properties of the compressed

bitstream.

Recently, Grangetto et al. [3] presented a Randomized

Arithmetic Coding (RAC) scheme which achieves encryp-

tion by inserting some randomization in the arithmetic

coding procedure at no expense in terms of coding efficiency.

RAC needs a key of length 1-bit per encoded symbol.

Wen et al. [4] presented a generalization of this procedure,

referred to as Secure Arithmetic Coding (SAC). The SAC

coder is constructed over a Key-Splitting Arithmetic Coding

(KSAC) [5], where a key is used to split the intervals of an

arithmetic coder and it adds input and output permutation to

increase the security of the coder.

However, SAC introduces a loss in coding efficiency,

particularly for small-sized inputs, which are later restricted

to a small value by putting some constraints on the keyspace.

The SAC encoder may have to work with multiple sub-

intervals thereby significantly increasing the computational

cost of encoding. Successful attacks have been demonstrated

against this SAC scheme [6], [7], [8], [9].

We present a joint video encryption and compression



scheme based on piece-wise linear chaotic maps, referred

to as Chaotic Arithmetic Coding (CAC). The idea of using

chaotic maps for encryption was presented in [10]. However,

the authors use a skew version for data encryption which

is prone to known plaintext attacks, and increases the

computational complexity of the coder exponentially.

The contributions of this paper are as follows:

1) We present a generalized framework for video encryp-

tion using chaotic maps called as Chaotic Arithmetic

Coding (CAC). We discuss the general case with N

alphabets and the specific case of binary alphabets.

2) The known weaknesses of arithmetic coding based

encryption schemes are alleviated by our proposed

security enhancements (SE).

3) CAC provides goals of encryption without any com-

putational overhead. In fact, the decoding complexity

of CAC is less than a normal Binary Arithmetic Coder

(BAC) without encryption (1 multiplication and 1 ad-

dition per iteration vs. 1 multiplication and 2 addition

per iteration for BAC).

4) CAC provides low-cost encryption without compres-

sion losses for multimedia data which is suitable for

application in embedded systems scenarios where com-

putational resources and power budget is limited.

II. ARITHMETIC CODING WITH PIECE-WISE LINEAR

CHAOTIC MAPS

Let us consider a scenario where we have a string S =
x1, x2, ...xN consisting of N symbols to be encoded. The

probability of occurrence of a symbol si, i ∈ 1, 2, ...n is

given by pi such that pi = Ni/N and Ni is the number

of times the symbol si appears in the given string S. We

next consider a piece-wise linear map (ρ) with the following

properties:

• It is defined on the interval [0, 1) to [0, 1) i.e.

ρ : [0, 1) −→ [0, 1)

• The map can be decomposed into N piece-wise linear

parts ̺k i.e.

ρ =

N
⋃

k=1

̺k

• Each part ̺k maps the region on the x axis [begk, endk)
to the interval [0, 1) i.e.

̺k : [begk, endk) −→ [0, 1]

The last two propositions lead to:

N
⋃

k=1

[begk, endk) = [0, 1)

Figure 1. A sample piece-wise linear map for arithmetic coding like
compression (a) The entire map is shown (ρ) (b) A single linear part of the
map (̺k) is zoomed. It can have a positive or negative slope depending on
choice

• The map ̺k is one-one and onto i.e.:

∀x ∈ [begk, endk)

∃y ∈ [0, 1) : y = ̺k(x), and

∀y ∈ [0, 1)

∃x ∈ [begk, endk) : ̺k(x) = y

• ρ is a many-one mapping from [0, 1) to [0, 1). This

implies that the decomposed linear maps (̺k) don’t

intersect each other i.e.

∀(k 6= j) : [begk, endk)
⋂

[begj , endj) = 0

• Each linear map ̺k is associated uniquely with one

symbol si. The mapping ̺k −→ si is defined arbitrarily

but the one-one relationship must hold.

• The valid-input width of each map (̺k), given by

(endk − begk) is proportional to a probability of oc-

currence of symbol si.

endk − begk ∝ pi

⇒ endk − begk = C × pi

We recall that
∑N

k=1(endk−begk) is same as the input

width of
⋃N

k=1 ̺k = ρ, which is 1. Also,
∑N

i=1 pi = 1.

Thus, we get the value of constant C to be 1.

⇒ endk − begk = pi

Figure 1 shows a sample map fulfilling these properties. Fig-

ure 1(a) shows the full map with different parts ̺1, ̺2, ...̺N
present, while Figure 1(b) zooms into individual linear part

̺k. The maps are placed adjacent to each other so that each

input point is mapped into an output point in the range [0, 1).
The total number of distinct ways of arranging N maps to

obtain ρ fulfilling the properties mentioned above is given

by N ! = N×(N−1)×(N−2)...3×2×1, where ! denotes

the factorial sign. It is same as arranging these N maps in



a sequence, one after another, with the end interval of one

map touching the beginning interval of another.

However, there are N different piece-wise maps, each

with two possible orientations (with positive or negative

slope). Thus, the number of total permutations possible is

given by N !2N which is independent of unique symbol

probability. Thus, for N -ary arithmetic coding or arithmetic

coding with N symbols, it is possible to have N !2N different

mappings each leading to same compression efficiency.

Since we can arbitrarily choose any 1 of the N !2N maps, the

key space for encoding a single bit of data is
⌈

log2(N !2N )
⌉

bits, where ⌈⌉ represents the greatest integer function. For

N = 2, it gives 8 mappings. If we increase N to 4 this value

increases to 384.

The equation for individual maps can be derived as

follows:

y′ = ̺k(x
′) =

(

x′ − begk
endk − begk

)

or

(

1−
x′ − begk

endk − begk

)

The equation for the full map is given by

y = ρ(x) = ̺k(x) : begk ≤ x < endk

The coding procedure, correspondence to arithmetic cod-

ing and compression efficiency of basic chaotic coding is

explained in [11].

A. Compression Efficiency

The compression efficiency of the procedure lies in the

width of the final interval from which we need to choose

the initial value from. Let us consider encoding a general

sequence of N symbols such that probabilities of occurrence

of the ith symbol is given by Ni

N where Ni is the number

of occurrence of the symbol in the sequence. On every

iteration, to encode an arbitrary symbol Nj , the width of

interval (originally [0,1) and length 1) shrinks by a factor of

endj−begj (width of ̺j). Thus, the width δ of final interval

would be given by:

δ =
N
∏

j=1

(

Nj

N

)Nj

The average number of bits required per symbol (Bav) is

given by

Bav =
B

N
=

1

N









−

N
∑

j=1

(Nj) log2

(

Nj

N

)









This relation has been derived in [10], by averaging the

total number of bits which is given by the logarithm of δ.

According to Shannon’s entropy equation, the number of

bits needed to encode a string of symbols is given by

Bsh = −
N
∑

j=1

Ni

N
log2

Ni

N

Bav =
1

N
⌈N ×Bsh⌉ ≤

1

N
(N ×Bsh + 1)

⇒ Bav ≤ Bsh +
1

N

As N → ∞, Bav → Bsh. Thus, the proposed scheme gives

optimal compression for large codewords.

B. Binary Chaotic Arithmetic Coding (BCAC)

AC is more commonly implemented in binary mode to

reduce the computational requirements of video coders. The

Binary CAC (or BCAC) uses either of the eight equivalent

skewed binary maps (shown in Figure 2) based on an input

key. These maps differ from each other in the way input is

mapped into the chaotic orbit - differ in the interval in which

the arithmetic code must lie for a symbol ‘0’ or ‘1’ but the

width of interval remains the same.

We define the generalized skewed binary map with the

following equations:

y =

{

n1x+ c1 when x ≤ k
n2x+ c2 when x > k

}

(1)

Decode

{

‘0’ when x ∈ [i1, i2]
‘1’ when x ∈ [i3, i4]

}

(2)

Then, the back iteration on skewed binary map is defined

by the following equations:

x =

{

m1y + b1 when ‘0’

m2y + b2 when ‘1’

}

(3)

where n1, n2, c1, c2, m1, m2, b1, and b2 values can be

precomputed for different maps and stored in a table for

look-up for fast access. Table I gives the value of these

parameters for all eight chaotic maps.

Grangetto et al. [3] present a Randomized Binary Arith-

metic Coding (RBAC) scheme where they change the or-

dering of ‘0’ and ‘1’ intervals in a Binary Arithmetic Coder

(BAC) based on a key. RBAC can be seen as a special case

of BCAC where only two of the eight modes of BCAC are

used for encryption purposes (drawn in Figure 2(a) and (e)).

Similarly, KSAC [5] can be represented in terms of piece-

wise linear maps by removing the condition of continuity of

individual maps (̺i(x)). Each part ̺i maps a discontinuous

interval on x-axis to the interval [0,1).

Implementation Efficiency

For a normal binary arithmetic coder, at each iteration the

starting interval [Is, Ie) is updated at one end. On encoding

a ‘0’ the final interval becomes [Is+p(Ie−Is), Ie) while on

encoding a ‘1’ the final interval becomes [Is, Is+p(Ie−Is).
Thus, every iteration requires one multiplication and two

addition operations. The decoding procedure for a binary

arithmetic coder involves updating the interval [Is, Ie) at

one end depending on whether the last decoded symbol

was a ‘0’ or a ‘1’. Thus, every iteration again requires one

multiplication and two addition operations.



Table I
PARAMETER LIST FOR THE EIGHT POSSIBLE CHOICES OF CHAOTIC ENCODER

Parameter (a) (b) (c) (d) (e) (f) (g) (h)

M1 p p −p −p p −p −p p
B1 0 0 p p 1 − p 1 1 1 − p
M2 1 − p p − 1 p − 1 1 − p 1 − p 1 − p p − 1 p − 1
B2 p 1 1 p 0 0 1 − p 1 − p
N1 1/p 1/p −1/p −1/p 1/(1 − p) 1/(1 − p) −1/(1 − p) −1/(1 − p)
C1 0 0 1 1 0 0 1 1
N2 1/(1 − p) −1/(1 − p) −1/(1 − p) 1/(1 − p) 1/p −1/p −1/p 1/p
C2 −p/(1 − p) 1/(1 − p) 1/(1 − p) −p/(1 − p) (p − 1)/p 1/p 1/p (p − 1)/p
I1 0 0 0 0 (1 − p) (1 − p) (1 − p) (1 − p)
I2 p p p p 1 1 1 1
I3 p p p p 0 0 0 0
I4 1 1 1 1 1 − p 1 − p 1 − p 1 − p
K p p p p 1 − p 1 − p 1 − p 1 − p

Figure 2. (a-h) show the eight modes of the skewed binary map (p = 0.6)

For BCAC, both ends of interval are updated at every iter-

ation using a linear transformation x = my+b thus requiring

two multiplications and two additions for encoding. The

decoding is simple as it involves iteration on the chaotic map

according to the linear transformation y = nx+ c involving

a multiplication and an addition operation. There are some

additional table lookups (an 8-input LUT required for BCAC

to choose the exact chaotic map) involved in chaotic coding

to choose the right chaotic map at every iteration, which can

be efficiently implemented in software or hardware. Thus,

CAC encode requires more computations than BAC encode,

while CAC decode requires less computations than BAC

decode.

III. SECURITY

A. Application to Multimedia / Data Encryption

CAC is Shannon-optimal in terms of compression effi-

ciency. By varying the mapping ̺k −→ si, we can obtain

different maps, all of which give the same compression

efficiency with different intervals for the final codeword.

This parameterization of chaotic piece-wise maps allows us

to build a keyspace for data/ video encryption using chaotic

arithmetic coding. The choice of mapping is thus governed

by an encryption key.

For BCAC, we have 8 possible maps for every encoded

bit (see Figure 2) giving us up to 3 bits of encryption

key per encoded symbol. The large keyspace makes the

scheme secure against exhaustive trials. For full encryption,

the entire volume of multimedia data is passed through the

CAC encoder, while in case of selective encryption, only the

important parts of data are passed through CAC encoder.

We have a keyspace of 3N bits for N bit plaintext. The

large keyspace makes it extremely difficult to launch brute-

force attacks. Since the key remains the same for multiple

iterations, in effect the effective length of key bits is much

less than the plaintext bits.

If we reveal the first K bits of the key publicly, then a part

of the bitstream can be decoded correctly while decoding

the entire bitstream will require knowledge of the entire

key. In that case, CAC can be used to provide conditional

access to part of multimedia content or scalable video

encryption [12]. Scalable multimedia encryption finds its

applications in modern pervasive / cloud-based multimedia

applications where different types of users want to access the

same multimedia content at different resolutions and access-

privileges.

B. Threat Model

BCAC coder / decoder pair is treated as encryption / de-

cryption oracle, respectively. In our threat model, an attacker

is able to choose a plaintext of chosen length and obtain its

corresponding ciphertext from the encryption oracle. He can

repeat this process for at most P times. In other words, we

allow the attacker to adaptively select plaintext and use the

encryption / decryption oracle for a polynomial number of

times.

C. Security Enhancements (SE)

As mentioned previously (in Section II), arithmetic

coding-based encryption schemes (such as RAC and SAC)

have been found to be vulnerable to cryptographic attacks

(chosen ciphertext attack [7], ciphertext only attack and

chosen plaintext attack [9]).



Algorithm 1 PM mode

1: {PT (n)} : Input to CAC encoder for (n)th pass
{CT (n)} : Encoded Output of CAC Encoder for (n)th pass
{K(n)} : Key value for (n)th pass
{I(n)} : Plaintext Input for (n)th pass
{O(n)} : Ciphertext Output for (n)th pass
{K3N} : Initiating Key
{W} : PM parameter
PM mode()

2: K(n) =K3N

3: for w = 1; j ≤ W ; j ++ do
4: PT (w)=I(w)⊕K(w)
5: end for
6: O = CT =CAC.encode(PT ,K)

An attacker can guess the key, in O(N) operations by

giving different known inputs to the system (known-plaintext

attack). In this section, we mention three SE modes for

BCAC, which add considerable levels of security to the

design. In this discussion, we use the following conventions:

the encryption oracle has a BCAC encoder and some added

operators for SEs. K3N is the initiating key value for the

encryption oracle. I(n) and O(n) are the input and output

sequences of encryption oracle for nth iteration. PT (n),
CT (n) and K(n) are the Plaintext, Ciphertext and Key

values for the nth iteration of BCAC coder. The length of

PT (n) and I(n) is N bits, the compressed outputs CT (n)
and O(n) is M(n) bits (M(n) ≤ N in general), K3N and

K(n) is 3N bits.

1) Plaintext Modulation (PM) Mode: In the Plaintext

modulation mode, the first F bits of input plaintext are

XORed with the input key values. The value of F is chosen

according to application requirements. When F << N
(F is small), there is negligible losses in compression

performance but the security level obtained is low. On the

other side, when F ≈ N , the security level is highest but

the compression performance will be compromised. Thus, it

is appropriate to choose large values of N (say N = 1000)

and relatively small F (F ≈ 30). The stepwise details of

BCAC+PM algorithm is given in Algorithm 1 and shown

in Figure 3(b). The idea of XORing the first few bits of

plaintext with a key make it behave like a one-time pad at

the beginning of BCAC. Moo and Wu [13] discuss how it

is extremely difficult (exponential in F ) to reconstruct the

remaining plaintext in the arithmetic coding case, we lose

the first F bits. However, in the case of BCAC encoding,

this complexity compounds manifold because of the large

keyspace.

2) Key and Output Mixing (MIX) Mode: In the MIX

mode, CT (n) and K(n) are mixed with each other to obtain

O(n) and K(n+1). This operation is performed as follows:

1) We XOR K(n) and O(n) to obtain K(n + 1). Since

O(n) is of length M(n) ≤ 3N , we cyclically repeat

O(n) to make it 3N bits long.

2) We rotate O(n) with L arbitrary bits to the left (cyclical

Algorithm 2 Mix mode

1: Mix mode()
{A(n)⊘B(n)} : XOR A with cyclically extended or shrunk
B, i.e. A(n)⊕ B(n modulo(size(B)) for 1 ≤ n ≤ size(A)
{ROL(a, b)} : Rotate b to Left by a bits
{L}: Number of bits to be rotated to left

2: PT (n) = I(n)
3: CT (n) =CAC.encode(PT (n), K(n))
4: Kn+1=Kn⊘O(n)
5: O(n) = ROL(L,O(n)) ⊘ Kn+1

Algorithm 3 PWIK mode

1: PWIK mode( )
{PR} : Largest prime in GF(2256)

2: K(0) = K3N ;
3: PT (n) = I(n)
4: K(p)=(K(p− 1)+InitValue2)mod 2256

5: if (K(p) < InitValue2) then
6: return K(p)=K(p)+2256-PR
7: end if
8: CT (n)=CAC.Encode(PT (n),K(n))
9: O(n) = CT (n)

left shift). This operation is easily performed in hard-

ware using wire permutations, and in software using

simple command for left rotate.

3) We XOR rotated O(n) with first M(n) bits of K(n+
1) to get the ciphertext output O(n) of the encryption

oracle.

All XOR operations can be implemented cheaply in com-

mercial hardware and software. See Algorithm 2 and Fig-

ure 3(c) for description and figure. There is no loss in

compression efficiency or throughput of the system.

Mix mode allows efficient mixing of key and ciphertext,

making it unintelligible for an attacker to recover the rela-

tionship between input and key values using output values.

3) Pair Wise Independent Keys (PWIK) Mode: In

PWIK mode, independent keys are generated for each

Figure 3. Different modes for SEs in CAC (a) Normal CAC encoder, (b)
PM mode - The N plaintext bits are mixed with the key, (c) MIX mode
- 3N key bits are mixed with compressed output, the compressed output
is rotated left by L arbitrary bits and mixed with M bits of mixed key,
(d) PWIK mode - a new pairwise independent key is generated in each
iteration by adding a Initial Value modulo a prime p in GF(256)



iteration of the BCAC coder using an initial key value. The

same values can be reconstructed in the decoder side with

prior knowledge of these initial values. However, the gener-

ated key values are pairwise independent from each other.

This method uses Galois field mathematics and we take

3N ≤ 256 or N = 85 for BCAC to simplify the operation.

The generated keys are shown to be pairwise-independent by

Jutla et al. [14]. There is no loss in compression efficiency or

throughput of the encoder. See Algorithm 3 and Figure 3(d)

for details. This mode has the restriction that N is should

be keep to a value such that 3N ≤ 256 or an exponent of 2

(for efficient finite field implementation).

D. Resistance to Known Attacks

Assessing security for any encryption system is a chal-

lenging task because showing robustness against known

attacks does not preclude the existence of unknown attacks

against which the system may not be robust. This applies

to mature encryption standards such as AES [15] and

DES [16] also. We therefore adopt a similar approach that

considers known attacks and ensures that they cannot be

used successfully.

One great security advantage of our presented scheme is

that the output from the engine is in the form of variable

sized words and the individual bit output corresponding to

inserted symbols cannot be determined.

The decoding algorithm for CAC involves iteration on

chaotic maps. Kocarev [17] discusses how various properties

of chaotic maps have direct correlation to cryptographic

algorithms. For example - decoding CAC with any slightly

wrong value (making a wrong guess) will make the output

appear random even if correct knowledge of maps is given.

This is analogous to diffusion property of cryptographic

ciphers. Similarly, the iterations on chaotic maps (1 iter-

ation per encoded bit) is similar to rounds in encryption

algorithms. Thus, the chaotic decoder will behave like a

random number generator and without exact knowledge of

key (coding parameters) and initial seed (coded message),

the output of decoder will be completely un-correlated with

the encoded message. This property of chaotic maps implies

that unlike BCAC, two closely related plaintext values may

be mapped to completely different (random) output values

even with same key. And the same message, will be mapped

to completely different output value with two closely related

key values.

This makes it difficult to launch known-plaintext attacks

on our system. It is however possible to mount chosen-

plaintext attacks on the system because an attacker can

modulate the plaintext inputs to iteratively guess the key

stream beginning from first bit of plaintext (last bit of BCAC

encoder). Such attack has been mounted against KSAC [6].

The proposed SEs can alleviate the attacks at little com-

putational overhead. For BCAC+PM, the first few bits of

plaintext are modulated, these bits and the key bits are

unknown to the encoder. Therefore, it will be impossible for

an attacker to observe and infer any correlation from chosen-

plaintexts. In BCAC+Mix operation, at every iteration we

XOR the key with the output of encoder and update the

key. This randomizes the output (like a one-time pad) for

an adversary to draw any inference. The BCAC+PWIK

mode allows us to resist chosen and known plaintext attacks

because the keys used in different iterations are pairwise

independent, hence, an attacker cannot find any correlation

between subsequent output bits corresponding to same plain-

text value. However, it comes with an extra implementation

cost of PWI Key generation module. Either of the two

proposed modes (Mix and PWIK) have no effect on com-

pression efficiency, which is a significant advantage against

some proposed techniques [4], [18], [10]. A drawback, of

PWIK mode is that it involves GF mathematics: the length

of input bits should suit the GF operations. For example,

with GF(2256) implementation, the length of plaintext will

be 85 bits.

BCAC, like arithmetic coding, is more sensitive to errors

in the decoded bitstream for errors in the beginning of the

stream and not to those which are towards the end. However,

BCAC+Mix mode has bit rotate and XOR operations which

mask this property from the adversary.

E. Comparison with BAC+AES

BAC followed by encryption with AES is the naive can-

didate which should provide best security. AES is extremely

fast when it is fully pipelined in hardware [19]. However,

the sequential nature of BAC coder becomes the bottleneck

in a combined BAC+AES system.

The arithmetic operations required for one bit encoding or

decoding using BAC is 2 adders and 1 multipliers (discussed

in Section II-B). AES-128 requires 40 sequential transforma-

tion steps composed of simple and basic operations such as

table lookups, shifts, and XORs. It needs approximately 336

bytes of memory and approximately 608 XOR operations or

roughly 3 bytes memory and 5 XOR operations per bit of

encoding.

BCAC coder requires 2 adders and 2 multipliers for

encoding and only 1 adder and 1 multiplier for decoding.

Thus, the hardware requirements of BCAC coder are much

less than BAC and AES combined. The BCAC decoder

is particularly simpler than CAC decoder (without AES),

which is desired for most common video applications which

involve real-time decoding in mobile and embedded devices.

F. Key and Plaintext Sensitivity

Confusion and diffusion are two important properties

desired for operation of a secure cipher. Confusion refers to

making the relationship between the key and the ciphertext

as complex and involved as possible. This makes it very hard

to find the key even if one has a large number of plaintext

ciphertext pairs produced with the same key. In particular,
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Figure 5. Plot of hamming distance between
correspondingly coded values when a single bit of
key (N = 50) was changed.
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Binary Arithmetic Coding (BAC)
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Figure 6. Plot showing the number of bitflips in
output text vs change in a single bit position in the
plaintext

changing one bit of the key should change the ciphertext

completely.

We conducted experiments for different values of N by

changing one bit in either of the N symbols comprising the

key. In the ideal case, for a single bit flip, the ciphertext

output must be changed from original value in N
2 positions,

as was the case with BCAC. Figure 4 shows the plot for

N = 100 and p = 0.7 with mean value of 1000 simulations.

BCAC, BCAC+PWIK and BCAC+Mix have same encoder

output for the first iteration, so we have used a single line to

represent this. It can be seen that all the schemes (including

BCAC+PM) give a hamming distance of new ciphertext to

a value around 50. Over different iterations, BCAC+Mix

will eventually lead to different key being used in different

iterations, leading to a variable hamming distance. This

increases the confusion property of the scheme and it is

shown in Figure 5.

Diffusion means that the output bits should depend on

the input bits in a very complex way. This is ensured by

the arithmetic coding (or CAC) scheme itself because the

relationship between input and output bits is non-linear. The

input bits iteratively decide the interval of final output, which

is then used to obtain the shortest length code from that

interval. However, it has been observed in case of BAC that

the last few bits have less impact on the first bits of the

ciphertext. We conducted an experiment where plaintexts

were varied one bit at a time and hamming distance of new

ciphertext over last ciphertext was reported. The mean value

over 1000 such simulations is reported in Figure 6. BAC

and BCAC show similar trend vs. change in plaintext bits.

BCAC+PWIK, BCAC+PM have similar performance trend

as BCAC.

BCAC+Mix mode result in mixing of encoder output with

the key value and this mixing leads to a excellent value of

hamming distance, as plotted in Figure 6.

G. Selective Encryption using BCAC

In this section, we present results for selective image en-

cryption using BCAC. The sample images were taken from

Table II
RESULTS FOR IMAGE RECONSTRUCTION QUALITY WITH WRONG

DECODING KEYS. SELECTIVE ENCRYPTION OF DWT COEFFICIENTS

WAS DONE USING BCAC.

Image 0.1% encryption 0.4% encryption

SSIM PSNR SSIM PSNR

Tank 0.057 −6.32 0.00 −11.55
Couple −0.23 −6.56 −0.03 −8.5

Girl −0.05 −4 0.005 −7
Grass −0.08 −6.57 0.002 −11.43

Peppers −0.06 −7.936 0.012 −10.51
San Diego 0.111 −6.2 0.06 −10.22

House 0.16 −4.17 .035 −4.21

the USC SIPI database and each has resolution 512x512

pixels. Two cases are considered: (a) Encryption of LL

coefficients and (b) all coefficients of 6th level DWT de-

composition. This corresponds to encryption of 0.1% and

0.4% coefficients. SSIM (Structural Similiarity Index) and

PSNR (Peak Signal to Noise Ratio) were considered to

measure the image reconstruction with corrupted keys. The

results are presented in Table II. It can be observed that

SSIM - Structural Similarity is close to 0 while PSNR

is negative, which indicate strong de-correlation between

wrongly reconstructred image with original image.

IV. COMPRESSION

BCAC gives the same compression efficiency as the BAC

coder. We performed some experiments to verify these facts.

We ran an implementation of BCAC over Matlab R2010b

and used variable precision arithmetic (vpa) tools in the

Symbolic Mathematics Toolbox to run simulations for large

values of N (such as N = 100, 1000).

The simulation results show a slightly better performance

for CAC over normal arithmetic coder (AC) especially for

small values of N . However, as mentioned above there is

no objective reason for such occurrence. The results are

presented in Table III (The reported value is the average

length of output bitstream and the standard deviation). 1000



Table III
COMPRESSION PERFORMANCE OF BAC AND BCAC FOR VARIOUS

LENGTH STRINGS. THE AVERAGE LENGTH OF CODEWORD IS

PRESENTED FOR VARIOUS p VALUES AND LENGTHS OF INPUT STRING.

p N = 10 N = 100 N = 1000
BAC BCAC BAC BCAC BAC BCAC

0.5 0.025 8.733 120 108.16 999.1 999.84
0.55 9.025 8.983 98.17 98 992.30 992.34
0.6 8.7899 8.882 95.95 95.84 970.98 971.14
0.65 8.442 8.316 91.90 91.23 934.30 934.04
0.7 7.918 7.936 86.96 86.37 881.07 881.84
0.75 7.47 7.54 80.31 80.37 811.27 811.84
0.8 6.701 6.333 71.11 71.03 721.07 720.84
0.85 5.551 5.342 60.28 59.1 609.30 609.84
0.9 4.122 4.055 45.66 46.39 469.06 468.84
0.95 2.698 2.773 27.46 28.8 287.00 286.34
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Figure 7. Compression performance of proposed schemes

simulations each were run in Matlab to obtain the mean

value of output bitstream lengths.

Figure 7 gives the relative compression performance of

CAC, BCAC and various SEs (for N = 100). BCAC+PM

has a slight compression overhead for w = 5 or 10, but it

increases drastically for w = 20, making w = 20 unsuitable

for practical applications. PWIK and MIX modes (not shown

in this figure) have similiar compression as BCAC.

V. CONCLUSION

In this paper we presented a joint compression and

encryption scheme for video/ images using chaotic maps. We

presented some SEs to alleviate the weaknesses of presented

scheme against known cryptanalysis.

The presented scheme incurs no loss to compression

performance, has a simpler decoder while at the same time

it encrypts data. It was shown to achieve higher throughput

than the naive encryption algorithms.
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