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ABSTRACT 
The amount of intelligent packet processing in an Ethernet switch 
continues to grow, in order to support of embedded applications 
such as network security, load balancing and quality of service 
assurance.  This increased packet processing is contributing to 
greater per-packet latency through the switch. 

In addition, there is a growing interest in using Ethernet switches 
in low latency environments such as high-performance clusters, 
storage area networks and real-time media distribution.  In this 
paper we propose Packet Prediction for Speculative Cut-through 
Switching (PPSCS), a novel approach to reducing the latency of 
modern Ethernet switches without sacrificing feature rich policy-
based forwarding enabled by deep packet inspection.  

PPSCS exploits the temporal nature of network communications 
to predict the flow classification of incoming packets and begin 
the speculative forwarding of packets before complex lookup 
operations are complete. 

Simulation studies using actual network traces indicate that 
correct prediction rates of up to 97% are achievable using only a 
small amount of prediction circuitry per port.  These studies also 
indicate that PPSCS can reduce the latency in traditional store-
and-forward switches by nearly a factor of 8, and reduce the 
latency of cut-through switches by a factor of 3.   

Categories and Subject Descriptors 
C.2.1 [Computer-Communication Networks]: Network 
Architecture and Design – packet switching networks, store and 
forward networks 

General Terms 
Performance, Design 

Keywords 
Ethernet Switching, Cut-Through, Speculation, Packet Prediction 

1. INTRODUCTION 
Ethernet and IP communications have become the most popular 
means of computer communications, in part due to the simplicity 

and scalability of connectionless packet oriented communications 
over a statistically multiplexed network.   As Ethernet moves to 
10 Gbps speeds and beyond, there is a strong desire to use this 
commodity technology in specialized high performance parallel 
computing environments where traditionally specialized 
interconnect fabrics have been deployed (e.g. Infiniband, Myrinet 
and Quadrics[1]).  Interconnect fabrics designed for Message 
Passing Interface (MPI) applications, for example, are focused on 
connection oriented, low latency and high-bandwidth 
communications, but they are often complex and expensive [2, 3].  
Using commodity Ethernet packet switches instead of specialized 
interconnection fabrics can lower both cost and complexity, but 
current packet switches suffer from excessive switch latency. 

There are also many advantages to extracting information from 
various fields in each packet and performing policy based 
forwarding decisions based on that data.  Applications such as 
firewalling, intrusion detection/prevention, connection rate 
metering and load balancing all rely upon deep packet inspection 
and rapid flow classification of each packet.  In addition, there is a 
trend towards multiplexing a variety of different traffic types (e.g., 
voice, video and data), each potentially with different service 
requirements, onto the same network fabric.  In all of these 
situations, low latency, yet policy rich forwarding based upon 
flow classification is strongly desired. 

Providing these rich forwarding features without negatively 
impacting the switch latency puts extreme pressure on the 
classification process of a network switch.  The problem of packet 
classification has been well studied [4, 5] and is known to be a 
compute intensive step in the switch forwarding process.   
Specific hardware support is often used to improve performance, 
but at considerable expense and without entirely eliminating the 
classification bottleneck.  Space efficient searching schemes, such 
as Bloom filters, have also been shown to reduce the amount of 
resources required to match packets against a set of rules [6, 7].  

Cut-through switches have been designed to provide the lowest 
possible latency by allowing a packet to begin transmission on an 
egress port before the packet has been completely received at the 
ingress port [19, 20].  However, this approach seriously impacts 
the amount of deep packet inspection that can be performed.   
There is simply no time in a traditional cut-through switch to 
inspect transport or application level fields to perform firewalling, 
intrusion detection and load balancing before the packet is 
switched.  In addition, traditional cut-through switches operate on 
a packet by packet basis and take no advantage of the temporal 
locality of network communications. 
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This paper presents Packet Prediction for Speculative Cut-through 
Switching (PPSCS), a novel approach to reducing switch latency 
while maintaining the rich policy based forwarding features of 
modern packet based routing switches.  The basic idea is to apply 
the architectural techniques of value prediction and speculative 
execution to the problem of packet switching.  In PPSCS, a packet 
predictor takes advantage of the temporal locality of network 
communications to speculate on the flow membership of the next 
received packet.  Knowing the flow membership of a packet 
allows the forwarding engine of the switch to apply a rich set of 
forwarding policies to the packet while it is still being received.   
Predicting the packet’s flow membership allows this rich policy 
based forwarding to begin with the lowest possible latency.  
 
The observation that network communications has strong locality 
and that this may be used to optimize resource utilization is not 
new [15].  There are differences of opinion as to whether the 
temporal locality of Internet traffic is sufficient to enable 
optimized forwarding using caching [21, 22, 23].  Since 
traditional Ethernet LAN traffic is an aggregation of a much 
smaller number of flows than within the core Internet, it is 
expected to have a greater degree of locality. A preliminary study 
of the temporal locality in various network traces is described in 
Section 4.3 of this paper.  Ethernet LAN traffic is bursty over 
varying timeframes and known to be self-similar [16].  A popular 
model for LAN traffic is the on/off model [17] that shows how the 
self-similar nature is the result of packet trains.  All packets in a 
packet train are members of the same flow and require the same 
forwarding treatment by an Ethernet switch.    
 
We believe PPSCS-based switches will be attractive to high 
performance computing environments and will benefit network 
communications in general.  There is strong evidence that packet 
prediction is a plausible approach to optimizing switch 
forwarding, especially for switches that are closer in the network 
topology to the end-host and its applications [18]. 

The remainder of this paper is organized as follows.  Section 2 
describes the switch model used and the measurement of switch 
latency, while Section 3 describes PPSCS in detail.  Section 4 
discusses the simulation environment used to evaluate the 
improvement in latency and Section 5 describes the results of 
those simulations.   Section 6 explores related work, Section 7 
discusses limitations and areas for future study and Section 8 
provides a conclusion. 

2. SWITCH ARCHITECTURE 
Figure 1 shows a diagram of a scalable switch architecture used 
when developing the models of a store-and-forward and a cut-
through switch in this paper.  The model assumes line cards with 
physical media ports are connected to a passive switch backplane 
fabric, and the line cards are equipped with separate input and 
output memory, lookup logic and backplane fabric interfaces.  
Packets are received at line rate from the physical media ports and 
put into the input memory.  This constitutes the store stage of the 
store-and-forward switch.  The larger the received packet, of 
course, the longer it takes to store the packet in the input memory.  
The packet is not known to be error free until it is completely 
received. 
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Figure 1. Basic Packet Switch Architecture 

Once received error free, a variety of lookup steps based on the 
contents of the packet are performed in order to return the results 
needed to support policy operations, packet modifications and 
ultimately the forwarding, redirecting or filtering of the packet. 1  
The lookup steps effectively return a set of logical instructions 
that will be used to process the packet according to the switch 
configuration and policy.  The duration of the lookup steps 
depends upon the complexity of the switching policy.  Functions 
such as access control lists (ACLs), application rate meters or 
content aware filtering may require multiple passes through the 
lookup step. 

The fundamental structure used to perform the lookup is a flow 
key.  A flow key is a summarization of critical fields from the 
packet that uniquely identify the packet as being part of a flow.   It 
can be generalized as an n-tuple that is defined by a set H = {H1, 
H2, …, Hn} of fields from the packet.  All packets that are part of 
a flow are subject to the same policy and treatment by the switch.  
For a typical routing switch that performs layer-2 bridging, layer-
3 routing and transport level filtering, a flow key can be 
represented by a 9-tuple that includes the following fields: VLAN 
ID, destination MAC address, source MAC address, ethertype, IP 
protocol number, source IP address, destination IP address, 
TCP/UDP source port number and TCP/UDP destination port 
number. 

A flow table is a large database of flow keys that is searched by 
the lookup process.  This structure may be implemented in 
software using SRAM and a fast network processor, or more often 
implemented in hardware by ternary content addressable 
memories (TCAMs).  TCAMs are an expensive, high performance 
resource for the switch.  The TCAMs may be shared by multiple 
input ports on the same line card and consequentially may be 
subject to contention and further arbitration delays.  The process 
of classifying the packet and searching the flow table has been 
well studied [4, 5], and is known to be a time consuming and 
critical stage in the switch pipeline with complexity O(log N). 

The results of the lookup steps tell the switch where to forward 
the packet across the switch fabric, and optionally, what 
modifications to the packet may be required.  In this particular 
model, the receiving line card handles making the necessary 
modifications to the packet and initiates a transfer of the packet 
across the fabric to the output memory on another line card.  The 
speed of the backplane fabric interface is usually faster than the 
speed of the input port and in this model the backplane does not 

                                                                 
1 In some store-and-forward architectures it is possible to begin 

the lookup process before the entire packet has been received 
and stored.  The unique distinction of a store-and-forward 
switch is that it does not begin transmitting the packet until it 
has been fully received.  



represent a bottleneck.  Once the packet is received in the output 
memory it may immediately begin transmission on the egress 
port.  The switch model assumes all ports are operating at the 
same line rate and that there is no contention for the egress port. 

2.1 Switch Latency 
The process of switching a packet can be pipelined in order to 
increase switch throughput.  While the lookup process is working 
on a packet, the next packet can be copied from the ingress port to 
the input memory, and the previous packet can be modified and 
transferred to the output memory of the egress port.  Figure 2 
shows the pipeline diagram for the store-and-forward switch. 
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Figure 2. Store-and-Forward Switch Pipeline 

In order for the switch to maintain line rate forwarding, no stage 
of the pipeline can exceed the time it takes to receive a packet 
from the wire.   On a 10 Gbps Ethernet port there are potentially 
14.88 million minimum size packets arriving per second; 
therefore, no stage can exceed 67.2 ns.  A generalized way to look 
at the minimum required pipeline stage length is to normalize the 
stage to received bit times.  A minimum size Ethernet packet is 64 
bytes and is therefore received in 512 bit times, as determined by 
the speed of the ingress link. 

The duration of the packet Rx and packet Tx stages of the pipeline 
are directly tied to the physical media line rate.  The fabric transit 
and packet modification stage is faster than the physical media 
line rate.  Therefore, to forward at line rate, the lookup stage and 
the fabric transit stage must be no longer than the time it takes to 
receive a minimum sized packet.   To simplify the calculation of 
switch latency the model assumes the lookup stage time will be a 
constant and equal to the amount of time it takes to receive a 
minimum size packet. 

Let Ksf be the number of bits in a minimum size Ethernet packet 
(which is the constant 512).  Let Rp be the received port line rate 
in bps and let L be the length of the packet in bits.  Let Rf be the 
fabric interface transfer rate in bps and assume that Rf > Rp.  
Switch latency is the amount of delay a packet experiences inside 
the switch, and will be measured as the amount of time between 
when the first bit of a packet is received on the ingress port and 
the time the first bit is transmitted on the egress port.  The formula 
for a store-and-forward switch latency is then: 

Store and Forward Latency = (L / Rp) + (Ksf / Rp) + (L / Rf)     (1) 

This formula represents the time taken to receive the packet plus 
the time to perform the lookup stage plus the time to make any 
modifications and transfer the packet across the fabric.  (We 
assume that packet transmission on the egress port starts 
immediately once the packet is in the output memory.) 

To improve store-and-forward switch latency, two things must 
change.  First, the lookup process and packet modification with 
transfer across the backplane must begin before the current packet 
has been completely received.  Second, the transmission of the 
packet on the egress port must also be allowed to begin before the 

current packet has been completely received (and certainly before 
it has completed being transferred across the backplane.)   

In the cut-through model of a switch without any prediction the 
lookup process can begin no sooner than after the last bit of the 
packet needed to construct a flow key has been received.   Let D = 
{D1(H1), D2(H2), …, Dn(Hn)} be the set of functions in the 
classification process that return the starting bit displacement for 
the flow key fields in H.  Then Dn(Hn) is the starting bit offset for 
the last field necessary to create the n-tuple needed for the lookup.  
If we define Kct as the number of bits that must be received to 
construct the flow key for the lookup stage to begin we have: 

Kct = Dn(Hn) + | Hn|                                                                    (2) 

Assuming that packet modification is part of the fabric transfer 
stage and the transmission of the received cut-through packet may 
begin as soon as the first bit has arrived in the output memory, we 
have the following formula for cut-through switch latency:  

Cut-Through Latency = (Kct / Rp) + (Ksf / Rp) + 1/Rf                (3) 

This formula represents the time taken to receive enough of the 
packet to construct the flow key plus the time to perform the 
lookup stage in order to maintain line rate plus the time to 
optionally modify the packet and transfer the first bit of the packet 
across the fabric.  We assume that packet transmission on the 
egress port starts immediately once the first bit of the packet is in 
the output memory. 2 Figure 3 shows the pipeline diagram for a 
cut-through switch. 

Look-up Fabric
Transit

Packet
Rx

Packet
Tx

Look-up Fabric
Transit

Packet
Rx

Packet
Tx

Switch Latency

Look-up Fabric
Transit

Packet
Rx

Packet
Tx

Look-up Fabric
Transit

Packet
Rx

Packet
Tx

Switch Latency

 
Figure 3. Cut-Through Switch Pipeline 

3. Packet Prediction and Speculation 
The switch latency of both store-and-forward and cut-through 
switches can be reduced by exploiting the architectural techniques 
of value prediction and speculative execution.  Value prediction 
attempts to remove the limits on parallelism imposed by true data 
dependencies, while speculation seeks to reduce the latency of 
obtaining computed results.  In an Ethernet switch, the lookup 
stage is a data dependent operation that requires the reception of 
enough packet data to construct a flow key, and the operations 
applied to the packet once the lookup completes must endure the 
lookup latency before execution can begin.  Packet prediction and 
speculative switching remove this barrier by exploiting the 

                                                                 
2 Real implementation will typically transfer the packet in blocks 

across the fabric and may wait for the entire frame to be 
transferred to avoid the complications of under-run management 
when egress and ingress port speeds differ. 



temporal locality of network traffic to predict the data being 
received, allowing speculative packet operations for the flow to 
begin before the lookup has completed. 
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Figure 4. Packet Prediction Signature Creation 

In a switch with packet prediction a compressed signature of the 
packet is computed as the packet arrives at the input memory.  
This signature is searched in a local per-port prediction cache that 
contains the signatures of previously received packets.  If a match 
is found, the packet is assumed to be part of the same flow as the 
previous packet from the matching signature and the same 
operations can be speculatively applied.  The prediction step and 
speculative operations occur in parallel with the traditional lookup 
stage.  Figure 4 shows the process of signature creation relative to 
packet reception and flow key lookup. 
Figure 5 shows a diagram of switch architecture that includes 
packet prediction logic.  Since the goal is to begin the fabric 
transfer as soon as possible with the highest probability that the 
packet is actually transmitted through the correct egress port, the 
predictor snoops on the input memory bus and generates the 
packet signature as the packet is streamed into memory.  This 
logic is required on each input port of the switch, so it is 
worthwhile to find the smallest and most efficient implementation 
possible.  There are trade-offs between the size of the signature, 
the size of the cache and the method and amount of time taken to 
generate the signature.  
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Figure 5. Switch Architecture with Packet Prediction 

Switch latency for a packet predicting speculative switch is 
limited by the time it takes to generate enough of the packet 
signature to confirm a match in the prediction cache.   Let S = {S1, 
S2, … Sm} be a packet signature of length m that consists of a set 
of bits that have been derived from the fields in H.  There are a set 
of functions F that derive bits Si through Sj of S from the fields in 
H as they arrive from the link.  Let Kp be the number of bits 
received to form enough of S to find a match in the prediction 

cache.  Then the latency for a packet predicting speculative switch 
is as follows: 
Packet Prediction with Speculation Latency = (Kp / Rp) + 1/Rf   (4) 
This formula represents the time taken to receive enough of the 
packet to construct enough of the packet signature to find a match 
in the prediction cache, plus the time to transfer the first bit of the 
packet across the fabric.  This results in the pipeline diagram 
shown in Figure 6. 
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Figure 6. Packet Prediction Switch Pipeline 

As with any pipeline employing speculation, there are several 
complications and clean-up steps that may be required.  The 
results of the lookup stage confirm or deny the correctness of the 
speculation.  Since it is possible for the first bit of the packet to be 
transmitted on the egress port before the results of the lookup are 
complete, the current egress transmission may be incorrect.  Such 
an incorrect speculation requires that the packet transmission be 
aborted in some cases.  To accomplish this, the packet must be 
corrupted by the transmitter before the last bit is sent.  (However, 
this may not always be necessary - in the case of a layer 2 bridged 
network, a packet that is forwarded through the wrong port would 
simply appear as an extraneous flood and typically not cause an 
error.) 
If the lookup process takes longer than the time allotted to receive 
a minimum sized packet, it is possible that the transmission of the 
packet on the egress port completes before the results of the 
lookup are determined.  Since this model assumes a fixed time for 
the lookup stage and that some number of bits must be received to 
construct a signature, this condition cannot occur.  In practical 
implementations, however, it is possible that such delays could 
exist and as a consequence packet transmission must be carefully 
scheduled. 
In the cases where prediction and speculation are correct, the 
latency of the packet is significantly reduced.  Results presented 
in section 5 show that reductions of over 85% are achievable, 
depending on the type of network traffic, the cache replacement 
algorithm, and the hardware configuration used. 

4. SIMULATION ENVIRONMENT 
In order to evaluate the effectiveness of the PPSCS approach, a C 
program was written that consumes actual traces of network 
traffic and simulates the behavior of the proposed architecture.  
The traces may be either live traffic, mirrored from a live switch 



port, or they may be recorded trace files in libpcap format [8].   
The simulator classifies the input network traffic as flow entries, 
which are stored in the flow table of the routing switch modeled 
above.  Prediction algorithms are applied to the received traffic to 
create a packet signature of size 8, 16, 24 or 32 bits.  This 
signature is compared to previously received packet signatures 
stored in a prediction cache, which may vary in size from 2 to 64 
entries.  If the signature is found in the cache, the incoming packet 
is assumed to be part of the same flow as the matching signature, 
and is forwarded with the same operations applied to it that had 
been applied to the previous packets in that flow.  Forwarding 
begins at the time the signature match is found.   

If the signature is not found, a new entry is put into the cache, 
replacing the least frequently used entry, and the packet is handled 
in the normal non-speculative manner (i.e. it is forwarded once the 
lookup is complete.) 

4.1 Prediction Methods 
There are numerous ways to construct the packet signature.  The 
current simulator supports 6 different methods of generating and 
matching packet signatures.  These methods are: 

4.1.1 Fixed 
The Fixed method extracts bits from pre-defined locations in the 
packet as it is arriving.  The offset locations have been chosen 
based on experience and an understanding of the important packet 
fields in an untagged Ethernet frame carrying a UDP or TCP 
message.  Since the bit offsets are predetermined and fixed, there 
is no logic that parses the packet and adjusts the offset according 
to the frame encapsulation.  As a consequence, bit offsets that 
would normally align with the TCP port fields will be unaligned if 
the packet is VLAN tagged, and may point to user data if the 
packet is an IP fragment.  For a practical implementation of this 
method a different set of offsets should be considered based upon 
the port configuration. 

The bits that are chosen are ones that are expected to vary the 
most between distinct flows.  This includes the group address bit 
in the destination MAC address, low order address bits in both the 
MAC and IP headers, bits from the IP protocol field, and the 
TCP/UDP port numbers.  The set of bit offsets selected for the 
signatures (where the first bit of the packet is noted as offset 0) 
are listed in Table 1. 

Table 1. Fixed Bit Offsets for Packet Signatures 

Signature Bit Offset 

8-bit 7, 47, 94, 95, 238, 239, 270, 271 

16-bit 7, 46, 47, 94, 95, 100, 187, 190, 238, 239, 270, 
271, 286, 287, 302, 303 

24-bit 
7, 46, 47, 92, 93, 94, 95, 96, 100, 109, 110, 187, 
189, 190, 237, 238, 239, 269, 270, 271, 286, 287, 
302, 303 

32-bit 

7, 45, 46, 47, 92, 93, 94, 95, 96, 100, 109, 110, 
187, 189, 190,  191, 236, 237, 238, 239, 268, 
269, 270, 271, 284, 285, 286, 287, 300, 301, 302, 
303 

 

The Fixed method must wait for the last bit offset to arrive before 
constructing the packet signature. Once the signature is 
assembled, it is compared to the signatures in the prediction 
cache.  The 8-bit signature has the advantage of not having to wait 

as long as the other signatures, but has the obvious disadvantage 
of attempting to represent a packet with very few distinct bits.   

4.1.2 Eager 
The Eager method uses the exact same bit offsets as the Fixed 
method to construct the signature, but builds partial signatures as 
the bits arrive.  The partial signatures are presented as a key to the 
fully associative prediction cache, where missing bits are marked 
as don’t care conditions for the match.  If no matching entries are 
found, there are clearly no previous elements from this flow in the 
cache and the packet must wait for the flow lookup to complete 
and be forwarded normally.  If there is precisely one entry found, 
then there is a chance that this entry is an exact match and the 
speculative forwarding of the packet may start immediately.  This 
method forwards the packet as soon as possible, but experiences a 
higher misprediction rate.  Receiving more bits for the signature 
can reduce the chance of a false positive match, but the 
probability of a misprediction can not be completely eliminated. 

The cache replacement algorithm needs special consideration for 
the Eager method since there is a greater chance that a false 
positive will occur from a partial signature match.  If a false 
positive occurs, the cache must be queried again with the full 
signature in order to replace the incorrect entry. 

4.1.3 Hash 
The Hash method waits for the first 304 bits of the packet to be 
received and then constructs a 29-byte flow buffer from the 
offsets into the 9 fields of the packet that constitutes a flow.  This 
method does not interpret the bits of the packet but rather extracts 
the predetermined offsets for these fields from what is presumed 
to be an untagged Ethernet frame encapsulating a TCP or UDP 
message.  As with the Fixed method, if the packet is not a TCP/IP 
packet, if it is VLAN tagged or if it is an IP fragment, the offsets 
will not align with the desired fields.  The flow buffer is 
constructed with whatever bits are located at the predetermined 
offsets. 

A simple hash function (one of many developed by Professor 
Daniel J. Bernstein of the University of Illinois) is then applied to 
the 29-byte flow buffer to create the signature of the desired size.  
(A more extensive list of hash functions is available at 
http://www.partow.net/programming/hashfunctions/index.html.)  
The prediction cache is then searched using this signature.  
Similar to the Fixed method, the packet may not be forwarded 
until at least the first 304 bits have been received. 

4.1.4 Smart Hash 
The Smart Hash method is similar to the Hash method, except that 
logic is applied to parse the packet and properly create the 29 byte 
flow buffer.  The logic is capable of decoding the exact Ethernet 
header used and whether the frame is a TCP/UDP message, IP 
fragment or some other type of layer 2 protocol.  Fields of the 29 
byte flow buffer that are not present in the packet are filled with 
zeros.  If the packet is an IP fragment, then the IP fragment ID 
field is used instead of the TCP/UDP port numbers. 

The goal of this method is to trade off more logic in the packet 
prediction implementation for a more accurate packet signature to 
reduce the number of false positive matches.  Similar to the Fixed 
and Hash methods, the packet may not be forwarded until the first 
304 bits have been received. 



4.1.5 Eager Hash 
The Eager Hash method is also similar to the Hash method, with 
the difference being that the signature is assembled from separate 
hashes of distinct portions of the 29 byte flow buffer.  This 
method waits for the offsets of distinct chunks of the packet to 
arrive, such as the Ethernet header, IP addresses or TCP port 
numbers, and calculates a hash based only on those chunks to 
perform partial construction of the signature for eager matching in 
the cache.  Once a partial signature has been created from the 
hashes, it is presented to the fully associative prediction cache 
with missing portions of the signature marked as don’t cares.  As 
with the Eager method, if there is zero or exactly one match, the 
search is terminated.  The goal of this method is to forward the 
packet as soon as possible, but also reduce the number of false 
positives that might exist in the Eager method.   The cache 
replacement algorithm used is the same as in the Eager method. 

4.1.6 Smart Eager Hash 
The Smart Eager Hash method combines the informed 
construction of the flow buffer used in the Smart Hash method 
with the early speculative forwarding of the Eager Hash method.  
The same Eager method replacement algorithm is used.  
This paper merely scratches the surface of the many prediction 
methods possible.  Small amounts of additional logic could enable 
application specific prediction algorithms, for example, or history 
traces of protocol activity could enhance the accuracy and further 
exploit the temporal locality in network traffic.  We intend to 
more fully explore this design space in the future. 

4.2 Actual Trace Datasets 
In order to evaluate the various prediction methods, simulations 
were run using a fixed set of traces.  These traces represent 
different network environments and different parts of the network 
topology.  The temporal locality of the received traffic differs 
with the network environment and location within the topology as 
will be shown in section 4.3.  Network ports that are closer to 
individual stations have lower numbers of multiplexed flows, for 
instance, and network ports that are in the core of the network or 
at the Internet edge are likely to have greater numbers of 
multiplexed flows.  We anticipate PPSCS will be most effective in 
the data center, near clusters of message passing servers, where 
the total number of flows is expected to be relatively small and 
low latency cut-through switching will be most beneficial. 
The following 3 network trace datasets were used in the 
simulations: 

4.2.1 LBL 
Lawrence Berkeley National Laboratory (LBNL) maintains 11 
GB of anonymized packet header traces from October 2004 
through January 2005, which are available for download from 
http://www.icir.org/enterprise-tracing/download.html.   The traces 
are of LBNL enterprise campus LAN traffic from subnet links 
connected directly to the site router.  A thorough analysis of these 
traces is available in [9].  We used a single 148 MB file from the 
LBNL datasets with 2.2M packets and 15K flows.  The average 
packet size in the trace is 344 bytes and contains 98% IP traffic, of 
which 96% is TCP.  (Other files from the dataset were also 
simulated for consistency checking, but their results are not 
reported here.) 

4.2.2 R3L 
The R3L trace file was captured from the LAN backbone of a 
network engineering department in May 2008.  The trace contains 
only inbound traffic to a core switch with a backbone 10GbE port 
connecting the engineering development servers.  Therefore the 
servers are the source addresses of the packets.  The outbound 
traffic is not included in the trace, which more accurately 
represents the type of traffic the prediction logic would experience 
in a real implementation.  
The trace file has 490K packets from 32K flows with an average 
size of 198 bytes.  IP traffic represents 99% of the trace, of which 
55% is UDP and 44% is TCP.  The remaining 1% of traffic is 
divided between various layer-2 protocols and ARP. 

4.2.3 Edge 
The Edge trace file was captured from a link to a workgroup 
switch in the same network engineering department as R3L in 
May 2008.  The trace captures only the inbound activity of a small 
number of engineering users, and therefore client stations are 
predominantly the source addresses of the packets. 
The trace file has 250K packets from 5K flows with an average 
size of 151 bytes.  18% are ARP packets, 2% other layer 2 packets 
and 80% IP packets (of which 40% are UDP, 38% are TCP and 
the remaining 2% are ICMP and IGMP). 

4.3 Temporal Locality of Network Traces 
The effectiveness of the packet prediction scheme depends upon 
the temporal locality of network traffic.  Figure 7 shows that the 
network traffic in the trace datasets exhibit substantial locality - 
more than 50% of the packets from all traces arrive with a spacing 
of 4 packets or less from a previous packet in the same flow.  The 
figure shows the distribution of packet spacing up to a gap of 10 
packets, which covers approximately 75% of all packets in the 
traces.  The remaining ~25% of the packets lie in the long tail of 
the distribution.   The measured distribution of the packet flow 
gap in the trace datasets closely matches the results observed in 
[15].  
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Figure 7. Temporal Locality of Trace Datasets 

5. SIMULATION RESULTS 
A simulation run was made for each combination of cache size (2, 
4, 8, 16, 32 and 64 entries), packet signature size (8, 16, 24 and 32 
bits) and trace dataset (LBL, R3L and Edge).  The formulas for 



calculating switch latency, equations (1), (3), and (4), were used 
to compute the various latencies. 

Intuitively, one would expect that the largest signature size and 
largest cache size would be the most effective.  However, the 
objective of packet prediction is to begin forwarding the packet as 
soon as possible with the highest probability that the speculation 
is correct.  This would imply that eager methods with small but 
accurate signatures would fare the best.  Figure 8 shows the 
reduction in switch latency on the R3L trace for different packet 
prediction schemes, compared to a conventional store-and-
forward and cut-through switch.  The signature size is set to 32 
bits.  
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Figure 8.  Latency Reduction for R3L with 32-Bit Signature 

The figure shows the Eager method performs the best with a 64-
entry cache - the switch latency for this configuration is 0.13 
times the latency of a store-and-forward switch and 0.33 times the 
latency of a cut-through switch.   This corresponds to nearly a 
factor of 8 and a factor of 3 reduction in latency, respectively. 

Figure 9 shows the Eager method latency reduction for each of the 
trace datasets.  It is interesting to note that as the cache size 
increases, the performance of the Eager method degrades for the 
LBL trace.  This phenomenon occurs because a larger number of 
stale entries exist in the prediction cache, which only serve to 
further delay the exact match of partial signatures.  
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Figure 9. Eager Method Latency Reduction for All Traces 

The apparent optimal cache size for the LBL trace is 16.  Figure 
10 shows the performance of the Eager method on the LBL trace 
for all cache sizes and signature sizes.  As expected, 32-bit 

signatures provide the highest performance, but the difference is 
not as significant at larger cache sizes. 
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Figure 10.  Eager Method Latency Reduction on LBL Trace 

Figure 11 reveals that the non-eager methods all exhibit a 
continuously decreasing latency as the cache size grows, which is 
not the case for the eager methods.  Non-eager methods always 
wait for a complete signature to be constructed before searching 
the cache, so their performance is essentially bounded.  There will 
either be a matching signature, or there will not be.  Eager 
methods, on the other hand, begin to search the cache as soon as 
enough bits are available to assemble a partial signature.  In 
practice, when the same bits are used to generate a signature, any 
time a non-eager method mispredicts3 an eager method will as 
well.  However, an eager method will also generate a 
misprediction instead of a cache miss if it finds exactly 1 entry in 
the cache that matches its partial signature (a false match that 
would disappear over time as more bits get added to the partial 
signature).   It is important to note that an eager method will never 
pick the wrong signature if the correct one is in the cache –   the 
only mispredictions that will occur are when the actual signature 
is not in the cache, but a signature with a matching prefix is.  
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Figure 11. Latency Reduction of LBL Trace 

                                                                 
3 Remember, it is possible for two different flows to have the 

same signature. Thus, a misprediction occurs when a signature 
matches one in the cache, but further analysis shows that the 
actual flows are different. 



Since we do not add any extra penalty for mispredictions, a non-
eager method can never outperform an eager method that uses the 
same bits of the packet to generate a signature, even if the eager 
method mispredicts more frequently.  In the end the two methods 
will both experience the same set of cache misses, and pay the full 
lookup latency penalty on those misses. 
It is possible for an eager method with a lower correct prediction 
rate to outperform a non-eager method with a slightly better 
correct prediction rate, since the eager method begins the 
speculative forwarding of the packet sooner and the gain from 
more aggressive speculation outweighs the cost of the incorrect 
prediction.  Figure 12 shows the correct and incorrect prediction 
rates for the different methods using a 24-bit signature on the LBL 
trace dataset. 
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Figure 12. Prediction Rates on LBL Trace 

The figure clearly shows that correct prediction rates nearing 97% 
are possible.  It also shows that all eager methods have a high 
incorrect prediction rate when the cache size is small.  This is 
understandable, since an eager method stops searching the 
prediction cache under two conditions - when there is exactly 1 
entry that matches the partial signature, or when there are no 
entries that match.  When the cache size is small it is more likely 
that a small partial signature will match with exactly 1 entry in the 
cache because there is little diversity.  When the cache is large 
there is more diversity among the entries and more bits of the 
partial signature are required to narrow the search.  This reduces 
the chance of a false positive match and thus the number of 
incorrect predictions.    
The hash based methods rarely miss-predict, since they take into 
account a greater number of bits when creating a signature.  The 
Fixed method, on the other hand, experiences a slight increase in 
the incorrect prediction rate as the cache size grows (indicating 
that choice of bits used to create the signature is not significant 
enough to uniquely identify the flows).  The difference between 
these two types of methods is best seen in Figure 13. 
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Figure 13. Fixed verses Smart Hash Incorrect Predictions 

The Smart Hash method is much more effective at eliminating 
incorrect predictions on the Edge trace than the Fixed method.  

Recall that the Edge trace has the highest mix of non TCP/UDP 
traffic - the Edge trace dataset has 18% ARP packets and 2% 
other layer 2 frames, while the R3L and LBL trace files have 99% 
and 98% IP traffic, respectively.  Since the Fixed method simply 
extracts bits from predetermined offsets, and those offsets are 
optimized for TCP/UDP traffic, it is no surprise that the Edge 
traffic has the highest number of false positive matches between 
the two.   The figure shows the effectiveness of hashing over 
selecting pre-defined bits for all signature and cache sizes used 
with the Edge trace dataset. 
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Figure 14. Prediction Cache Miss Rates 

Prediction cache misses occur when a new flow is established or 
the signature for an existing flow has been removed from the 
cache.  Figure 14 shows that the Eager method has a lower 
prediction cache miss rate with small caches (~20%) than the 
Hash method (~60%).  This is because the Eager method has a 
significantly higher incorrect prediction rate with lower cache 
sizes.  Incorrect predictions are not counted as cache misses - 
whether there is an incorrect prediction or a prediction cache miss, 
the same switch latency penalty is paid, so the more speculative 
approach tends to benefit in the overall latency calculations.  The 
downside to the more speculative eager approaches is that they 
potentially waste backplane resources and power, which in 
practice is not free.  A detailed evaluation of the impact of 
incorrect predictions is left for future study. 
In summary, the results in this section show that correct flow 
prediction rates approaching 97% and a reduction in latency by a 
factor of nearly 8 are achievable.  The hash methods have a slight 
performance advantage over fixed offset methods, at the expense 
of more logic on the input port.  Additionally, the hash methods 
reduce the incorrect prediction rate, which saves power and 
backplane bandwidth.  Eager methods have the lowest latency and 
are most effective with a medium sized cache.  However, eager 
methods also put more pressure on backplane resources and 
potentially consume more power because of higher incorrect 
prediction rates. 

6. RELATED WORK 
Using prediction techniques to reduce latency and improve 
communication performance has not been extensively studied.  
No work that we are aware of has used compressed packet content 



to facilitate prediction in parallel with the flow classification 
process on a statistically multiplexed packet switch.    
The goal of reducing the number of pipeline stages in a routing 
switch by using predictive switching was proposed in [10].  The 
proposed technique looks at the forwarding history of an ingress 
port to predict the egress port, irrespective of the contents of the 
packet.   The objective is to allocate connection resources across 
the backplane before the packet arrives to avoid the overhead of 
virtual channel establishment in a connection oriented switch.   
Suffix pattern matching is used on a history array, containing a list 
of the previous egress ports, to predict the next egress port.  The 
forwarding of the packet does not occur until the results of the 
route calculation (i.e. lookup) are complete.   The 2-D torus 
network for which this prediction scheme was developed is a 
connection oriented switch for specialized high performance 
computing applications.  The authors achieved 77% prediction 
accuracy with the NAS parallel benchmarks. 
Speculative techniques are proposed to reduce the latency of 
setting up paths across a connection oriented crossbar fabric in 
[11].  In this work, fabric bandwidth is arbitrated under the 
speculation that fabric virtual channel allocation will typically 
succeed.  All of this occurs after the decode and routing stages 
(i.e. packet Rx and lookup stages).  However, as the richness of 
the forwarding policy increases, the complexity and latency of 
decode and routing stages will begin to dominate.  
Another connection oriented switch for high performance 
multiprocessor clusters uses prediction to improve the 
performance of TDM circuit allocation by freeing the oldest 
connections in a working set [12].  This proposal reduces latency 
by priming the working set of connections and taking hints from 
compiler directives.  The approach differs significantly from a 
connectionless packet oriented switch that operates under 
statistical multiplexing methodology, and is targeted at the 
interconnect fabric of a tightly coupled multi-processor system. 
A host oriented approach uses traffic speculation to improve the 
performance of IP fragment reassembly in [13].  The proposal 
modifies the driver interface to the message passing API of high 
performance computers to allow applications to send large 
memory pages over Ethernet.  These large messages must be 
fragmented to transit an Ethernet network, so the proposal 
speculatively creates receive DMA chains that enable support for 
zero copy message passing.  
The comparison of speculative switching ideas with concepts 
from advanced computer architecture is best described in [14].   
Surendra et al show how the temporal locality of network traffic 
can be exploited to improve instruction reuse and reduce latency 
in network processors. Their proposal is to have a separate 
instruction reuse buffer for each active flow, and to switch the 
processor context when a packet is received from a different flow.  
The approach is conceptually similar to PPSCS in that the 
prediction cache holds a set of forwarding instructions for packets 
from a particular flow.  The same temporal locality is used to 
select a context and speculatively operate on a packet.  However, 
they assume the packet classification completes with 100% 
accuracy and there is no speculation.  They are focused on 
speeding up the instructions that operate on the packet after the 
classification is done, where PPSCS uses a cache in parallel to 
speculate the results of the classification. 

7. LIMITATIONS AND FUTURE WORK 
The reduction in latency from PPSCS for a given configuration of 
cache size and signature size is directly related to the number of 
concurrent flows and amount of temporal locality in those flows.  
The scheme will require more resources if applied to aggregated 
links in the core of the network; however, these resources are in 
proportion to the amount of resources required for the general 
packet classification process. 
Additional logic and fabric signaling is required to handle the 
clean-up from incorrect speculation.  In practical situations this 
additional logic may be quite complex.  For example, to avoid 
improper transmission of a packet, the egress scheduling must be 
synchronized with the completion of the lookup process.  In the 
simple switch model used to introduce PPSCS, the time for the 
lookup process is deterministic. In many low cost 
implementations that deploy hashing or tree searching, the delay 
from the lookup process may be variable.  It may be most 
desirable to simply delay the transmission of the frame until the 
lookup completes, which diminishes the latency gains from the 
speculative transfer. 
There are many areas of future study for PPSCS.  For example, 
performing real-time analysis of significant bits from which to 
form signatures could be highly beneficial.  The Fixed method of 
signature creation is very simple and has acceptable performance 
in general cases, but is susceptible to variations in packet 
encapsulation and non-IP traffic mix.  The performance of the 
Fixed method could be improved in real-time by a monitoring 
process that measures the entropy of significant bits for the 
current environment and downloads a new set of offsets to 
generate signatures. 
There are also various methods of cache design and replacement 
algorithms that could be explored.  Examples include measuring 
the effectiveness of adding a victim cache, or whether n-way 
associative caches with larger key sizes are more cost effective. 
The current approach uses a minimum of packet contents to 
identify a flow.  Given the temporal nature of network traffic, a 
history buffer could support true prediction before any bits have 
been received.   This history could take into consideration the 
state of various control bits in previous packets, such as TCP FIN 
or SYN settings, to predict the status of an individual flow.  The 
history record could also be used to build confidence in the 
current prediction using partial signatures.  If the confidence is not 
high enough, the predictor could wait for additional bits of the 
signature to arrive. 
A major area of consideration for future work involves the design 
of the clean-up phase after incorrect prediction, and an analysis of 
the potential performance impact in a multi-port configuration.  It 
is possible that the actual timing and communication mechanisms 
necessary to support clean-up may be quite complex, although it 
is also possible that existing mechanisms can be leveraged to 
significantly lower cost. 

A further area of consideration is an analysis of the security 
threats associated with incorrect predictions.  An attacker that is 
aware of the prediction schemes may attempt to inject small 
messages through the prediction logic before time consuming 
security lookup operations complete. 



8. CONCLUSION 
This paper proposes a predictive technique to accelerate the 
forwarding operations of a modern Ethernet switch in order to 
reduce latency.  All applications benefit from lower end-to-end 
latency, but many specialized applications in the high-
performance computing arena depend upon very low latency.  The 
need for a low latency, high bandwidth interconnect fabric has 
driven an industry of specialized connection oriented switches for 
many years.  With the addition of packet prediction, a 
connectionless and statistically multiplexed Ethernet packet 
switch can help address the needs of high performance computing 
well beyond that of a traditional Ethernet switch.  The results of 
simulations using real network data have shown that packet 
prediction can reduce the latency of a traditional store-and-
forward switch by nearly a factor of 8 and reduce the already low 
latency of a cut-through switch by a factor of 3.  Correct 
prediction rates approaching 97% are achievable with a moderate 
amount of per-port circuitry. 
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