
Packet Prediction for Speculative
Cut-Through Switching

Paul Congdon
University of California, Davis

1 Shields Avenue
Davis, CA 95616
+1 916 765 4056

ptcongdon@ucdavis.edu

Matthew Farrens
University of California, Davis

1 Shields Avenue
Davis, CA 95616
+1 530 752 9678

farrens@cs.ucdavis.edu

Prasant Mohapatra
University of California, Davis

1 Shields Avenue
Davis, CA 95616
+1 530 754 8016

prasant@cs.ucdavis.edu

ABSTRACT
The amount of intelligent packet processing in an Ethernet switch
continues to grow, in order to support of embedded applications
such as network security, load balancing and quality of service
assurance. This increased packet processing is contributing to
greater per-packet latency through the switch.

In addition, there is a growing interest in using Ethernet switches
in low latency environments such as high-performance clusters,
storage area networks and real-time media distribution. In this
paper we propose Packet Prediction for Speculative Cut-through
Switching (PPSCS), a novel approach to reducing the latency of
modern Ethernet switches without sacrificing feature rich policy-
based forwarding enabled by deep packet inspection.

PPSCS exploits the temporal nature of network communications
to predict the flow classification of incoming packets and begin
the speculative forwarding of packets before complex lookup
operations are complete.

Simulation studies using actual network traces indicate that
correct prediction rates of up to 97% are achievable using only a
small amount of prediction circuitry per port. These studies also
indicate that PPSCS can reduce the latency in traditional store-
and-forward switches by nearly a factor of 8, and reduce the
latency of cut-through switches by a factor of 3.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design – packet switching networks, store and
forward networks

General Terms
Performance, Design

Keywords
Ethernet Switching, Cut-Through, Speculation, Packet Prediction

1. INTRODUCTION
Ethernet and IP communications have become the most popular
means of computer communications, in part due to the simplicity

and scalability of connectionless packet oriented communications
over a statistically multiplexed network. As Ethernet moves to
10 Gbps speeds and beyond, there is a strong desire to use this
commodity technology in specialized high performance parallel
computing environments where traditionally specialized
interconnect fabrics have been deployed (e.g. Infiniband, Myrinet
and Quadrics[1]). Interconnect fabrics designed for Message
Passing Interface (MPI) applications, for example, are focused on
connection oriented, low latency and high-bandwidth
communications, but they are often complex and expensive [2, 3].
Using commodity Ethernet packet switches instead of specialized
interconnection fabrics can lower both cost and complexity, but
current packet switches suffer from excessive switch latency.

There are also many advantages to extracting information from
various fields in each packet and performing policy based
forwarding decisions based on that data. Applications such as
firewalling, intrusion detection/prevention, connection rate
metering and load balancing all rely upon deep packet inspection
and rapid flow classification of each packet. In addition, there is a
trend towards multiplexing a variety of different traffic types (e.g.,
voice, video and data), each potentially with different service
requirements, onto the same network fabric. In all of these
situations, low latency, yet policy rich forwarding based upon
flow classification is strongly desired.

Providing these rich forwarding features without negatively
impacting the switch latency puts extreme pressure on the
classification process of a network switch. The problem of packet
classification has been well studied [4, 5] and is known to be a
compute intensive step in the switch forwarding process.
Specific hardware support is often used to improve performance,
but at considerable expense and without entirely eliminating the
classification bottleneck. Space efficient searching schemes, such
as Bloom filters, have also been shown to reduce the amount of
resources required to match packets against a set of rules [6, 7].

Cut-through switches have been designed to provide the lowest
possible latency by allowing a packet to begin transmission on an
egress port before the packet has been completely received at the
ingress port [19, 20]. However, this approach seriously impacts
the amount of deep packet inspection that can be performed.
There is simply no time in a traditional cut-through switch to
inspect transport or application level fields to perform firewalling,
intrusion detection and load balancing before the packet is
switched. In addition, traditional cut-through switches operate on
a packet by packet basis and take no advantage of the temporal
locality of network communications.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ANCS’08, November 6–7, 2008, San Jose, CA, USA.
Copyright 2008 ACM 978-1-60558-346-4/08/0011…$5.00.

This paper presents Packet Prediction for Speculative Cut-through
Switching (PPSCS), a novel approach to reducing switch latency
while maintaining the rich policy based forwarding features of
modern packet based routing switches. The basic idea is to apply
the architectural techniques of value prediction and speculative
execution to the problem of packet switching. In PPSCS, a packet
predictor takes advantage of the temporal locality of network
communications to speculate on the flow membership of the next
received packet. Knowing the flow membership of a packet
allows the forwarding engine of the switch to apply a rich set of
forwarding policies to the packet while it is still being received.
Predicting the packet’s flow membership allows this rich policy
based forwarding to begin with the lowest possible latency.

The observation that network communications has strong locality
and that this may be used to optimize resource utilization is not
new [15]. There are differences of opinion as to whether the
temporal locality of Internet traffic is sufficient to enable
optimized forwarding using caching [21, 22, 23]. Since
traditional Ethernet LAN traffic is an aggregation of a much
smaller number of flows than within the core Internet, it is
expected to have a greater degree of locality. A preliminary study
of the temporal locality in various network traces is described in
Section 4.3 of this paper. Ethernet LAN traffic is bursty over
varying timeframes and known to be self-similar [16]. A popular
model for LAN traffic is the on/off model [17] that shows how the
self-similar nature is the result of packet trains. All packets in a
packet train are members of the same flow and require the same
forwarding treatment by an Ethernet switch.

We believe PPSCS-based switches will be attractive to high
performance computing environments and will benefit network
communications in general. There is strong evidence that packet
prediction is a plausible approach to optimizing switch
forwarding, especially for switches that are closer in the network
topology to the end-host and its applications [18].

The remainder of this paper is organized as follows. Section 2
describes the switch model used and the measurement of switch
latency, while Section 3 describes PPSCS in detail. Section 4
discusses the simulation environment used to evaluate the
improvement in latency and Section 5 describes the results of
those simulations. Section 6 explores related work, Section 7
discusses limitations and areas for future study and Section 8
provides a conclusion.

2. SWITCH ARCHITECTURE
Figure 1 shows a diagram of a scalable switch architecture used
when developing the models of a store-and-forward and a cut-
through switch in this paper. The model assumes line cards with
physical media ports are connected to a passive switch backplane
fabric, and the line cards are equipped with separate input and
output memory, lookup logic and backplane fabric interfaces.
Packets are received at line rate from the physical media ports and
put into the input memory. This constitutes the store stage of the
store-and-forward switch. The larger the received packet, of
course, the longer it takes to store the packet in the input memory.
The packet is not known to be error free until it is completely
received.

Switched
Backplane

Fabric

Port
MAC

Output
Memory

Input
Memory

Look-Up
&

Policy

Fabric
Tx

Fabric
Rx

Port
MAC

Output
Memory

Input
Memory

Look-Up
&

Policy
Fabric

Tx

Fabric
Rx

Switched
Backplane

Fabric

Port
MAC

Output
Memory

Input
Memory

Look-Up
&

Policy

Fabric
Tx

Fabric
Rx

Port
MAC

Output
Memory

Input
Memory

Look-Up
&

Policy
Fabric

Tx

Fabric
Rx

Switched
Backplane

Fabric

Port
MAC

Output
Memory

Input
Memory

Look-Up
&

Policy

Fabric
Tx

Fabric
Rx

Port
MAC

Output
Memory

Input
Memory

Look-Up
&

Policy
Fabric

Tx

Fabric
Rx

Switched
Backplane

Fabric

Port
MAC

Output
Memory

Input
Memory

Look-Up
&

Policy

Fabric
Tx

Fabric
Rx

Port
MAC

Output
Memory

Input
Memory

Look-Up
&

Policy
Fabric

Tx

Fabric
Rx

Switched
Backplane

Fabric

Port
MAC

Output
Memory

Input
Memory

Look-Up
&

Policy

Fabric
Tx

Fabric
Rx

Port
MAC

Output
Memory

Input
Memory

Look-Up
&

Policy
Fabric

Tx

Fabric
Rx

Switched
Backplane

Fabric

Port
MAC

Output
Memory

Input
Memory

Look-Up
&

Policy

Fabric
Tx

Fabric
Rx

Port
MAC

Output
Memory

Input
Memory

Look-Up
&

Policy
Fabric

Tx

Fabric
Rx

Figure 1. Basic Packet Switch Architecture

Once received error free, a variety of lookup steps based on the
contents of the packet are performed in order to return the results
needed to support policy operations, packet modifications and
ultimately the forwarding, redirecting or filtering of the packet. 1
The lookup steps effectively return a set of logical instructions
that will be used to process the packet according to the switch
configuration and policy. The duration of the lookup steps
depends upon the complexity of the switching policy. Functions
such as access control lists (ACLs), application rate meters or
content aware filtering may require multiple passes through the
lookup step.

The fundamental structure used to perform the lookup is a flow
key. A flow key is a summarization of critical fields from the
packet that uniquely identify the packet as being part of a flow. It
can be generalized as an n-tuple that is defined by a set H = {H1,
H2, …, Hn} of fields from the packet. All packets that are part of
a flow are subject to the same policy and treatment by the switch.
For a typical routing switch that performs layer-2 bridging, layer-
3 routing and transport level filtering, a flow key can be
represented by a 9-tuple that includes the following fields: VLAN
ID, destination MAC address, source MAC address, ethertype, IP
protocol number, source IP address, destination IP address,
TCP/UDP source port number and TCP/UDP destination port
number.

A flow table is a large database of flow keys that is searched by
the lookup process. This structure may be implemented in
software using SRAM and a fast network processor, or more often
implemented in hardware by ternary content addressable
memories (TCAMs). TCAMs are an expensive, high performance
resource for the switch. The TCAMs may be shared by multiple
input ports on the same line card and consequentially may be
subject to contention and further arbitration delays. The process
of classifying the packet and searching the flow table has been
well studied [4, 5], and is known to be a time consuming and
critical stage in the switch pipeline with complexity O(log N).

The results of the lookup steps tell the switch where to forward
the packet across the switch fabric, and optionally, what
modifications to the packet may be required. In this particular
model, the receiving line card handles making the necessary
modifications to the packet and initiates a transfer of the packet
across the fabric to the output memory on another line card. The
speed of the backplane fabric interface is usually faster than the
speed of the input port and in this model the backplane does not

1 In some store-and-forward architectures it is possible to begin

the lookup process before the entire packet has been received
and stored. The unique distinction of a store-and-forward
switch is that it does not begin transmitting the packet until it
has been fully received.

represent a bottleneck. Once the packet is received in the output
memory it may immediately begin transmission on the egress
port. The switch model assumes all ports are operating at the
same line rate and that there is no contention for the egress port.

2.1 Switch Latency
The process of switching a packet can be pipelined in order to
increase switch throughput. While the lookup process is working
on a packet, the next packet can be copied from the ingress port to
the input memory, and the previous packet can be modified and
transferred to the output memory of the egress port. Figure 2
shows the pipeline diagram for the store-and-forward switch.

Look-up Fabric
Transit

Packet
Rx

Packet
Tx

Look-up Fabric
Transit

Packet
Rx

Packet
Tx

Look-up Fabric
Transit

Packet
Rx

Packet
Tx

Switch Latency

Look-up Fabric
Transit

Packet
Rx

Packet
Tx

Look-up Fabric
Transit

Packet
Rx

Packet
Tx

Look-up Fabric
Transit

Packet
Rx

Packet
Tx

Switch Latency

Figure 2. Store-and-Forward Switch Pipeline

In order for the switch to maintain line rate forwarding, no stage
of the pipeline can exceed the time it takes to receive a packet
from the wire. On a 10 Gbps Ethernet port there are potentially
14.88 million minimum size packets arriving per second;
therefore, no stage can exceed 67.2 ns. A generalized way to look
at the minimum required pipeline stage length is to normalize the
stage to received bit times. A minimum size Ethernet packet is 64
bytes and is therefore received in 512 bit times, as determined by
the speed of the ingress link.

The duration of the packet Rx and packet Tx stages of the pipeline
are directly tied to the physical media line rate. The fabric transit
and packet modification stage is faster than the physical media
line rate. Therefore, to forward at line rate, the lookup stage and
the fabric transit stage must be no longer than the time it takes to
receive a minimum sized packet. To simplify the calculation of
switch latency the model assumes the lookup stage time will be a
constant and equal to the amount of time it takes to receive a
minimum size packet.

Let Ksf be the number of bits in a minimum size Ethernet packet
(which is the constant 512). Let Rp be the received port line rate
in bps and let L be the length of the packet in bits. Let Rf be the
fabric interface transfer rate in bps and assume that Rf > Rp.
Switch latency is the amount of delay a packet experiences inside
the switch, and will be measured as the amount of time between
when the first bit of a packet is received on the ingress port and
the time the first bit is transmitted on the egress port. The formula
for a store-and-forward switch latency is then:

Store and Forward Latency = (L / Rp) + (Ksf / Rp) + (L / Rf) (1)

This formula represents the time taken to receive the packet plus
the time to perform the lookup stage plus the time to make any
modifications and transfer the packet across the fabric. (We
assume that packet transmission on the egress port starts
immediately once the packet is in the output memory.)

To improve store-and-forward switch latency, two things must
change. First, the lookup process and packet modification with
transfer across the backplane must begin before the current packet
has been completely received. Second, the transmission of the
packet on the egress port must also be allowed to begin before the

current packet has been completely received (and certainly before
it has completed being transferred across the backplane.)

In the cut-through model of a switch without any prediction the
lookup process can begin no sooner than after the last bit of the
packet needed to construct a flow key has been received. Let D =
{D1(H1), D2(H2), …, Dn(Hn)} be the set of functions in the
classification process that return the starting bit displacement for
the flow key fields in H. Then Dn(Hn) is the starting bit offset for
the last field necessary to create the n-tuple needed for the lookup.
If we define Kct as the number of bits that must be received to
construct the flow key for the lookup stage to begin we have:

Kct = Dn(Hn) + | Hn| (2)

Assuming that packet modification is part of the fabric transfer
stage and the transmission of the received cut-through packet may
begin as soon as the first bit has arrived in the output memory, we
have the following formula for cut-through switch latency:

Cut-Through Latency = (Kct / Rp) + (Ksf / Rp) + 1/Rf (3)

This formula represents the time taken to receive enough of the
packet to construct the flow key plus the time to perform the
lookup stage in order to maintain line rate plus the time to
optionally modify the packet and transfer the first bit of the packet
across the fabric. We assume that packet transmission on the
egress port starts immediately once the first bit of the packet is in
the output memory. 2 Figure 3 shows the pipeline diagram for a
cut-through switch.

Look-up Fabric
Transit

Packet
Rx

Packet
Tx

Look-up Fabric
Transit

Packet
Rx

Packet
Tx

Switch Latency

Look-up Fabric
Transit

Packet
Rx

Packet
Tx

Look-up Fabric
Transit

Packet
Rx

Packet
Tx

Switch Latency

Figure 3. Cut-Through Switch Pipeline

3. Packet Prediction and Speculation
The switch latency of both store-and-forward and cut-through
switches can be reduced by exploiting the architectural techniques
of value prediction and speculative execution. Value prediction
attempts to remove the limits on parallelism imposed by true data
dependencies, while speculation seeks to reduce the latency of
obtaining computed results. In an Ethernet switch, the lookup
stage is a data dependent operation that requires the reception of
enough packet data to construct a flow key, and the operations
applied to the packet once the lookup completes must endure the
lookup latency before execution can begin. Packet prediction and
speculative switching remove this barrier by exploiting the

2 Real implementation will typically transfer the packet in blocks

across the fabric and may wait for the entire frame to be
transferred to avoid the complications of under-run management
when egress and ingress port speeds differ.

temporal locality of network traffic to predict the data being
received, allowing speculative packet operations for the flow to
begin before the lookup has completed.

Flow Key

X X 1Signature

EthernetIPTCP/UDPData

Prediction Cache

Flow Table

...Compression

Best Match

Packet Arrival Time

Speculative
Forwarding
Instructions

Flow Key

X X 1Signature

EthernetIPTCP/UDPData

Prediction Cache

Flow Table

...Compression

Best Match

Packet Arrival Time

Speculative
Forwarding
Instructions

Figure 4. Packet Prediction Signature Creation

In a switch with packet prediction a compressed signature of the
packet is computed as the packet arrives at the input memory.
This signature is searched in a local per-port prediction cache that
contains the signatures of previously received packets. If a match
is found, the packet is assumed to be part of the same flow as the
previous packet from the matching signature and the same
operations can be speculatively applied. The prediction step and
speculative operations occur in parallel with the traditional lookup
stage. Figure 4 shows the process of signature creation relative to
packet reception and flow key lookup.
Figure 5 shows a diagram of switch architecture that includes
packet prediction logic. Since the goal is to begin the fabric
transfer as soon as possible with the highest probability that the
packet is actually transmitted through the correct egress port, the
predictor snoops on the input memory bus and generates the
packet signature as the packet is streamed into memory. This
logic is required on each input port of the switch, so it is
worthwhile to find the smallest and most efficient implementation
possible. There are trade-offs between the size of the signature,
the size of the cache and the method and amount of time taken to
generate the signature.

Switched
Backplane

Fabric

Port
MAC

Output
Memory

Input
Memory

Look-Up
&

Policy

Fabric
Tx

Fabric
Rx

Port
MAC

Output
Memory

Input
Memory

Look-Up
&

Policy
Fabric

Tx

Fabric
Rx

PredictionPrediction Switched
Backplane

Fabric

Port
MAC

Output
Memory

Input
Memory

Look-Up
&

Policy

Fabric
Tx

Fabric
Rx

Port
MAC

Output
Memory

Input
Memory

Look-Up
&

Policy
Fabric

Tx

Fabric
Rx

PredictionPrediction

Figure 5. Switch Architecture with Packet Prediction

Switch latency for a packet predicting speculative switch is
limited by the time it takes to generate enough of the packet
signature to confirm a match in the prediction cache. Let S = {S1,
S2, … Sm} be a packet signature of length m that consists of a set
of bits that have been derived from the fields in H. There are a set
of functions F that derive bits Si through Sj of S from the fields in
H as they arrive from the link. Let Kp be the number of bits
received to form enough of S to find a match in the prediction

cache. Then the latency for a packet predicting speculative switch
is as follows:
Packet Prediction with Speculation Latency = (Kp / Rp) + 1/Rf (4)
This formula represents the time taken to receive enough of the
packet to construct enough of the packet signature to find a match
in the prediction cache, plus the time to transfer the first bit of the
packet across the fabric. This results in the pipeline diagram
shown in Figure 6.

Packet
Rx

Look-up

Fabric
Transit

Packet
Tx

Packet
Rx

Look-up

Fabric
Transit

Packet
Tx

Switch Latency

Packet
Rx

Look-up

Fabric
Transit

Packet
Tx

Packet
Rx

Look-up

Fabric
Transit

Packet
Tx

Switch Latency

Figure 6. Packet Prediction Switch Pipeline

As with any pipeline employing speculation, there are several
complications and clean-up steps that may be required. The
results of the lookup stage confirm or deny the correctness of the
speculation. Since it is possible for the first bit of the packet to be
transmitted on the egress port before the results of the lookup are
complete, the current egress transmission may be incorrect. Such
an incorrect speculation requires that the packet transmission be
aborted in some cases. To accomplish this, the packet must be
corrupted by the transmitter before the last bit is sent. (However,
this may not always be necessary - in the case of a layer 2 bridged
network, a packet that is forwarded through the wrong port would
simply appear as an extraneous flood and typically not cause an
error.)
If the lookup process takes longer than the time allotted to receive
a minimum sized packet, it is possible that the transmission of the
packet on the egress port completes before the results of the
lookup are determined. Since this model assumes a fixed time for
the lookup stage and that some number of bits must be received to
construct a signature, this condition cannot occur. In practical
implementations, however, it is possible that such delays could
exist and as a consequence packet transmission must be carefully
scheduled.
In the cases where prediction and speculation are correct, the
latency of the packet is significantly reduced. Results presented
in section 5 show that reductions of over 85% are achievable,
depending on the type of network traffic, the cache replacement
algorithm, and the hardware configuration used.

4. SIMULATION ENVIRONMENT
In order to evaluate the effectiveness of the PPSCS approach, a C
program was written that consumes actual traces of network
traffic and simulates the behavior of the proposed architecture.
The traces may be either live traffic, mirrored from a live switch

port, or they may be recorded trace files in libpcap format [8].
The simulator classifies the input network traffic as flow entries,
which are stored in the flow table of the routing switch modeled
above. Prediction algorithms are applied to the received traffic to
create a packet signature of size 8, 16, 24 or 32 bits. This
signature is compared to previously received packet signatures
stored in a prediction cache, which may vary in size from 2 to 64
entries. If the signature is found in the cache, the incoming packet
is assumed to be part of the same flow as the matching signature,
and is forwarded with the same operations applied to it that had
been applied to the previous packets in that flow. Forwarding
begins at the time the signature match is found.

If the signature is not found, a new entry is put into the cache,
replacing the least frequently used entry, and the packet is handled
in the normal non-speculative manner (i.e. it is forwarded once the
lookup is complete.)

4.1 Prediction Methods
There are numerous ways to construct the packet signature. The
current simulator supports 6 different methods of generating and
matching packet signatures. These methods are:

4.1.1 Fixed
The Fixed method extracts bits from pre-defined locations in the
packet as it is arriving. The offset locations have been chosen
based on experience and an understanding of the important packet
fields in an untagged Ethernet frame carrying a UDP or TCP
message. Since the bit offsets are predetermined and fixed, there
is no logic that parses the packet and adjusts the offset according
to the frame encapsulation. As a consequence, bit offsets that
would normally align with the TCP port fields will be unaligned if
the packet is VLAN tagged, and may point to user data if the
packet is an IP fragment. For a practical implementation of this
method a different set of offsets should be considered based upon
the port configuration.

The bits that are chosen are ones that are expected to vary the
most between distinct flows. This includes the group address bit
in the destination MAC address, low order address bits in both the
MAC and IP headers, bits from the IP protocol field, and the
TCP/UDP port numbers. The set of bit offsets selected for the
signatures (where the first bit of the packet is noted as offset 0)
are listed in Table 1.

Table 1. Fixed Bit Offsets for Packet Signatures

Signature Bit Offset

8-bit 7, 47, 94, 95, 238, 239, 270, 271

16-bit 7, 46, 47, 94, 95, 100, 187, 190, 238, 239, 270,
271, 286, 287, 302, 303

24-bit
7, 46, 47, 92, 93, 94, 95, 96, 100, 109, 110, 187,
189, 190, 237, 238, 239, 269, 270, 271, 286, 287,
302, 303

32-bit

7, 45, 46, 47, 92, 93, 94, 95, 96, 100, 109, 110,
187, 189, 190, 191, 236, 237, 238, 239, 268,
269, 270, 271, 284, 285, 286, 287, 300, 301, 302,
303

The Fixed method must wait for the last bit offset to arrive before
constructing the packet signature. Once the signature is
assembled, it is compared to the signatures in the prediction
cache. The 8-bit signature has the advantage of not having to wait

as long as the other signatures, but has the obvious disadvantage
of attempting to represent a packet with very few distinct bits.

4.1.2 Eager
The Eager method uses the exact same bit offsets as the Fixed
method to construct the signature, but builds partial signatures as
the bits arrive. The partial signatures are presented as a key to the
fully associative prediction cache, where missing bits are marked
as don’t care conditions for the match. If no matching entries are
found, there are clearly no previous elements from this flow in the
cache and the packet must wait for the flow lookup to complete
and be forwarded normally. If there is precisely one entry found,
then there is a chance that this entry is an exact match and the
speculative forwarding of the packet may start immediately. This
method forwards the packet as soon as possible, but experiences a
higher misprediction rate. Receiving more bits for the signature
can reduce the chance of a false positive match, but the
probability of a misprediction can not be completely eliminated.

The cache replacement algorithm needs special consideration for
the Eager method since there is a greater chance that a false
positive will occur from a partial signature match. If a false
positive occurs, the cache must be queried again with the full
signature in order to replace the incorrect entry.

4.1.3 Hash
The Hash method waits for the first 304 bits of the packet to be
received and then constructs a 29-byte flow buffer from the
offsets into the 9 fields of the packet that constitutes a flow. This
method does not interpret the bits of the packet but rather extracts
the predetermined offsets for these fields from what is presumed
to be an untagged Ethernet frame encapsulating a TCP or UDP
message. As with the Fixed method, if the packet is not a TCP/IP
packet, if it is VLAN tagged or if it is an IP fragment, the offsets
will not align with the desired fields. The flow buffer is
constructed with whatever bits are located at the predetermined
offsets.

A simple hash function (one of many developed by Professor
Daniel J. Bernstein of the University of Illinois) is then applied to
the 29-byte flow buffer to create the signature of the desired size.
(A more extensive list of hash functions is available at
http://www.partow.net/programming/hashfunctions/index.html.)
The prediction cache is then searched using this signature.
Similar to the Fixed method, the packet may not be forwarded
until at least the first 304 bits have been received.

4.1.4 Smart Hash
The Smart Hash method is similar to the Hash method, except that
logic is applied to parse the packet and properly create the 29 byte
flow buffer. The logic is capable of decoding the exact Ethernet
header used and whether the frame is a TCP/UDP message, IP
fragment or some other type of layer 2 protocol. Fields of the 29
byte flow buffer that are not present in the packet are filled with
zeros. If the packet is an IP fragment, then the IP fragment ID
field is used instead of the TCP/UDP port numbers.

The goal of this method is to trade off more logic in the packet
prediction implementation for a more accurate packet signature to
reduce the number of false positive matches. Similar to the Fixed
and Hash methods, the packet may not be forwarded until the first
304 bits have been received.

4.1.5 Eager Hash
The Eager Hash method is also similar to the Hash method, with
the difference being that the signature is assembled from separate
hashes of distinct portions of the 29 byte flow buffer. This
method waits for the offsets of distinct chunks of the packet to
arrive, such as the Ethernet header, IP addresses or TCP port
numbers, and calculates a hash based only on those chunks to
perform partial construction of the signature for eager matching in
the cache. Once a partial signature has been created from the
hashes, it is presented to the fully associative prediction cache
with missing portions of the signature marked as don’t cares. As
with the Eager method, if there is zero or exactly one match, the
search is terminated. The goal of this method is to forward the
packet as soon as possible, but also reduce the number of false
positives that might exist in the Eager method. The cache
replacement algorithm used is the same as in the Eager method.

4.1.6 Smart Eager Hash
The Smart Eager Hash method combines the informed
construction of the flow buffer used in the Smart Hash method
with the early speculative forwarding of the Eager Hash method.
The same Eager method replacement algorithm is used.
This paper merely scratches the surface of the many prediction
methods possible. Small amounts of additional logic could enable
application specific prediction algorithms, for example, or history
traces of protocol activity could enhance the accuracy and further
exploit the temporal locality in network traffic. We intend to
more fully explore this design space in the future.

4.2 Actual Trace Datasets
In order to evaluate the various prediction methods, simulations
were run using a fixed set of traces. These traces represent
different network environments and different parts of the network
topology. The temporal locality of the received traffic differs
with the network environment and location within the topology as
will be shown in section 4.3. Network ports that are closer to
individual stations have lower numbers of multiplexed flows, for
instance, and network ports that are in the core of the network or
at the Internet edge are likely to have greater numbers of
multiplexed flows. We anticipate PPSCS will be most effective in
the data center, near clusters of message passing servers, where
the total number of flows is expected to be relatively small and
low latency cut-through switching will be most beneficial.
The following 3 network trace datasets were used in the
simulations:

4.2.1 LBL
Lawrence Berkeley National Laboratory (LBNL) maintains 11
GB of anonymized packet header traces from October 2004
through January 2005, which are available for download from
http://www.icir.org/enterprise-tracing/download.html. The traces
are of LBNL enterprise campus LAN traffic from subnet links
connected directly to the site router. A thorough analysis of these
traces is available in [9]. We used a single 148 MB file from the
LBNL datasets with 2.2M packets and 15K flows. The average
packet size in the trace is 344 bytes and contains 98% IP traffic, of
which 96% is TCP. (Other files from the dataset were also
simulated for consistency checking, but their results are not
reported here.)

4.2.2 R3L
The R3L trace file was captured from the LAN backbone of a
network engineering department in May 2008. The trace contains
only inbound traffic to a core switch with a backbone 10GbE port
connecting the engineering development servers. Therefore the
servers are the source addresses of the packets. The outbound
traffic is not included in the trace, which more accurately
represents the type of traffic the prediction logic would experience
in a real implementation.
The trace file has 490K packets from 32K flows with an average
size of 198 bytes. IP traffic represents 99% of the trace, of which
55% is UDP and 44% is TCP. The remaining 1% of traffic is
divided between various layer-2 protocols and ARP.

4.2.3 Edge
The Edge trace file was captured from a link to a workgroup
switch in the same network engineering department as R3L in
May 2008. The trace captures only the inbound activity of a small
number of engineering users, and therefore client stations are
predominantly the source addresses of the packets.
The trace file has 250K packets from 5K flows with an average
size of 151 bytes. 18% are ARP packets, 2% other layer 2 packets
and 80% IP packets (of which 40% are UDP, 38% are TCP and
the remaining 2% are ICMP and IGMP).

4.3 Temporal Locality of Network Traces
The effectiveness of the packet prediction scheme depends upon
the temporal locality of network traffic. Figure 7 shows that the
network traffic in the trace datasets exhibit substantial locality -
more than 50% of the packets from all traces arrive with a spacing
of 4 packets or less from a previous packet in the same flow. The
figure shows the distribution of packet spacing up to a gap of 10
packets, which covers approximately 75% of all packets in the
traces. The remaining ~25% of the packets lie in the long tail of
the distribution. The measured distribution of the packet flow
gap in the trace datasets closely matches the results observed in
[15].

Flow Packet Gap Distribution

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

1 2 3 4 5 6 7 8 9 10

Packet Spacing

LBL
R3L
Edge

Figure 7. Temporal Locality of Trace Datasets

5. SIMULATION RESULTS
A simulation run was made for each combination of cache size (2,
4, 8, 16, 32 and 64 entries), packet signature size (8, 16, 24 and 32
bits) and trace dataset (LBL, R3L and Edge). The formulas for

calculating switch latency, equations (1), (3), and (4), were used
to compute the various latencies.

Intuitively, one would expect that the largest signature size and
largest cache size would be the most effective. However, the
objective of packet prediction is to begin forwarding the packet as
soon as possible with the highest probability that the speculation
is correct. This would imply that eager methods with small but
accurate signatures would fare the best. Figure 8 shows the
reduction in switch latency on the R3L trace for different packet
prediction schemes, compared to a conventional store-and-
forward and cut-through switch. The signature size is set to 32
bits.

Latency Reduction
R3L Trace - 32-Bit Signature

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Fixed Eager Hash Smart Hash Eager Hash Smart Eager
Hash

Method

L
at

en
cy

 R
ed

uc
tio

n

Store-and-Forward
Cut-Through
2 Entry
4 Entry
8 Entry
16 Entry
32 Entry
64 Entry

Figure 8. Latency Reduction for R3L with 32-Bit Signature

The figure shows the Eager method performs the best with a 64-
entry cache - the switch latency for this configuration is 0.13
times the latency of a store-and-forward switch and 0.33 times the
latency of a cut-through switch. This corresponds to nearly a
factor of 8 and a factor of 3 reduction in latency, respectively.

Figure 9 shows the Eager method latency reduction for each of the
trace datasets. It is interesting to note that as the cache size
increases, the performance of the Eager method degrades for the
LBL trace. This phenomenon occurs because a larger number of
stale entries exist in the prediction cache, which only serve to
further delay the exact match of partial signatures.

Latency Reduction over Store and Forward
Eager - 32 Bit Signature

0 .0 0

0 .05

0 .10

0 .15

0 .2 0

0 .25

0 .3 0

0 .35

0 .4 0

2 4 8 16 3 2 6 4

Cache Size

La
te

nc
y

R
ed

uc
tio

n

lb l
p edg e
r3 l

Figure 9. Eager Method Latency Reduction for All Traces

The apparent optimal cache size for the LBL trace is 16. Figure
10 shows the performance of the Eager method on the LBL trace
for all cache sizes and signature sizes. As expected, 32-bit

signatures provide the highest performance, but the difference is
not as significant at larger cache sizes.

Latency Reduction
LBL Trace - Eager Method

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

2 4 8 16 32 64

Cache Size

L
at

en
cy

 R
ed

uc
tio

n

8-Bit

16-Bit

24-Bit

32-Bit

Figure 10. Eager Method Latency Reduction on LBL Trace

Figure 11 reveals that the non-eager methods all exhibit a
continuously decreasing latency as the cache size grows, which is
not the case for the eager methods. Non-eager methods always
wait for a complete signature to be constructed before searching
the cache, so their performance is essentially bounded. There will
either be a matching signature, or there will not be. Eager
methods, on the other hand, begin to search the cache as soon as
enough bits are available to assemble a partial signature. In
practice, when the same bits are used to generate a signature, any
time a non-eager method mispredicts3 an eager method will as
well. However, an eager method will also generate a
misprediction instead of a cache miss if it finds exactly 1 entry in
the cache that matches its partial signature (a false match that
would disappear over time as more bits get added to the partial
signature). It is important to note that an eager method will never
pick the wrong signature if the correct one is in the cache – the
only mispredictions that will occur are when the actual signature
is not in the cache, but a signature with a matching prefix is.

Latency Reduction
LBL Trace 24-Bit Signature

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Fixed Eager Hash Smart Hash Eager Hash Smart Eager
Hash

Method

L
at

en
cy

 R
ed

uc
tio

n

Store-and-Forward
Cut-Through
2 Entry
4 Entry
8 Entry
16 Entry
32 Entry
64 Entry

Figure 11. Latency Reduction of LBL Trace

3 Remember, it is possible for two different flows to have the

same signature. Thus, a misprediction occurs when a signature
matches one in the cache, but further analysis shows that the
actual flows are different.

Since we do not add any extra penalty for mispredictions, a non-
eager method can never outperform an eager method that uses the
same bits of the packet to generate a signature, even if the eager
method mispredicts more frequently. In the end the two methods
will both experience the same set of cache misses, and pay the full
lookup latency penalty on those misses.
It is possible for an eager method with a lower correct prediction
rate to outperform a non-eager method with a slightly better
correct prediction rate, since the eager method begins the
speculative forwarding of the packet sooner and the gain from
more aggressive speculation outweighs the cost of the incorrect
prediction. Figure 12 shows the correct and incorrect prediction
rates for the different methods using a 24-bit signature on the LBL
trace dataset.

Correc t Predic ti on
LBL - 24-Bit Signature

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

2 4 8 16 32 64

Cache Size

Fixe d

Eager
Hash

Sma rt Has h

Eager Has h

Sma rt Eager Hash

Incorre ct Predi ction
LBL - 24-Bi t Signature

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

2 4 8 16 32 64

Cache Size

Fi xed

Ea ger
Has h

Smart Hash

Ea ger Hash
Smart Eager Has h

Correc t Predic ti on
LBL - 24-Bit Signature

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

2 4 8 16 32 64

Cache Size

Fixe d

Eager
Hash

Sma rt Has h

Eager Has h

Sma rt Eager Hash

Incorre ct Predi ction
LBL - 24-Bi t Signature

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

2 4 8 16 32 64

Cache Size

Fi xed

Ea ger
Has h

Smart Hash

Ea ger Hash
Smart Eager Has h

Figure 12. Prediction Rates on LBL Trace

The figure clearly shows that correct prediction rates nearing 97%
are possible. It also shows that all eager methods have a high
incorrect prediction rate when the cache size is small. This is
understandable, since an eager method stops searching the
prediction cache under two conditions - when there is exactly 1
entry that matches the partial signature, or when there are no
entries that match. When the cache size is small it is more likely
that a small partial signature will match with exactly 1 entry in the
cache because there is little diversity. When the cache is large
there is more diversity among the entries and more bits of the
partial signature are required to narrow the search. This reduces
the chance of a false positive match and thus the number of
incorrect predictions.
The hash based methods rarely miss-predict, since they take into
account a greater number of bits when creating a signature. The
Fixed method, on the other hand, experiences a slight increase in
the incorrect prediction rate as the cache size grows (indicating
that choice of bits used to create the signature is not significant
enough to uniquely identify the flows). The difference between
these two types of methods is best seen in Figure 13.

Incorrect Predictions
Fixed - 32 Bit Signature

0.00%
0.20%
0.40%
0.60%
0.80%
1.00%
1.20%
1.40%
1.60%
1.80%

2 4 8 16 32 64

C a ch e S ize

LB L

Edge

R 3L

Incorrect Predictions
Smart Hash - 32 Bit Signature

0.00%
0.20%
0.40%
0.60%
0.80%
1.00%
1.20%
1.40%
1.60%
1.80%

2 4 8 1 6 32 6 4

C ache Siz e

LB L

Edge

R 3L

Incorrect Predictions
Fixed - 32 Bit Signature

0.00%
0.20%
0.40%
0.60%
0.80%
1.00%
1.20%
1.40%
1.60%
1.80%

2 4 8 16 32 64

C a ch e S ize

LB L

Edge

R 3L

Incorrect Predictions
Smart Hash - 32 Bit Signature

0.00%
0.20%
0.40%
0.60%
0.80%
1.00%
1.20%
1.40%
1.60%
1.80%

2 4 8 1 6 32 6 4

C ache Siz e

LB L

Edge

R 3L

Figure 13. Fixed verses Smart Hash Incorrect Predictions

The Smart Hash method is much more effective at eliminating
incorrect predictions on the Edge trace than the Fixed method.

Recall that the Edge trace has the highest mix of non TCP/UDP
traffic - the Edge trace dataset has 18% ARP packets and 2%
other layer 2 frames, while the R3L and LBL trace files have 99%
and 98% IP traffic, respectively. Since the Fixed method simply
extracts bits from predetermined offsets, and those offsets are
optimized for TCP/UDP traffic, it is no surprise that the Edge
traffic has the highest number of false positive matches between
the two. The figure shows the effectiveness of hashing over
selecting pre-defined bits for all signature and cache sizes used
with the Edge trace dataset.

Prediction Cache Miss
LBL - 32-Bit Signature

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

2 4 8 16 32 64

Cache Size

Fixed

Eager

Hash

Smart Hash

Eager Hash

Smart Eager Hash

Figure 14. Prediction Cache Miss Rates

Prediction cache misses occur when a new flow is established or
the signature for an existing flow has been removed from the
cache. Figure 14 shows that the Eager method has a lower
prediction cache miss rate with small caches (~20%) than the
Hash method (~60%). This is because the Eager method has a
significantly higher incorrect prediction rate with lower cache
sizes. Incorrect predictions are not counted as cache misses -
whether there is an incorrect prediction or a prediction cache miss,
the same switch latency penalty is paid, so the more speculative
approach tends to benefit in the overall latency calculations. The
downside to the more speculative eager approaches is that they
potentially waste backplane resources and power, which in
practice is not free. A detailed evaluation of the impact of
incorrect predictions is left for future study.
In summary, the results in this section show that correct flow
prediction rates approaching 97% and a reduction in latency by a
factor of nearly 8 are achievable. The hash methods have a slight
performance advantage over fixed offset methods, at the expense
of more logic on the input port. Additionally, the hash methods
reduce the incorrect prediction rate, which saves power and
backplane bandwidth. Eager methods have the lowest latency and
are most effective with a medium sized cache. However, eager
methods also put more pressure on backplane resources and
potentially consume more power because of higher incorrect
prediction rates.

6. RELATED WORK
Using prediction techniques to reduce latency and improve
communication performance has not been extensively studied.
No work that we are aware of has used compressed packet content

to facilitate prediction in parallel with the flow classification
process on a statistically multiplexed packet switch.
The goal of reducing the number of pipeline stages in a routing
switch by using predictive switching was proposed in [10]. The
proposed technique looks at the forwarding history of an ingress
port to predict the egress port, irrespective of the contents of the
packet. The objective is to allocate connection resources across
the backplane before the packet arrives to avoid the overhead of
virtual channel establishment in a connection oriented switch.
Suffix pattern matching is used on a history array, containing a list
of the previous egress ports, to predict the next egress port. The
forwarding of the packet does not occur until the results of the
route calculation (i.e. lookup) are complete. The 2-D torus
network for which this prediction scheme was developed is a
connection oriented switch for specialized high performance
computing applications. The authors achieved 77% prediction
accuracy with the NAS parallel benchmarks.
Speculative techniques are proposed to reduce the latency of
setting up paths across a connection oriented crossbar fabric in
[11]. In this work, fabric bandwidth is arbitrated under the
speculation that fabric virtual channel allocation will typically
succeed. All of this occurs after the decode and routing stages
(i.e. packet Rx and lookup stages). However, as the richness of
the forwarding policy increases, the complexity and latency of
decode and routing stages will begin to dominate.
Another connection oriented switch for high performance
multiprocessor clusters uses prediction to improve the
performance of TDM circuit allocation by freeing the oldest
connections in a working set [12]. This proposal reduces latency
by priming the working set of connections and taking hints from
compiler directives. The approach differs significantly from a
connectionless packet oriented switch that operates under
statistical multiplexing methodology, and is targeted at the
interconnect fabric of a tightly coupled multi-processor system.
A host oriented approach uses traffic speculation to improve the
performance of IP fragment reassembly in [13]. The proposal
modifies the driver interface to the message passing API of high
performance computers to allow applications to send large
memory pages over Ethernet. These large messages must be
fragmented to transit an Ethernet network, so the proposal
speculatively creates receive DMA chains that enable support for
zero copy message passing.
The comparison of speculative switching ideas with concepts
from advanced computer architecture is best described in [14].
Surendra et al show how the temporal locality of network traffic
can be exploited to improve instruction reuse and reduce latency
in network processors. Their proposal is to have a separate
instruction reuse buffer for each active flow, and to switch the
processor context when a packet is received from a different flow.
The approach is conceptually similar to PPSCS in that the
prediction cache holds a set of forwarding instructions for packets
from a particular flow. The same temporal locality is used to
select a context and speculatively operate on a packet. However,
they assume the packet classification completes with 100%
accuracy and there is no speculation. They are focused on
speeding up the instructions that operate on the packet after the
classification is done, where PPSCS uses a cache in parallel to
speculate the results of the classification.

7. LIMITATIONS AND FUTURE WORK
The reduction in latency from PPSCS for a given configuration of
cache size and signature size is directly related to the number of
concurrent flows and amount of temporal locality in those flows.
The scheme will require more resources if applied to aggregated
links in the core of the network; however, these resources are in
proportion to the amount of resources required for the general
packet classification process.
Additional logic and fabric signaling is required to handle the
clean-up from incorrect speculation. In practical situations this
additional logic may be quite complex. For example, to avoid
improper transmission of a packet, the egress scheduling must be
synchronized with the completion of the lookup process. In the
simple switch model used to introduce PPSCS, the time for the
lookup process is deterministic. In many low cost
implementations that deploy hashing or tree searching, the delay
from the lookup process may be variable. It may be most
desirable to simply delay the transmission of the frame until the
lookup completes, which diminishes the latency gains from the
speculative transfer.
There are many areas of future study for PPSCS. For example,
performing real-time analysis of significant bits from which to
form signatures could be highly beneficial. The Fixed method of
signature creation is very simple and has acceptable performance
in general cases, but is susceptible to variations in packet
encapsulation and non-IP traffic mix. The performance of the
Fixed method could be improved in real-time by a monitoring
process that measures the entropy of significant bits for the
current environment and downloads a new set of offsets to
generate signatures.
There are also various methods of cache design and replacement
algorithms that could be explored. Examples include measuring
the effectiveness of adding a victim cache, or whether n-way
associative caches with larger key sizes are more cost effective.
The current approach uses a minimum of packet contents to
identify a flow. Given the temporal nature of network traffic, a
history buffer could support true prediction before any bits have
been received. This history could take into consideration the
state of various control bits in previous packets, such as TCP FIN
or SYN settings, to predict the status of an individual flow. The
history record could also be used to build confidence in the
current prediction using partial signatures. If the confidence is not
high enough, the predictor could wait for additional bits of the
signature to arrive.
A major area of consideration for future work involves the design
of the clean-up phase after incorrect prediction, and an analysis of
the potential performance impact in a multi-port configuration. It
is possible that the actual timing and communication mechanisms
necessary to support clean-up may be quite complex, although it
is also possible that existing mechanisms can be leveraged to
significantly lower cost.

A further area of consideration is an analysis of the security
threats associated with incorrect predictions. An attacker that is
aware of the prediction schemes may attempt to inject small
messages through the prediction logic before time consuming
security lookup operations complete.

8. CONCLUSION
This paper proposes a predictive technique to accelerate the
forwarding operations of a modern Ethernet switch in order to
reduce latency. All applications benefit from lower end-to-end
latency, but many specialized applications in the high-
performance computing arena depend upon very low latency. The
need for a low latency, high bandwidth interconnect fabric has
driven an industry of specialized connection oriented switches for
many years. With the addition of packet prediction, a
connectionless and statistically multiplexed Ethernet packet
switch can help address the needs of high performance computing
well beyond that of a traditional Ethernet switch. The results of
simulations using real network data have shown that packet
prediction can reduce the latency of a traditional store-and-
forward switch by nearly a factor of 8 and reduce the already low
latency of a cut-through switch by a factor of 3. Correct
prediction rates approaching 97% are achievable with a moderate
amount of per-port circuitry.

9. REFERENCES
[1] Liu, J., Chandrasekaran, B., Wu, J., Jiang, W., Kini, S., Yu,

W., Buntinas, D., Wyckoff, P., and Panda, D. K. 2003.
Performance Comparison of MPI Implementations over
InfiniBand, Myrinet and Quadrics. In Proceedings of the
2003 ACM/IEEE Conference on Supercomputing (Nov. 15 -
21, 2003). Conference on High Performance Networking and
Computing. IEEE Computer Society, Washington, DC, 58.

[2] Hamid, N. and Coddington, P. 2007. Averages, distributions
and scalability of MPI communication times for Ethernet and
Myrinet networks. Proceedings of the 25th IASTED
International Multi-Conference: parallel and distributed
computing and networks (Innsbruck, Austria, 2007).

[3] Sokolowski, P. J. and Grosu, D. 2004. Performance
Considerations for Network Switch Fabrics on Linux
Clusters. Proceedings of the 16th IASTED International
Conference on Parallel and Distributed Computing Systems
(MIT Cambridge, USA, November 2004).

[4] Gupta, P. and McKeown, N. 2001. Algorithms for packet
classification. Network, IEEE, 15, 2, (March 2001), 24-32.

[5] Taylor, D., E. 2005. Survey and taxonomy of packet
classification techniques. ACM Comput. Surv., 37, 3 (Sept.
2005), 238-275.

[6] Broder, A. and Mitzenmacher, M. 2004. Network
applications of Bloom filters: a survey. Internet Math., 1, 4,
(May 2004), 485-509.

[7] Dharmapurikar, S., Krishnamurthy, P., and Taylor, D. E.
2003. Longest prefix matching using bloom filters. In
Proceedings of the 2003 Conference on Applications,
Technologies, Architectures, and Protocols For Computer
Communications (Karlsruhe, Germany, August 25 - 29,
2003). SIGCOMM '03. ACM, New York, NY, 201-212.
DOI= http://doi.acm.org/10.1145/863955.863979.

[8] TCPDUMP/LIBPCAP public repository.
http://www.tcpdump.org/

[9] Pang, R., Allman, M., Bennett, M., Lee, J., Paxson, V. and
Tierney, B. 2005. A first look at modern enterprise traffic.
Proceedings of the Internet Measurement Conference 2005
on Internet Measurement Conference (Berkeley, CA, 2005).
USENIX Association.

[10] Yoshinaga, T., Kamakura, S. and Koibuchi, M. 2006.
Predictive Switching in 2-D Torus Routers. Proceedings of
the International Workshop on Innovative Architecture for
Future Generation High Performance Processors and
Systems (2006). IEEE Computer Society.

[11] Peh, L. and Dally, W. J. 2001. A Delay Model and
Speculative Architecture for Pipelined Routers. In
Proceedings of the 7th international Symposium on High-
Performance Computer Architecture (January 20 - 24, 2001).
HPCA. IEEE Computer Society, Washington, DC, 255.

[12] Ding, Z., Hoare, R., Jones, A., Li, D., Shao, S., Tung, S.,
Zheng, J. and Melhem, R. 2005. Switch Design to Enable
Predictive Multiplexed Switching in Multiprocessor
Networks. Proceedings of 19th IEEE International
Symposium on Parallel and Distributed Processing (2005).

[13] Kurmann, C., ller, M. M., Rauch, F. and Stricker, T. M.
2000. Speculative Defragmentation - A Technique to
Improve the Communication Software Efficiency for Gigabit
Ethernet. Proceedings of the 9th IEEE International
Symposium on High Performance Distributed Computing
(2000). IEEE Computer Society.

[14] Surendra, G., Banerjee, S., and Nandy, S. K. 2003. On the
effectiveness of flow aggregation in improving instruction
reuse in network processing applications. Int. J. Parallel
Program. 31, 6 (Dec. 2003), 469-487.

[15] Jain, R. and Routhier, S. 1986. Packet Trains--Measurements
and a New Model for Computer Network Traffic. IEEE J.
Sel. Area Comm., 4, 6 (1986), 986-995.

[16] Leland, W. E., Taqqu, M. S., Willinger, W., and Wilson, D.
V. 1994. On the self-similar nature of Ethernet traffic
(extended version). IEEE/ACM Trans. Netw. 2, 1 (Feb.
1994), 1-15. DOI= http://dx.doi.org/10.1109/90.282603.

[17] Willinger, W., Paxson, V., and Taqqu, M. S. 1998. Self-
similarity and heavy tails: structural modeling of network
traffic. In A Practical Guide To Heavy Tails: Statistical
Techniques and Applications, R. J. Adler, R. E. Feldman,
and M. S. Taqqu, Eds. Birkhauser Boston, Cambridge, MA,
(1998), 27-53.

[18] Mogul, J. C. 1992. Network locality at the scale of processes.
ACM Trans. Comput. Syst. 10, 2 (May. 1992), 81-109

[19] Kermani, P. and Kleinrock L. 1979. Virtual Cut-Through: A
New Computer Communication Switching Technique.
Computer Networks 3, (Sept. 1979), 267-286.

[20] Abo-Taleb, A. and Mouftah, H. 1987, Delay Analysis Under
a General Cut-Through Switching Technique in Computer
Networks, IEEE T. Commun., 35, 3, (Mar. 1987), 356-359

[21] Feldmeier, D.C. 1988. Improving gateway performance with
a routing-table cache. In Proc. IEEE INFOCOM '88. (New
Orleans, March, 1988), 298-307

[22] Newman, P., Minshall, G., Lyon, T. and Huston, L. 1997. IP
switching and gigabit routers. IEEE Commun. Mag., 35, 1
(Jan 1997), 64-69.

[23] Partridge, C. 1996. Locality and route caches. NSF
Workshop on Internet Statistics Measurement and Analysis
(http://www.caida.org/outreach/isma/9602/positions/partridg
e.html), 1996.

