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Abstract—
In this paper we present an adaptive per hop differentia-

tion (APHD) scheme towards achieving end-to-end delay as-
surance in multihop wireless networks. Our APHD scheme
extends the capability of IEEE 802.11e EDCA technique
into multihop environments by taking end-to-end delay re-
quirement into consideration. At an intermediate node,
based on data packet’s end-to-end requirement, its accumu-
lative delay so far, and the current node’s channel status,
APHD smartly adjusts a data packet’s priority level in or-
der to satisfy its end-to-end delay requirement. Simulation
results show that APHD scheme can provide excellent end-
to-end delay assurance while achieving much higher net-
work utilization, compared to a pure EDCA scheme.

I. INTRODUCTION
Quality of services (QoS) support in mobile ad hoc net-

works (MANET) is very challenging due to their limited
resources and the dynamic nature. Various techniques,
from physical layer upto application layer, have been pro-
posed to provide QoS support in MANET environments
[1]. In this paper we propose an adaptive per hop differ-
entiation (APHD) scheme towards achieving end-to-end
delay assurance in multihop wireless networks.

APHD scheme is based on IEEE 802.11e EDCA tech-
nique which is proposed for service differentiation in
sing hop environments (WLAN). EDCA does not fit into
multihop environment because it has no notion of end-
to-end service guarantee. Our simulation results show
pure EDCA scheme performs poorly in multihop network.
APHD scheme is thus designed to extend and incorporate
EDCA technique into multihop wireless network environ-
ment, aiming at provide end-to-end delay assurance for
time sensitive applications. The simulation results show
that, in both linear topology and large networks, APHD
outperforms pure EDCA scheme by providing excellent
end-to-end delay assurance while achieving much higher
network utilization.

The organization of the rest of the paper is as follows.
In Section II we discuss some background knowledge and
the motivation of our work. Detailed design of APHD
scheme is presented in Section III, followed by simula-
tion based performanace evaluation in Section IV. Re-
lated work of interest to our work is discussed in Section
V, and then the paper is conluded in Section VI.

II. BACKGROUND AND MOTIVATION

A. IEEE 802.11
IEEE 802.11 standard [2] defines two access modes in

wireless local area network (WLAN), namely, Distributed
Coordinate Function (DCF), and Point Coordinate Func-
tion (PCF).

DCF distributes the media access task among neighbor-
ing nodes via CSMA/CA and a backoff technique. When
a node has a data packet to transfer, it listens first to see
whether the channel is idle or busy. If the channel is busy
the node will keep waiting quietly. When the channel be-
comes idle and it stays in the idle state for a period of time
(this required time is equal to DIFS if the previous packet
was received correctly, or EIFS if the previous packet was
not received correctly), the node starts its backoff timer
for a random amount of time. If the backoff timer has
a non-zero value already (which means it was previously
in a backoff state), it does not need to select a new back-
off timer value. When the backoff timer expires and the
channel is (still) in idle state, the node will transmit the
data packet.

In the above process the random backoff timer can
minimize collisions during contentions among multiple
nodes. Individual nodes calculate their own backoff timer
value using the following formula: backoff_time =
random() × SlotT ime, where random() is pseudo-
random integer drawn from a uniform distribution over
[0, CW], where CW is called contention window and it
satisfies the condition CW_min ≤ CW ≤ CW_max.

B. IEEE 802.11e
IEEE 802.11e [3] was proposed to supplement IEEE

802.11 MAC in order to provide service differentia-
tion in WLAN. The 802.11e draft introduces the Hybrid
Coordination Function (HCF), which defines two new
MAC mechanisms namely, HCF controlled channel ac-
cess (HCCA), and enhanced distributed channel access
(EDCA), to replace PCF and DCF modes in 802.11.

EDCA achieves service differentiation by introducing
different access categories (ACs) and their associated
backoff entities. Unlike in DCF, where all MAC ser-
vice data units (MSDUs) are put into a single queue and
thus associated with a single backoff entity, EDCA intro-
duces four priority queues, one for each AC, and each



priority queue has its own backoff entity using differ-
ent parameter set. In EDCA, the counterpart of DIFS
(in DCF mode) is called Arbitration Interframe Space
(AIFS). Both AIFS and the contention window size are
dependent on access categories, and thus they are writ-
ten in these formats: AIFS[AC], and CW[AC], where
CW_min[AC] ≤ CW [AC] ≤ CW_max[AC].

At a node running in EDCA mode, individual priority
queues act independently of each other. Each AC pri-
ority queue competes with other priority queues at the
same node as well as those priority queues in neighboring
nodes. A higher priority queue (with a smaller AC index)
will use relatively a smaller AIFS[AC] value as well as a
smaller CW_min[AC] and CW_max[AC] pair. In such a
manner, higher priority queue always defers less time be-
fore attempting to transmit and get more chance to utilize
the channel.

C. Motivation for Our Design
In multihop wireless networks, time sensitive applica-

tions normally require end-to-end delay assurance. How
can we utilize single hop service differentiation as defined
in 802.11e EDCA to satisfy an end-to-end requirement for
a multihop communication session?

First, suppose we could break down the end-to-end de-
lay requirement into smaller pieces as per hop budget. As
long as each intermediate hop achieve the specified per
hop delay, the end-to-end delay requirement will be satis-
fied.

Second, how to partition the end-to-end requirement
into per hop budget? Apparently we need to know the
total budget and the hop count of route. In our design, we
adopt the widely studied Dynamic Source Routing (DSR).
With source routing, hop count is easy to obtain. For hop
by hop routing, we may use probing technique to find out
the end-to-end hop count.

Third, how to populate the per hop budget to all inter-
mediate nodes? One possible way is to calculate the per
hop budget at the sender and then piggyback this infor-
mation to intermediate nodes along the route (for exam-
ple, see [8]). But this way is lack of flexibility because
each node gets the same per hop budget. Moreover, the
per hop budget information needs to be populated every
time the route changes. In APHD, we choose another ap-
proach which is more flexible by putting the requirement
information in packet header. When intermediate node re-
ceives a packet, it can read this information from packet
header and infer the per hop requirement for this packet.

Fourth, how to translate the per hop requirement into a
MAC priority level? We need to know what is the delay
for individual service classes at the current node. We pro-
pose the node monitoring technique to keep track of chan-
nel status (i.e., per class delay PCD[i]) at individual nodes.
Based on this information, when a data packet arrives at
a node, the node can smartly map its per hop budget to a
proper priority level.

III. APHD DESIGN

In this section we discuss three major components of
our APHD scheme and then put them together.

A. Packet Header Extension
We extend the packet header to accommodate four nec-

essary fields to facilitate APHD technique. The summary
of important fields are shown in Table I.

Field Name Meaning
src source address
dst destination address
prio EDCA priority for current hop

e2e_delay_req end-to-end delay requirement
e2e_hops end-to-end hop count

delay_so_far accumulative delay so far
hops_so_far number of hops traversed so far

TABLE I
IMPORTANT FIELDS IN APHD PACKET HEADER

When sending out a packet, the sender does not specify
the priority level of service. Instead, it specifies the end-
to-end delay requirement e2e_delay_req explicitly. Along
together is e2e_hops which is end-to-end hop count that
this packet expects to traverse along the path from source
to destination. These two fields are fixed when a packet
travel from source to destination.

There are two dynamic fields in the packet header,
namely, delay_so_far and hops_so_far, which account for
the accumulative delay and hop count that the packet has
experienced already. These two fields are initialized to be
zero at first hop. As the data packet propagates in the
networks, intermediate nodes will update them accord-
ingly. The dealing of hops_so_far is relatively simple. It
is incremented by one at each hop. The treatment of de-
lay_so_far is a bit more complicated: we need to have a
accurate estimate and put the information in packet header
before the packet really go through this hop. Details on
how to measure the current hop delay for a packet will be
further discussed in Section III-B.

An alternative of accumulating delay_so_far at each
hop would be recording pkt_birth_time at first hop node.
With the packet birth time and the current time, an inter-
mediate node can easily calculate delay_so_far for this
packet. However, this is valid only if the clock of all
mobile nodes are synchronized. We choose to put de-
lay_so_far in packet header such that our APHD scheme
does not depend on any clock synchronization assump-
tion.

B. Node State Monitoring
In order to map a data packet’s per hop budget into

a proper priority level, individual nodes need to monitor



channel utilization state as well as per class delay (PCD[i],
where PRIO_min ≤ i ≤ PRIO_max).

Channel utilization: a node keeps track of channel
busy time and idle time, and can calculate channel utiliza-
tion percentage. This is helpful in admission control. For
example, if the utilization is above some critical level over
a certain time window, it may decide that the network is
overloaded and thus deny new flow request or even pick
some existing flows with low priority as victims to drop.
In this work we assume some form of admission control
is in use so the network is not overloaded at any time. Our
work is focused on designing an adaption scheme which
can smartly select a optimal priority level for individual
data packets.

Per class delay PCD[i]: when a packet p(i), where i
is the priority level, is received at MAC layer of a node, it
records the packet’s incoming time Ta; when the packet is
successfully transmitted to nexthop at time Tb, we obtain
the delay that this packet experiences at this hop:

pkt_delay(i) = Tb − Ta. (1)

To smooth out the delay variance among consecutive
packets of a specific priority level i, we use an exponential
moving average to calculate PCD[i]:

PCD[i] = (1 − α) ∗ PCD[i] + α ∗ pkt_delay(i). (2)

The greater the α factor, the more promptly it responds to
the channel state change.

Now it comes to the question: how can we update the
packet header field delay_so_far with the current hop de-
lay pkt_delay(i) before we actually transmit it to nexthop
node? Our approach is to use an estimate of T ′

b. Specif-
ically, at MAC layer, when a packet of priority level i
reaches the head of the priority queue (i.e., it gets sched-
uled for transmission), it will content for access to the
channel with other priority queues at the same node as
well as neighboring nodes. When it successfully grab the
channel at time Tg, we can get an estimate:

T ′

b = Tg +
packet_size

transmission_rate
. (3)

With the estimate time T ′

b, we can calculate pkt_delay(i),
and add it to the delay_so_far field in packet header be-
fore transmitting the packet to next hop. If it turns out
that the transmission fails due to collision, the packet will
be rescheduled for transmission again. In such a case, the
packet header need to be updated again before retransmis-
sion.

We would like to point out that, in the above dissussion,
the computation of PCD[i] information at a node is de-
pendent on transmitting several packets belonging to that
class. An alternative (or complementary) way would be to
eavedrop packets passing-by in the neighborhood.

C. Per Hop Based Priority Adaptation

At each hop, a node may adjust a packet’s priority level
based on the e2e_delay_req carried in the packet header
and the channel state of the current node. We need to
take care of two different cases: at firs hop node and at
intermediate node.

At a first hop node, we optimistically select a low ser-
vice level (i.e. with larger priority number) which fits the
packet’s per hop budget. We would like to point out that,
at first hop, packet priority adaptation is carried out at Net-
works Layer. This is because we need to set proper pri-
ority level for a packet before sending it down to priority
queues at MAC layer. As discussed in previous section,
MAC layer keeps track of per hop delay for individual
priority levels. By inquiry with MAC layer, routing agent
can learn the current PCD[i] information.

When an intermediate node receive a packet, it may be
one of the two possible cases: the packet arrives earlier
or later than expected. If the packet has been late already
when arriving at this hop, we should select a higher prior-
ity level to speed up its transmission. If the packet has ar-
rived earlier than expected, we say we get some flexibility
time, which we called slack. In such a case, we can select
a relatively low priority for this packet. The adaptation al-
gorithm at intermediate hop node is shown in Algorithm
1, written in a pseudo code similar to the C language.

Algorithm 1 Middle Hop Priority Adaptation
at intermediate node:
MAC receives an incoming packet p

e2e_budget_perhop = e2e_delay_req
e2e_hops

;
budget_so_far = e2e_budget_perhop×hops_so_far;
slack = budget_so_far − delay_so_far;
if ( slack ≤ 0) /* being late; try to speed up */

for ( i = PRIO_min; i ≤ PRIO_max; i++ )
if ( PCD[i] ≤ PCD_THRESHOLD[i] )

break; /* select this priority level */
endif

endfor
else /* get flexibility; can slow down */

budget2go = e2e_delay_req − delay_so_far;
hops2go = e2e_hops − hops_so_far;
budget2go_perhop = budget2go

hops2go
;

for ( i = PRIO_max; i ≥ PRIO_min; i−− )
if ( PCD[i] ≥ PCD_THRESHOLD[i] )

continue; /* skip this priority level */
endif
if ( PCD[i] ≤ budget2go_perhop )

break; /* select priority level i */
endif

endfor
endelse
set p’s priority: prio = i;



We would like to point out that our adaptation algo-
rithm can lead to more efficient network utilization while
attempting to satisfy the end-to-end delay requirement. At
first hop node, we optimistically select a lowest priority
level which can meet a packet’s per hop budget. At in-
termediate hop nodes, as shown in Algorithm 1, we try
to select a lowest satisfactory priority level whenever it
is allowed (i.e., when slack > 0). Since lower priority
backoff entities have larger contention window size, trans-
mission collisions can be reduced when multiple flows
meet at a common hop node. This reduction of collision
can lead to higher throughput in addition to canceling the
side-effect of long waiting time due to larger contention
window size. Moreover, since more packets try to use
lower priority levels at each hop, we have more resource
to speed up a packet’s transmission in case its accumu-
lated delay to this hop is more than expected so far.

We utilize preset PCD_THRESHOLD[i] to prevent
from overloading a priority level. Specifically, for prior-
ity level i, if the current per class delay PCD[i] exceeds
the preset threshold value, we will not put more traffic
load on this priority level, until PCD[i] falls back to under
the threshold. The settings for PCD_THRESHOLD[i] de-
pends on the requirement of specific applications as well
as the network diameter.

D. Putting It Together
The overall architecture of APHD is shown in Fig. 1.

Note that the Transport Layer is omitted here to simplify
the illustration. As we can see, the overall design of
APHD follows a cross-layer approach, which has gained
more and more acceptance in wireless network design in
recent years.

The core component of APHD architecture is Node
State Monitoring function, which mainly sits in the MAC
layer. It keeps track of per class delay (PCD[i]) by mea-
suring the incoming and leaving times of packets of differ-
ent priority level. The PCD[i] information is shared with
the priority adaption functions across Networks Layer as
well as MAC layer.

Let’s trace a packet’s flowing path in this architecture.
When MAC receives an incoming packet, it first records
its incoming time Ta. The packet header’s hops_so_far
field will be increased by one hop. Then, by inquiring
PCD[i] and packet header information, the packet’s MAC
priority level is adjusted using Algorithm 1. For locally-
generated packets, the Application Layer specifies an end-
to-end delay requirement. At Network Layer, by inquir-
ing PCD[i] information from MAC Layer, the packet’s
end-to-end requirement is mapped to a proper MAC pri-
ority level. Now, both locally generated packets and in-
coming packets are handed to the Routing Agent (DSR).
The output from DSR will be divided into two parts: lo-
cal drop traffic and outgoing traffic. Local drop packets
are for local applications and thus handed up to the Ap-
plication Layer. Other packets are outgoing traffic and
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Fig. 1. APHD’s overall architecture

thus handed down to different MAC queues based on their
priority levels. Per hop differentiation takes effect at this
step due to EDCA mechanism, and higher priority pack-
ets are expected to have a shorter per hop delay. When
a packet is actually scheduled for transmission, we esti-
mate its final bit’s leaving time, and update packet header
delay_so_far field as well as the node state (PCD[i]) ac-
cordingly.

IV. PERFORMANCE EVALUATION

We have done extensive simulations using NS-2 (ver-
sion 2.26) [11] to evaluate the performance of APHD
scheme. DSR codebase is ported from an older version
NS-2.1b8a. EDCA codebase is ported from TKN’s im-
plementation [10]. In 802.11e draft, eight priority levels
and four access categories (ACs) are defined and there is a
mapping relation between a priority level and an AC. Here
we do not distinguish this difference and use the terms AC
and priority level interchangeably. PHY and MAC param-
eter settings are summarized in Tables II and III, respec-
tively. Note this PHY setting is corresponding to a link
capacity of 11 Mbps. A node’s transmission range is 250
meters while the carrier-sensing range is 550 meters, both
of which are default settings in NS-2 simulator.



Parameter Value
SlotTime 20 us
CCATime 15 us

RxTxTurnaroundTime 5 us
SIFSTime 10 us

PreambleLength 144 bits
PLCPHeaderLength 48 bits

PLCPDataRate 1 Mbits/s
MaxPropagationDelay 2 us

TABLE II
NS-2 PHY SETTINGS FOR IEEE 802.11E

Priority AIFS CW_min CW_max
0 2 7 15
1 2 15 31
2 3 31 1023
3 7 31 1023

TABLE III
NS-2 EDCA SETTINGS FOR IEEE 802.11E

A. Simple topology
1) Simulation setup: In this set of simulations we use

a simple linear topology as shown in Fig 2. The distances
between node A and B, node B and C, are 180 meters.
The distances between nodes B, D, E, F are all 200 meters.
There are three flows: flow 0 between node A and B, flow
1 between node C and F, and flow 2 between node E and
F. All three flows are real-time audio traffic and thus have
the same end-to-end delay requirement. Packet size is 150
bytes for all three flows, and we three tests using different
source rates. In pure EDCA tests, We set priority level 0
for all three flows. In APHD tests, we set their end-to-end
delay requirement to be 1000 ms.

As we can see, flows 0 and 2 only have one hop, while
flow 1 need to travel four hops. This simulation setup is
intendedly to see if our scheme can provide end-to-end
delay assurance and end-to-end fairness.

In our simulations, flow 0 will starts at time 0.1 sec-
ond, flow 1 starts at time 60.0 seconds, and flow 2 starts at
time 100.0 seconds. By selecting different start times for
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Fig. 2. A simple topology: same priority, different route length

different flows, we can see the impact to existing flows
when adding a new flow to the network. Meanwhile,
we mainly observe and compare the performance between
APHD and EDCA after all flows start.

2) Simulation results: The end-to-end delay for pure
EDCA scheme is shown in Fig. 3. When source data
rate is 10 and 50 packets/second, the delay difference be-
tween flow 1 and flows 0/2 are not much, and all three
flows satisfy end-to-end delay requirement. As the source
rates are increased to 100 packets/second, the delay dif-
ference becomes inneglible. Flow 1 (which has longest
route) experience much higher delay compared to flows
0/2. Moreover, all three flows fail to meet the end-to-end
delay requirement.

Now let’s look at the throughput results. As shown in
Fig. 4, at source rate 100 packets/second, EDCA scheme
has great throughput drop in all three flows. Flow 1 (with
longest route) achieves only half of the throughput of
flows 0/2.

From Fig. 3 and Fig. 4, we can see pure EDCA scheme
cannot provide end-to-end assurance nor fairness in terms
of end-to-end delay and throughput.

Now let’s move forward to see the results of APHD
tests. The end-to-end delay for APHD scheme is shown
in Fig. 5. Even under source rate 100 packets/second, the
end-to-end delay for all three flows still keep at very low
level and there is no noticeable difference between flow 1
and flows 0/2.

Next let’s see throughput results for APHD as shown
in Fig. 6. All three flows achieve the same throughput
under all three source rates. We can say APHD achieve
end-to-end fairness regardless of route length. Moreover,
there is no packet drop even when source rate is 100
packets/second, where EDCA scheme has showed severe
packet drop already. This shows APHD can improve net-
work utilization by smartly adapting MAC priority level
for individual packets.

B. Large Networks
1) Simulation setup: To see how APHD performs in

large networks, we use a 10x10 Manhattan networks. Ad-
jacent nodes on each row (and each column) are separated
200 meters in distance. There are 12 flows in total among
random pairs of source and destination. Flows 0-5 are
real-time audio traffic with packet size 150 bytes, while
flows 6-11 are video playback with packet size 800 bytes.
All the flows start randomly at different times between [0,
100] seconds. In EDCA tests, we set audio traffic at prior-
ity level 0 while video playback at level 1. In APHD tests,
we set end-to-end delay requirement as 100 ms for audio
traffic and 1000 ms for video playback.

2) Simulation results: First let see EDCA’s perfor-
mance in Fig. 7 and Fig. 8. When source rate is at
4x6 vs 4x6 packets/seconds, both audio and video flows
can maintain satisfied performance. As the source rate in-
creases, both type of traffic meet unacceptably high delay
and very poor throughput.
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Fig. 3. EDCA: end-to-end delay (different route length)
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Fig. 4. EDCA: end-to-end throughput (different route length)
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Fig. 5. APHD: end-to-end delay (different route length)

Now let’s see APHD’s results as shown in Fig. 9 and
Fig. 10. Under all three source rates, both audio and
video traffic can achieve very low end-to-end delays. The
throughput shows no packet loss even when the source
rate is 16x6 vs 16x6 packets/second. These results show
that APHD performs efficiently in large networks as well.

V. RELATED WORK

Dynamic Packet State (DPS) [4] technique was pro-
posed to achieve end-to-end QoS guarantee without per
flow state maintenance. This technique attempts to take
advantage of the two QoS models, namely, IntServ [5]
and DiffServ [6], that have been proposed for Internet
QoS provisioning. In DPS technique, end-to-end delay
requirement is carried in packet header, intermediate hop
routers process incoming packets based on their packet
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Fig. 6. APHD: end-to-end throughput (different route length)

(a) source rate: 4x6 vs 4x6 pkts/sec
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(b) source rate: 8x6 vs 8x6 pkts/sec
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(c) source rate: 16x6 vs 16x6 pkts/sec
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Fig. 7. EDCA: end-to-end delay (large network)

(a) source rate: 4x6 vs 4x6 pkts/sec
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(b) source rate: 8x6 vs 8x6 pkts/sec
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(c) source rate: 16x6 vs 16x6 pkts/sec
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Fig. 8. EDCA: end-to-end throughput (large network)

header information and the current hop node state. In their
implementation, they managed to find a way to encode
all extended information in a standard IP packet header.
Our APHD scheme follows this stateless approach, which
does not require flow state maintenance at intermediate
hop nodes.

INSIGNIA [7] is a signaling protocol which is based
on crosslayer interaction to achieve end-to-end QoS re-
porting and adaptation. However, we argue that end-to-

end feedback is not always desirable for MANET envi-
ronments due to their highly dynamic nature. First, it in-
curs long feedback delay, In face of fast changing network
topology, it may lead to more communication overhead.
In contrast, APHD scheme utilizes localized per hop adap-
tation to satisfy an end-to-end requirement.

Yang and Kravets [8] proposed a QoS protocol for ad
hoc realtime traffic (QPART) to provide end-to-end QoS
guarantees for ad hoc networks. QPART breaks down



(a) source rate: 4x6 vs 4x6 pkts/sec
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(b) source rate: 8x6 vs 8x6 pkts/sec
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(c) source rate: 16x6 vs 16x6 pkts/sec
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Fig. 9. APHD: end-to-end delay (large network)
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(b) source rate: 8x6 vs 8x6 pkts/sec
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(c) source rate: 16x6 vs 16x6 pkts/sec
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Fig. 10. APHD: end-to-end throughput (large network)

end-to-end delay requirement evenly and propagates the
per hop requirement to intermediate hop nodes using pig-
gyback packets. Intermediate nodes dynamically adjust
the contention window size based on individual flow’s
per hop requirement. Our APHD scheme is distinguished
from QPART in the way on how to infer the per hop re-
quirement as well as the granularity of adaptation proce-
dure. APHD provides MAC priority adaptation on per
packet granularity by using a small set of priority queues,
which is more flexible and efficient.

Lorenz and Orda [9] investigated the problem of opti-
mal resource allocation for end-to-end QoS requirements
on unicast paths and multicast trees. APHD uses a dif-
ferent approach and calculates individual packets’ per hop
requirement on-the-fly while data packets propagate in the
network.

VI. CONCLUSION

We present an adaptive per hop differentiation (APHD)
scheme towards providing end-to-end delay assurance in
802.11e based multihop wireless networks. Simulation
results show that APHD can provide excellent end-to-end
delay assurance while achieving much higher network uti-
lization, compared to a pure EDCA scheme.
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