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ABSTRACT
Estimation of building occupancy has emerged as an important
research problem with applications ranging from building energy
e�ciency, control and automation, safety, communication network
resource allocation, etc. In this research work, we propose the
estimation of occupancy using non-intrusive information that is
already available from existing sensing modes, namely, number
of WiFi devices, electrical energy demand and water consumption
rate. Using data collected from 76 buildings in a university campus,
we study the feasibility of multi-modal fusion between the three
data sources for estimating �ne-grained occupancy. In order to
make the estimation model scalable, we propose three di�erent
clustering schemes to identify similarity in building characteristics
and training per-cluster occupancy estimation models. �e pre-
sented multi-modal fusion estimation framework achieves a mean
absolute percentage error of 13.22% and we �nd that leveraging
all three modalities provide an improvement of 48% in accuracy as
compared to WiFi-only occupancy estimation. Our evaluation also
shows that clustering buildings greatly increases the scalability of
the proposed approach through signi�cant reduction in training
overhead, while providing an accuracy comparable to exhaustive,
per-building estimation models.
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1 INTRODUCTION
Determining the number of people in a building (referred as oc-
cupancy counting) has applications spanning from building man-
agement to safety and resource allocation. In terms of building
management, occupancy estimation is useful in optimizing energy
demand and consumption, and Heating Ventilating and Air Condi-
tioning (HVAC) control. It also enables novel building automation
applications (for example, lighting control) that improve comfort of
the occupants and enable assisted living services. Occupancy esti-
mation plays a crucial role in ensuring building safety through
intelligent surveillance and over�ow monitoring. In emerging
smart cities applications, occupancy is useful in predicting tra�c
�ows between large buildings and mobility dynamics. Furthermore,
in businesses and retail store buildings, it improves pro�tability
through physical analytics. Lastly, in terms of computer networks,
occupancy estimation provides information essential to adaptively
perform network load balancing and network resource switching
(activating/deactivating) for energy savings.

Due to its importance, occupancy counting has been investigated
by a number of recent research papers [27, 31, 34, 43]. However,
there are three major limitations of these approaches: (1) Existing
research (such as [5, 29, 46, 52]) rely on deploying special purpose
occupancy detection/estimation sensors in buildings. Examples of
these sensors include PassiveInfrared (PIR) sensors, CO2 sensors,
acoustic, seismic and motion sensors. In reality, a large fraction
of buildings are not equipped with such sensors, and deploying
them in existing buildings is cost intensive. (2) Many of the sensing
modalities used in occupancy counting are intrusive. For example,
camera image based counting [50] can record every movement of
occupants. Other approaches like [52] and [44] are short range and
detect whether a speci�c room or o�ce space is occupied or not.
�is type of monitoring pose serious privacy risks to occupants and
can lead to user tracking. (3) Existing approaches largely ignore the
issue of scalability and building diversity in occupancy counting.
�e proposed solutions are o�en evaluated for controlled se�ings
(like laboratory) and it is not clear how they scale to large scale
smart-city type of applications with a variety of buildings having
diverse characteristics. Hence, there is a need of low-cost, non-
intrusive and scalable solution for building occupancy counting.

In this paper, we present a novel occupancy counting solution
that only relies on information already available from existing
modes of sensing in buildings including electrical energy demand,
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Figure 1: Our approach of estimating occupancy from three data sources (number of WiFi-connected devices, electricity
demand and water consumption rate) through clustering and multi-modal fusion. �e bold arrow represents the approach

for best prediction accuracy.

water consumption and number of wireless (WiFi) network con-
nected devices. Using a large-scale building dataset from a major
university campus, we show that these three modalities are strong
indicators of number of occupants and they complement each other
in deriving accurate occupancy estimates. We build a scalable, mul-
timodal occupancy counting framework that fuses the inferences
of occupancy from each modality. �e presented approach relies
on three sources of information - smart metering for electricity
demand, water consumption, and WiFi networks - that are read-
ily available in most commercial and residential buildings. �is
eliminates the need of deploying dedicated sensor infrastructure
for occupancy counting. �e information used in our presented
solution is only aggregate in nature (total electricity and water
demand and total number of WiFi connected devices), protecting
occupants’ privacy. Lastly, through careful characterization and
clustering of over 76 buildings in our dataset, we show that it is
possible to build scalable machine learning based occupancy estima-
tion models that can achieve highly accurate occupancy counting
with limited training overheads.

Challenges and our approach: �ere are multiple challenges
associated with occupancy counting using the three data sources.
We now describe each of the challenges and how our proposed
approach addresses them.

Feasibility and the need of multiple modalities: First chal-
lenge in developing our occupancy counting framework is that it is
not clear how representative the three data sources are of varying
levels of occupancy. Our characterization study shows that elec-
trical energy demand and water consumption can indeed be used
to estimate the occupancy, however, both the modalities can only
provide coarse-grained estimation. Electricity demand is not only
dependent on number of occupants but also on other factors like
HVAC changes due to outside temperature and weather, building
size, HVAC e�ciency, etc. On the other hand, typical water me-
ters that monitor domestic water consumption provide very coarse
granularity (records one sample every 100 gallons of water in our
case), further complicating the occupancy estimation.

�e number of WiFi devices connected to a building’s wireless
network is strongly correlated to its occupancy, but depending on
the context and function of a building, users can have multiple

WiFi-enabled devices. �is is consistent with recent studies [1, 12]
which show the rise of multi-device users. More and more users are
carrying more than one smart device (smartphone, tablet, laptop,
etc.). Also, the number of devices carried by a user is dependent
on time and context. For example, [12] shows that average number
of devices per user is higher when users are in a residential envi-
ronment as compared to other location contexts. �is means that
using number of WiFi devices for occupancy estimation requires
careful consideration of building characteristics (its function and
typical multi-device user behavior). We characterize the impact of
occupancy on each data source using the university dataset and �nd
that utilities data (electricity and water consumption) complement
the WiFi network information in accurately estimating occupancy.

Scalability and clustering: In terms of developing and train-
ing machine learning based estimation models, it is possible to
train one custom estimation model per building. Although such
an approach is likely to be more accurate, it scales poorly when
considering a large set of buildings in smart city type applications.
Additionally, training custom estimator per building requires much
longer monitoring and training periods due to sparseness of the
training data. To address this challenge, we investigate three clus-
tering techniques (as shown in Fig. 1) that group the buildings
based on their characteristics, and train one estimation model per
cluster. In the �rst technique, the buildings are clustered based
on their function (e.g., cafeteria, o�ces, dormitories, etc.), while
in the second technique, they are clustered based on the variation
in the pa�erns of the three data sources. Both the clustering ap-
proaches are occupancy-agnostic which means that they do not
require ground truth occupancy values while clustering. �e third
approach is occupancy-aware where clustering is based on simi-
larity of relationships between the data sources and occupancy. It
groups buildings in which values of a data source (WiFi, electricity
or water) varies similarly with changes in occupancy. We show that
clustering substantially increases the scalability with fewer trained
models, as compared to per building modeling, while maintaining
comparable estimation accuracy.

Multi-modal fusion: �e third challenge is to constructively
combine the three data sources such that it results in a more accurate
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occupancy estimation. �e sparseness of the feature space associ-
ated with each modality further complicates the fusion process. We
address this by devising separate multi-modal fusion models based
on the characteristics of chosen clustering schemes. Speci�cally, we
use two multi-modal fusion techniques (i) feature-level early fusion
and (ii) decision-level late fusion as shown in Fig. 1. In building
function based clustering, feature-level early fusion is used to form
a large feature space before estimating occupancy. For the data
pa�ern and occupancy relationship based clustering, decision-level
late fusion is employed where occupancy estimation from each
modality are combined through another regression model. Our re-
sults indicate that decision-level fusion techniques achieve higher
occupancy estimation accuracy.

�e contributions of this work can be summarized as follows:
(1) We show that it is feasible to achieve accurate �ne-grained

occupancy counting using information available from non-intrusive
data sources like electrical energy demand, water consumption and
number of WiFi-connected devices. Furthermore, it is demonstrated
that utilities data plays a crucial role in complementing WiFi data
in occupancy estimation through our proposed multi-modal fusion
approach.

(2) We present novel building clustering techniques that elim-
inate expensive per-building training by grouping the buildings
based on their characteristics. Speci�cally, it is shown that when
buildings are clustered based on how the three data sources vary
with changes in occupancy, the resultant per-cluster occupancy
models can achieve highly accurate occupancy estimation with
decision-level fusion.

(3) We evaluate the clustering and multi-modal fusion with data
collected from 76 buildings over 4 weeks duration with occupancy
varying from 0 to 550. It is observed that when buildings are clus-
tered based on similarity in occupancy-data source relationship,
the resultant occupancy estimation with three data sources achieve
a mean absolute percentage error of 13.22%. We observe that use
of multimodal data provides signi�cant improvement in accuracy,
almost 48% reduction in error as compared to the model built using
only WiFi data.

�e rest of the paper is organized as follows. We introduce the
dataset in Section 2 and discuss the feasibility of multiple modalities
in Section 3. In Section 4 we discuss the di�erent schemes based on
which we cluster the buildings in our dataset. Section 5 discusses
the multimodal fusion schemes for estimation and the results are
discussed in Section 6. A�er presenting related work in Section 7,
we conclude the paper in Section 8.

2 DATASET AND METHODOLOGY
�e �rst major step in building the occupancy estimation model is
collecting data from multiple buildings with diverse characteristics
(for example, building function and context which a�ect how WiFi
and utilities are used). For this, we collect data from a university
campus for a duration of four weeks (28 days). �e dataset is
described below and is also summarized in Table 1.

2.1 WiFi Network Data
WiFi Device Count: �e number of WiFi-connected devices is an
important indicator of number of occupants. Our WiFi network

Data Type No. of
Buildings Sampling Rate

WiFi Device Count 76 6 samples/hr
Electricity Demand 56 360 samples/hr

Domestic Water
Consumption Rate 19 180 samples/hr

Occupancy
(Ground Truth) 76 6 samples/hr

Table 1: Primary data sources and sampling rates for a
university campus dataset used in our occupancy

estimation

data for the university campus includes aggregate device count for
each building. �e aggregate device count is the number of devices
(unique MAC addresses) connected to a building’s WiFi Access
Points (APs). �ese devices include any WiFi-capable device (e.g.,
smartphone, tablet, laptop, etc.). �e per-building device count
is maintained by the network administrator for troubleshooting
and management purposes. We query this database once every 10
minutes for each building.
Ground truth occupancy: �e WiFi network data also includes
WiFi session logs which record the start and end times of each
device’s connection to an AP. �e other relevant information in
the logs are: <IP address, MAC address, connected AP, Username>.
�e AP name, when combined with the WiFi AP deployment map
(discussed in Section 2.3) can identify the building where each
session is created. As highlighted earlier, most users carry more
than one WiFi enabled device. �e username �eld in the session logs
can be used to identify users carrying multiple devices. �e number
of unique users (or usernames) at a speci�c building represents the
actual number of occupants of the building. �is occupancy value,
in all instances, is lower or equal to the number of WiFi devices
(as collected above). In this work, this value is used as the ground
truth occupancy in all instances. Based on the session logs, the
occupancy count per building is calculated for 10 minute windows.
Session logs are collected from a total of 76 di�erent buildings on
campus. We use the 10 minute interval as the granularity for all
the occupancy estimation that we report in this paper.

Devices that are not carried by users when leaving the building
create sessions of very long duration. In addition, since the WiFi
network is not limited within the physical con�nes of the building,
some transient passerby users can create sessions of very short
duration. In order to not count such instances in our ground-truth,
we remove sessions that are longer than twenty-four hours or
shorter than �ve minutes. �e ground truth occupancy does not
include a small fraction of the occupants in a building who do
not connect to the wireless network or who connect their devices
only to the wired network. �is fraction of users, which we miss
in our ground truth estimation and can only be estimated using
dedicated sensors is a limitation of our approach. Also, our method
of ground truth occupancy estimation depends on username based
login information which might not be available in buildings that
employ password based login. However, the username based login
provides us an accurate estimate of occupancy for developing our
multimodal estimation models.
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�e wireless data collection was performed in collaboration with
Information Technology Department of a university campus under
Institutional Review Board (IRB) approval. We collaborated with
the department to anonymize the collected network logs to remove
any personally identi�able information before using it in our study.
Speci�cally, we anonymize the IP addresses, MAC addresses and
usernames. We employ pre�x-preserving anonymization as pro-
posed in [17]. �e anonymization methods and parameters are kept
consistent over all logs.

2.2 Utilities Data
General purpose electricity and water meters which are commonly
used in commercial buildings are deployed in university buildings.
In collaboration with the campus utilities department, we collect
electrical energy demand and water consumption data from these
meters. �is information is then maintained by the utilities depart-
ment with the aim of be�er energy conservation. All the data is
accessed through a central university server using a RESTful API.

(1) Smart Meter Electricity Data: �e electrical energy con-
sumed by a speci�c building is referred to as its electricity demand.
�is includes electrical energy consumption from infrastructure-
based setups, like corridor lights and HVAC systems, energy con-
sumed by user plug-load devices, like personal computers, phones,
and televisions and energy expenditure of shared common space
devices like refrigerators and microwave ovens. �ese electric con-
sumption values from various buildings are collected using smart
meters and stored in a central university database. �is dataset
collects energy demand (in KiloWa�s) at each meter at a 10 second
interval. In some instances, more than one meter is deployed per
building, each accounting for speci�c sections or �oors. �e data
from multiple meters is aggregated together to calculate the total
demand of the building. �ere are also some instances, in which one
meter is used to record information from multiple buildings. Such
buildings are ignored in this study due to unavailability of accurate
per building smart meter data. �e smart meter data is collected at
the aforementioned 10 second interval, from 56 buildings on the
campus.

(2) Domestic Water Consumption Data: Domestic water is
the water directly used by occupants in a building (like restroom
usage, kitchen use, etc.). Other usage of water, like water used
for sprinkler functioning outside a building, are not considered
as domestic water. Data collection of domestic water is di�erent
from the aforementioned electric meter. Instead of reporting a
continuous stream of water consumption rate, the meter records
instances whenever 100 gallons of water is used in the building.
We use the data to calculate the mean rate of water consumption
(gallons per minute). Since the buildings with water meters on
campus - connected to the central server - are fewer in number
than smart meters, we collect data from 19 buildings on campus.

2.3 Auxiliary Data
In addition to this primary data, we also collect necessary auxiliary
data including building type and size. We also collect informa-
tion regarding the outside weather as it governs HVAC load. �e
auxiliary information collected as a part of this work are:

Building Function Count
Classrooms 15
Laboratories 21

O�ces 15
Dormitories 15

Cafeteria/Dining 5
Health Center/Hospital 3

Special Use 2

Table 2: Di�erent building functions and their count for
the 76 buildings in our campus dataset

Building function (or type): A university campus closely re-
sembles a smart-city type environment where buildings have di-
verse functions and characteristics. As we demonstrate later, the
function of a building has signi�cant impact on its occupancy pat-
tern. Since the function information is readily available, it can be
exploited for clustering and training occupancy estimation mod-
els. As a result, building function data is an important part of our
study. �e types of buildings on campus include among others, lab-
oratories, dormitories, o�ce buildings, cafeterias and classrooms.
Table 2 lists the di�erent building types in our dataset of 76 build-
ings and their count. �e special use buildings include the campus
gymnasium and the performance theater.

Building size: Larger buildings have a higher baseline energy
consumption (energy consumed in absence of any occupants). �is
is due to higher HVAC load and other factors such as corridor
lighting and other electrical appliances. To compare the occupancy
pa�erns of buildings with varied sizes, the building size informa-
tion is used in normalizing based on area. As a result, we collect
information of total area of a building in square foot. �e area
information includes all �oors of the building.

Weather data: �e weather dictates the inside building tem-
perature, which in turn drives the HVAC load and its electrical
energy consumption. As a result, relevant weather data is collected
using the OnPoint API service provided by Weather Source [2]. We
calculate the air temperature (in °F) and relative humidity for the
campus location at the rate of 60 samples per hour.

AP - Building Map: In order to determine the building where
an AP is located, we collect information that maps each AP on
campus to a speci�c building. As explained above, this information
is used in conjunction with other WiFi network data to calculate
the ground truth occupancy.

3 FEASIBILITY AND THE NEED OF
MULTIPLE MODALITIES

In order to establish feasibility of occupancy estimation based on
the three data sources, it is �rst necessary to evaluate that each of
these sources individually is correlated to occupancy. In order to
do this, we �rst calculate the ground truth occupancy at 10 minute
intervals over the duration of our dataset. For the same 10 minute
intervals, the WiFi device count and the mean of electrical energy
demand and water consumption rates are calculated. We calculate
the building-wise correlation coe�cient between the occupancy
and each of the data streams. �e calculated values are shown in
Table 3.
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Data Source Mean
Correlation

Std. dev.
Correlation

WiFi Device Count 0.878 0.097
Mean Electricity Demand 0.696 0.241

Mean Water Consumption Rate 0.455 0.281

Table 3: Mean and standard deviation of correlation
between each of the three data streams and occupancy

We observe that the WiFi device count and electrical energy
demand are highly correlated with the occupancy, whereas the
water meter reading has loose, yet positive, correlation. �is implies
that the change of each data stream and occupancy follows a similar
trend. However, since correlation does not imply causality and the
values of three data sources can be dependent on other factors, we
model their relationship with occupancy in Section 4. Also, since
WiFi device count is highly correlated with occupancy, we now turn
our focus on determining its su�ciency in occupancy estimation.

3.1 Why is single modality not su�cient?
It might appear at �rst that WiFi device count can be used to ac-
curately estimate the occupancy, however, there are a number of
factors that can lead to incorrect estimation using this approach.

Multi-Device Users: Using only the number of wireless devices
at each location at a speci�c time to estimate the occupancy at that
location will lead to over-estimation due to many users having more
than one device. Nevertheless, if the average number of devices
per user is constant at multiple locations over di�erent time points,
we can use a proportionality factor to estimate the occupancy by
simple multiplication. �is, we observe, is indeed not the situation.

We de�ne device-user ratio as the ratio of WiFi device count and
number of occupants. We calculate the average value of device-user
ratio for each building and plot the distribution (minima, �rst quar-
tile, median, third quartile and maxima) of the average device-user
ratio values for the di�erent buildings belonging to the same func-
tion. Four di�erent building functions are shown via a boxplot in
Fig. 2. �e di�erence in the distributions of the average device-user
ratio among the di�erent building types is a direct e�ect of users’
behavior at each building type. It can be observed that classrooms
have the least average number of wireless devices carried per user.
Since most of the occupancy in classrooms are governed by students
a�ending classes, there are very few instances of user accessing
multiple devices at the same time. On the other hand in dormitories
where users are in a residential se�ing, the number of devices per
user increases signi�cantly due to the use of devices that users do
not always carry around. For labs and o�ce spaces, this number
is higher than classrooms but lower than dormitories. �is could
be a result of the fact that many of users’ laptops or computers are
connected through wired networks. �e di�erent building types
vary from the point of view of their context. Due to this contex-
tual di�erence between buildings using the proportionality factor
cannot correctly estimate occupancy. Even the buildings belonging
to the same building functions have signi�cant di�erence in the
mean device-user ratio, thereby signifying that a per-building type
proportionality factor would not be enough for estimation.

In addition, we plot in Fig. 3 the device-user ratio variation over
�ve working days for four di�erent types of buildings on campus.
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Figure 2: Distribution of per-building mean device-user
ratio represented in the form of <min, �rst quartile,

median, third quartile, max> for the four major types of
buildings on campus.
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Figure 3: Device-user ratio pattern for four di�erent types
of campus buildings in a week; the ratio varies based on

contextual factors (building function and time)

It can be observed that the device-user ratio values are continually
di�erent based on the time of the day. �e pa�ern of the device-
user ratio variation throughout the day is representative of the
type of building in question. Some locations have higher values
of device-user ratio during working hours, while the values drop
down to 1 (one device per user) during the night time. Dormitory
buildings, due to the presence of overall larger number of wireless
devices, always have a device-user ratio greater than 1 and the
change in the value is more gradual. We can therefore validate that
the device-user ratio is not only dependent on the building function,
but also on the time of the day. Based on these observations, it is
di�cult to derive a �xed proportionality factor to directly estimate
occupancy from the count of wireless devices. Any sort of factor, if
used, has to be trained based on the building type, the time of the
day and possibly other contextual factors.

Another additional information that hinders occupancy estima-
tion only from the point of view of WiFi device count is the fact that
some users might not carry wireless devices, or not connect to the
WiFi network. As a result, the access point would have no record of
such devices, and in return, not count the users towards estimating
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Figure 4: Variations in utilities data for occupancy instances that have the same WiFi device count, showing that the utilities
data can complement WiFi data in estimating occupancy

occupancy. �is is a limitation of our proposed approach, as we
cannot account for users without any connected wireless device.

3.2 Complementing WiFi with utilities data
With the knowledge that the electricity demand and water con-
sumption data are both correlated to the occupancy, we further
investigate if the utilities data can be useful in estimating occu-
pancy when the WiFi device count is not su�cient. To evaluate
this, we investigate the variation in utilities data with changing
occupancy for instances where device-user count is constant. �is
is demonstrated in Fig. 4.

�e pa�ern of variation of electricity demand in Figs. 4a and 4c
show that for two di�erent types of buildings on campus, electri-
cal energy demand increases with occupancy (the relationship is
approximated using a linear �t). �is indicates that even with the
same device-user ratio values, the presence of smart meter data can
provide useful information towards the estimation of occupancy.
�e pa�ern of variation of water consumption rate with occupancy,
observed in Figs. 4b and 4d, also indicates a gradual increase in con-
sumption rate with occupancy. �e slope for the ��ed regression
line is smaller as compared to the electricity data instances, which
is in line with lower correlation values.

Based on these observations, we can conclude that when WiFi
device count is not enough for estimating occupancy, the utilities
data can complement it. �is motivates us to develop a multi-modal
fusion based occupancy estimation framework which we present
in Section 5. Our evaluation in Section 6 further con�rms that use
of multiple modality can indeed result in more accurate occupancy
estimation.

4 CLUSTERING FOR SCALABILITY
Since our objective is to estimate building occupancy based on the
three data sources, one possible solution is to develop an estimation
model (based on machine learning algorithms) for each building.
�is approach is likely to result in be�er estimation accuracy. How-
ever, it scales poorly in scenarios like smart cities where there can
be hundreds of buildings. �is scalability issue motivates us to
cluster buildings based on similarity in their characteristics, and
develop per-cluster occupancy estimation models. Depending on
the chosen characteristics and accuracy of clustering, such per-
cluster models are more scalable and likely to provide reasonable
estimation of occupancy. We divide the clustering methods into
occupancy-agnostic clustering and occupancy-aware cluster-
ing.

�e motivation behind this categorization is that a building, for
which corresponding occupancy estimation model is not trained,
can be assigned to a cluster �rst (based on similarity criteria de-
scribed below) and then corresponding cluster-speci�c model can
be employed for estimation. It is possible that ground truth oc-
cupancy is not readily available for the untrained buildings as
measuring occupancy requires costly deployment of sensors at
the entry/exit points or motion sensors to detect presence of an
individual in di�erent rooms. To cluster such buildings, it is de-
sirable that characteristics other than occupancy are considered
in clustering, speci�cally, building’s primary function and daily
or weekly variation pa�ern of the three data sources. We refer to
such a clustering technique as occupancy-agnostic clustering. If
the occupancy information is available for the untrained buildings,
the knowledge of building’s true occupancy and its relationship
with the three observed data sources is used for occupancy-aware
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(d) Dormitories

Figure 5: Weekly occupancy patterns of the four building types in the campus environment shows that clustering based on
building type/function clusters buildings with similar occupancy pattern but not similar absolute normalized occupancy

clustering. We use k-means clustering algorithm and optimize the
number of clusters using the change in the sum of squared errors.
We iteratively increase the number of clusters (while limiting the
maximum cluster count to less than 10) until we do not further
observe a signi�cant decrease in the error value.

4.1 Occupancy-agnostic clustering
Occupancy-agnostic clustering makes use of any information other
than occupancy for clustering. We explore two types of occupancy-
agnostic clustering as described next.

(1) Clustering based on building function: As shown in Ta-
ble 2, the buildings on campus have di�erent functions (e.g., class-
room buildings, o�ce buildings, dormitories, etc.). �e intuition
behind using a building’s function as the criterion for clustering
is that buildings with similar function are likely to have similar
behavioral pa�ern in terms of occupancy, and hence the three data
sources (WiFi, electrical energy and water consumption). For ex-
ample, buildings serving as cafeteria or dining halls are likely to
be more occupied during breakfast, lunch and dinner times. Since
the building function is already known, such a clustering does not
require any additional data analysis.

Fig. 5 shows occupancy pa�erns for a week for buildings of four
di�erent functional categories (laboratory, classroom, o�ce and
dormitories). In order to remove the impact of building size (area
and number of �oors), normalized occupancy (no. of occupants per
thousand square feet) is shown. It can be observed that (as expected)
each building has a repetitive pa�ern over the di�erent days of
the week - with occupancy being lower during the last two days

(weekends). In the classrooms, laboratories and o�ces, there is a
very clearly distinguishable higher occupancy period during “work-
hours” and lower occupancy outside work hours. Dormitories do
not have such a distinct di�erence and has peaks during nigh�ime.
However, even a�er normalization based on the size, the same
type of buildings do not have similar normalized occupancy. Also,
buildings falling in di�erent clusters can have similar absolute
normalized occupancy values(for example, Laboratory-1 and O�ce-
3).

�is way, the function based clustering is e�ective in clustering
buildings with similar variation in occupancy pa�ern. However,
it cannot accurately cluster buildings that have similar values of
absolute normalized occupancy.

(2) Clustering based on data pattern: We investigate another
occupancy-agnostic clustering where buildings are clustered based
on the similarity in pa�erns of the three data sources. �e intuition
here is that since occupancy is correlated with the data sources
(WiFi device count, electrical energy demand and water consump-
tion rate), this type of clustering will group the buildings that have
similar occupancy. �e bene�t of this approach is that, similar
to function-based clustering, no information about actual occu-
pancy is required for categorizing the buildings. �e clustering can
be performed through monitoring the three data sources over a
prede�ned period of time.

To evaluate the clustering, we calculate the mean data reading,
normalized for size, every 10 minutes for a total of four weeks for
each building in our dataset. Based on this data for each building, we
perform k-means clustering. �e clustering is performed separately
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(b) A cluster of buildings based on WiFi device count variation
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(c) A cluster of buildings based on water consumption

Figure 6: Buildings when clustered based on the weekly
patterns of the three data sources, do not necessarily have
similar occupancy patterns even when they belong to the

same cluster.

based on each data source, that is, one particular building is a part
of 3 di�erent clusters, one based on each data type. Fig. 6 show the
occupancy of buildings of the same cluster for each of the three data
sources. We observe that although buildings can have similarity in
their pa�erns of number of WiFi devices, electrical energy demand
and/or water consumption, their true occupancy can only be loosely
similar.
4.2 Occupancy-aware clustering
In cases when occupancy of buildings is available for clustering,
relationships between the data sources and occupancy can be mod-
eled, and buildings with similar relationships can be clustered. A�er
training separate models of each cluster, the occupancy can be es-
timated using the three data sources for each building. Di�erent
from the occupancy-agnostic approach, the occupancy values have
to be monitored through additional infrastructure (for example, by
deploying sensors) for certain amount of time. On the other hand,

Relationship with
Occupancy Mean R2 Score Std. Dev.

of R2 Score
WiFi Device Count 0.845 0.118
Electricity Demand 0.579 0.207

Water Consumption Rate 0.382 0.149

Table 4: Mean and standard deviation of R2 score for linear
regression model of di�erent buildings; linear model

approximates the relationship between a data source and
occupancy

the availability of true occupancy helps in development of more
accurate clustering.

In this type of clustering, we �rst model the relationship be-
tween individual data sources and occupancy for each building and
therea�er, cluster the buildings that have similar relationships.

Modeling relationship between individual data sources and
occupancy: We apply linear regression separately on number of
WiFi devices, electrical energy demand and water consumption
data for each building using its occupancy. We note that number of
WiFi devices and (domestic) water consumption are directly depen-
dent on number of occupants. Higher occupancy likely results in
more devices and more water consumption. However, in addition to
occupancy, there is no other building-speci�c a�ribute that directly
a�ects values of water consumption and WiFi device count. �e
linear regression model based on these two data sources is based
on only one input factor - occupancy.

On the other hand, electrical energy demand is also a function
of other factors including outside weather conditions. Depending
on the temperature, the building HVAC can consume more or less
to maintain the desired indoor temperature and ventilation. To
account for this, we also include our weather auxiliary data (Sec-
tion 2) in linear regression of energy demand in the form of outdoor
temperature. �e building size is invariant and modeled in the form
of intercept in the linear regression. �e linear regression model
based on electrical energy demand for each building is thus based
on two input factors - occupancy and outside air temperature.

We model the relationship of a data source with occupancy using
linear regression. For WiFi and water, this takes a form of ax+c = z
where a is the occupancy coe�cient, x is the occupancy, c is the
intercept (building dependent) and z is the value of data source
(i.e. WiFi device count or water consumption rate). For electrical
energy, the linear model take a form of ax + by + c = z where y is
the outside air temperature, b is the temperature coe�cient and z
is the electrical energy demand. We do not use these models for
actual occupancy estimation as they do not involve multimodal
information and are based o� just one of the three data sources.

To estimate the goodness of �t, the coe�cient of determination
or R2 score for each building’s regression model is calculated as

R2 = 1 −
∑
i (ri − r̂i )

2∑
i (ri − r̄ )2

(1)

where ri are the original data values, r̂i are the predicted data
values, and r̄ is the mean of the original data values. Values of
R2 score closer to 1 indicates a model which represents a good
�t. Corresponding values for our regression models are shown in
Table 4.
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Figure 7: Clusters formed based on the linear regression relationship between occupancy and each of the three data sources

Data Type Cluster No.
(Size) Classroom Laboratories O�ces Dormitores Cafeteria Hospital Special Use

WiFi
Device
Count

1 (17 buildings) 3 2 6 1 1 2 2
2 (18 buildings) 5 8 2 - 2 1 -
3 (11 buildings) - 5 3 3 - - -
4 (21 buildings) 7 6 4 2 2 - -
5 (9 buildings) - - - 9 - - -

Electricity
Demand

1 (8 buildings) 1 5 2 - - - -
2 (10 buildings) 2 2 2 3 - - 1
3 (11 buildings) 1 6 2 - 1 1 -
4 (18 buildings) 5 2 3 7 1 - -
5 (6 buildings) 1 3 - - 1 - 1
6 (3 buildings) - 2 - - - 1 -

Water
Consumption

Rate

1 (3 buildings) 1 - 1 - 1 - -
2 (9 buildings) 1 3 - - 2 2 -
3 (6 buildings) 1 3 2 - - -

Table 5: Clustering based on similarity of relationship between data sources and occupancy results in clusters with diverse
type of buildings

Clustering based onoccupancy relationship: �e occupancy
coe�cient (a) and intercept (c ) calculated from the three regres-
sion models of each building can now be used for clustering. Note
that we do not use the temperature coe�cient (b) from electrical
demand regression in clustering. Fig. 7 shows the three sets of
clusters (one set for each data source) a�er applying the K-means
clustering. �e size of the circle indicates the number of buildings
in the cluster. Table 5 shows how each cluster obtained using this
method contains a mix of di�erent types of buildings (e.g., o�ces,
dorms, etc.). It shows that clustering buildings based on similarity
of relationship between data sources and occupancy results in dras-
tically di�erent clusters compared to occupancy-agnostic function
or pa�ern based clustering.

We will show in Section 6 that the relationship based clustering
models are more accurate in occupancy estimation compared to
occupancy-agnostic models. However, they require occupancy
values in order to model the relationships.

5 MULTIMODAL FUSION FOR OCCUPANCY
ESTIMATION

Based on the clusters calculated using the techniques discussed
above, it is now possible to train an occupancy prediction model

for each cluster. One important design challenge before this is to
decide how the data from three sources can be fused for training.
Multimodal fusion has been studied extensively in machine learning
and data mining literature for analyzing and combining multiple
data sources together. In recent times, multimodal fusion has been
applied to a variety of data including multimedia [6, 49]. In general,
multimodal data can be fused using two following ways (refer to
Fig. 8):

(1) Feature-level (early) fusion: �is type of fusion involves
combining the features extracted from the various data sources
before learning from the data [20, 35, 36]. �e advantage of early
fusion is that it requires only one training phase that is performed
a�er the combination of the features. However, a disadvantage is
that if the data sources are signi�cantly di�erent, it is possible that
the features extracted from each cannot be represented in a similar,
fusible format.

(2) Decision-level (late) fusion: �e data from each modal-
ity is used to create a unimodal learning model and the decisions
obtained from the unimodal models are merged in the late fusion
approach. �is involves creating multiple learning models - one for
each modality and one for the �nal decision fusion [3, 53]. �is type
of fusion works even for signi�cantly di�erent input feature space
as the decisions from each dataset still have similar representation.
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Figure 8: Two types of multimodal fusion; feature-level
fusion is used with building function-based clustering, and

decision-fusion is used with data pattern-based and
occupancy-relationship based clustering

Common methods for decision fusion involve rule-based methods
[24], like weighted-sum, max-min or voting. Classi�cation algo-
rithms like Support Vector Machines, Logistic Regression, Bayesian
Networks, etc. have also been used.

5.1 Feature Space
In our system, the occupancy estimation is performed every 10
minutes. As a result, the following feature space for estimation is
built based on consecutive 10 minutes intervals.

• Number of WiFi devices: As the interval of calculating the
number of wireless devices at each location is equal to the
interval of estimation, we use the wi� device count as the
feature corresponding to the network data.

• Electric energy demand, which is collected every 10 seconds,
has 60 samples in the 10 minute interval. We calculate
<min, max, mean, standard deviation, range, sum of absolute
di�erences> based on these 60 samples.

• Water consumption rate, calculated every 30 seconds, has
20 samples in our time interval. We calculate the same 6
features as the electric demand data.

5.2 Occupancy Estimation Models
Using the feature space and multimodal fusion techniques described
above, we now train three occupancy estimation models for the
three type of clustering described in Section 4.

[M1] Building function based clustering and early fusion:
Since building function based clustering results in only one set of
clusters (not three sets as with other types of clustering), we use
early fusion where the features from each modality are combined
to form one feature vector. All the buildings in each cluster are
then combined to train a per-cluster linear regression model for
occupancy estimation.

[M2] Data pattern based clustering and late fusion: �e
clusters are created based on the pa�erns of each individual data
source (WiFi, electrical energy and water consumption). As a result,
one building can be part of three di�erent clusters (one for each data
source). �is makes feature-level fusion unsuitable in this scenario.
For each data source, we train a cluster-speci�c regression model
(based on all the buildings in the cluster) and arrive at a data-source
based decision. �e individual decisions from the models of all the
three data sources are further combined using linear regression

Type of
Clustering

Type of
Fusion

1 Source
(WiFi)

2 sources
(WiFi &
Electric)

3 sources
(WiFi, Water
& Electric)

Building
Function

[M1]

Feature
Level 27.3% 25.82% 24.4%

Data
Pa�ern
[M2]

Decision
Level 30.13% 23.7% 19.49%

Occupancy
Aware
[M3]

Decision
Level 24.14% 14.59% 13.22%

No Clustering
(Per Building

Model)

Feature
Level 22.73% 13.91% 13.69%

Table 6: Mean Absolute Percentage Error values for
occupancy estimation. �e occupancy-aware clustering
with decision level fusion yields lowest estimation error
among the three clustering based models (M1, M2, M3)

to estimate occupancy. We note that in the decision-level fusion
stage, learning is based on all the buildings as there is no clustering
involved in fusion.

[M3] Occupancy-aware clustering and late fusion: Similar
to the data pa�ern based clustering, since clusters are based on
relationship between occupancy and each individual data source,
we cannot perform feature-level early fusion. �e decisions ob-
tained from the cluster-speci�c regression models for each data
source is linearly combined (for all buildings) based on regression
coe�cients for occupancy estimation. �is approach is identical to
the previous approach with the only di�erence being the mode of
clustering. Decision-level fusion allows for easier accommodation
of cases when one or two of the data sources are not available (for
example, buildings not equipped with water meters).

6 EVALUATION
We now evaluate the clustering and fusion based occupancy esti-
mation models developed above using our dataset.

Performance Metric: To measure the accuracy of our estima-
tion models, we use Mean Absolute Percentage Error (MAPE) per
building, which is calculated as follows:

MAPE =
100
n

n∑
i=1
|
Ai − Ei
Ai

| (2)

where, Ai is the ground truth occupancy, Ei is the estimated occu-
pancy and n is the number of predictions per building. We use this
metric instead of using the Mean Absolute Error, as the la�er does
not capture the degree of the error compared to the true occupancy.
Fig. 9a shows that the range of ground truth occupancy for all the
buildings under consideration varies from 0 to 550.

A�er training the regression models for each cluster of build-
ings we test the models on a per building basis using 10-fold cross
validation. Overall our dataset is four weeks (28 days) long and has
144 samples of occupancy per building per day. We calculate the
MAPE value for all the estimation instances of a speci�c building
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Figure 9: �e proposed occupancy estimation framework with clustering and multimodal fusion results in low estimation
error especially in presence of all three data sources. It is observed that more than 90% of tested instances have occupancy

estimation error of less than 20%

and use the average to represent the performance of our system for
that building. �e accuracy is calculated based on three di�erent
sets of buildings according to the availability of the data sources.

• A total of 19 buildings in our dataset have all the 3 sources
of data (WiFi, electricity and water). For these buildings,
all the 3 sources of data are used to estimate occupancy.

• 56 buildings on campus with at least 2 sources of data,
speci�cally, electricity data and WiFi data. �e results
reported for these 56 buildings are based on models built
on the basis of two data sources.

• We build estimation models based on 1 source of data, the
wireless device count, for all the 76 buildings on campus.

Occupancy estimation accuracy: Occupancy estimation re-
sults for the aforementioned cases are shown in Table 6. �e results
show that using multi-modal data to estimate the occupancy is actu-
ally bene�cial as increase in the number of sources directly result in
a reduction of error. It can be observed that clustering the buildings
based on the relationship of data source to the occupancy (M3)
produces the least error. �is con�rms that occupancy estimation
models should be developed for buildings that have similar data
source and occupancy relationships. �e percentage error values
for the occupancy instances, divided into bins of 100, for all the
buildings in this model are shown in Fig. 9b. We can observe that
the maximum value of MAPE for any instance, when occupancy-
aware clustering is employed, is less than 45%. Overall, we observe
that the absolute percentage error increases for higher occupancy
instances. In the occupancy-agnostic methods, data pa�ern based
clustering yields be�er estimation accuracy compared to building
function based clustering. �is re�ects that even though it is occu-
pancy agnostic, data pa�ern based clustering in fact performs be�er
in grouping buildings with similar occupancy pa�erns compared
to building function based clustering.

For a new, untrained building, we can deploy dedicated sensors
for a short duration of time (for example, two weeks) and collect

Data Sources
in Model

Data Sources in
Compared Model % Improvement

3 Sources 2 sources 9.4%
3 Sources 1 source 48.3 %
2 Sources 1 source 43 %

Table 7: Improvement in the estimation accuracy with
addition of data sources to occupancy estimation model

ground truth data. Based on this ground truth information, occu-
pancy aware clustering can be performed. Depending on the cluster
this new building belongs to, we can perform late fusion (M3) using
a pre-trained model for occupancy estimation for a longer dura-
tion (beyond the two week period). On the other hand, if it is not
feasible to get ground truth occupancy values for a new building,
we can use the WiFi and utilities data pa�ern from that building to
�nd which cluster the building belongs to. �erea�er, a pre-trained
model corresponding to the cluster can be chosen and decision
level fusion (M2) can be employed for occupancy estimation. In
most practical scenarios, where occupancy data cannot be retrieved
easily, this model (M2) could be used to calculate occupancy with a
minor compromise in accuracy.

Impact of multiple modalities: �e improvement in accuracy
as we move from 1-source based model to the 3-sources based
model for the occupancy-aware clustering is shown in Table 7. �is
variation in the per building MAPE values for a few representative
buildings are shown in Fig 9c. It can be observed that addition of
electric demand information to the WiFi data produces signi�cant
improvement in the performance (improvement of 43%). It also
con�rms that the presented multi-modal fusion techniques are
e�ective in supplementing WiFi with electrical energy demand. �e
addition of the third source (water consumption) results in decrease
of estimation error (improvement of 9.4%), albeit not signi�cantly.
As a result, in buildings without water metering available, the
presence of smart-meter in addition to WiFi can provide reasonable
accuracy for occupancy estimation.
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Length
of Data

3 sources
in model

2 sources
in model

One source
in model

1 week 16.7 % 17.79 % 24.08 %
2 weeks 13.89 % 15.41 % 24.47 %
4 weeks 13.22 % 14.59 % 24.14 %

Table 8: Increasing the duration of data available for
monitoring and training increases reduces the estimation
error but the improvements are limited beyond two weeks

Impact of clustering: One of the advantages of our occupancy
estimation approach is the reduction in number of prediction mod-
els that are required to be trained. In the instance of building
function based clustering, the number of trained models are equal
to the number of clusters (�ve in our dataset). For clustering with
decision level fusion, the unimodal decision making phase involves
training models equal to the total number of clusters in all three
modalities. In addition, another model needs to be trained for the
decision fusion. In our model, there are �ve clusters for WiFi data,
six for electric data and three for water data - resulting in 15 models
including the decision fusion. On the other hand, if estimation mod-
els were built for each building, our dataset would end up having
76 di�erent models.

Table 6 shows that our clustering-based models in fact achieve
similar accuracy to that of per-building models albeit with sig-
ni�cantly fewer trained models. Also, the use of cluster-speci�c
models is particularly bene�cial to untrained buildings in reducing
the training overhead.

Impact of training duration: We now evaluate the impact of
duration of data available/monitored while clustering and training
on estimation accuracy. In case of occupancy aware clustering
and decision level fusion (M3), it is required that data from the
three sources and the ground truth occupancy are monitored for
a signi�cant period of time. �e results presented in Table 6 are
based on data collected from the sources for a duration of four
weeks. However, in practice, it is bene�cial if the monitoring/data
collection duration can be reduced while ensuring reasonable accu-
racy. To this end, we re-cluster and retrain our models with data
collected for varying durations. Table 8 show the error values as
the training data duration varies from one week to four weeks. We
observe that increasing the training period from one week to two
week results in noticeable increase in accuracy which is likely due
to improved clustering. However, further increasing the training
duration from two weeks to four weeks does not provide compara-
ble improvements. �is suggests that biweekly pa�ern is su�cient
for training our estimation models. However, our models do not
consider seasonal pa�erns or changes due to holidays or breaks
in the university. Further investigation using data collected over
a longer duration (over a year) is necessary to observe how our
models perform during a di�erent season or during the summer
break. We leave this exploration to future work.

7 RELATEDWORK
Occupancy Detection and Estimation: Estimating building oc-
cupancy has bene�ts from the point of view of energy-e�ciency,
crowd control, building security, etc. �e major challenge in e�-
cient occupancy detection is �nding a method that is inexpensive

(does not require costly sensor deployment) and reliable (can be
implemented across buildings with diverse characteristics).

Utility Data: One traditional approach of non-intrusive occu-
pancy detection relies on observing the energy usage of a building.
�is data usually comes in the form of monitoring electricity us-
age from smart meters [11, 26, 27]. �ese approaches monitor the
change in the smart meter readings to detect if a building is in
an occupied state. Real-time electricity data can be used for e�ec-
tive real-time occupancy detection which can be used for building
automation systems. �e e�ect of occupancy on electricity data
variation is explored in [33] and [15] and these works show that
occupancy is just one of the various factors that e�ect the smart
meter readings. Utilization of smart meter is popular because of
its ubiquity and accessibility in commercial and residential build-
ings. Although detecting whether a building (or building zone) is
occupied can be achieved accurately using smart meter data, it is
not viable to determine the number of occupants. To counter this
problem, [51] has combined motion-based sensors with electricity
data to detect number of occupants in a house. Similarly, [22] uti-
lizes an individual power monitoring system in conjunction with
ultrasonic sensors, motion sensors and WiFi access points within a
commercial building se�ing to detect user presence.

Wireless Networks: A number of research e�orts have utilized
information available from the WiFi network to count occupants in
a building. �is is an a�ractive method because most commercial
and residential buildings already have WiFi infrastructure in place
and therefore do not require additional installation or cost. In
[18, 19], WiFi has been used to detect pedestrian �ow within a large
area by tracking the broadcasted MAC address of mobile devices of
pedestrians. Analyzing pedestrian �ow can provide useful insights
during times of disaster and also assist in urban planning. �e
presence of multiple users a�ect the WiFi signal strength and the
Channel State Information values. Authors in [13, 37] exploit this
change in measurements and train prediction models to calculate
occupancy in smaller areas or buildings. Scanning the received
signal strength (RSS) values from multiple APs in users’ phones
or laptops [21, 25, 30] have been used to locate users in a speci�c
zone of a building, and consequently, to �nd number of occupants.
WiFi based approaches have also been utilized within city buses in
[23] to detect occupancy and to passively track patrons by using
broadcasted MAC addresses of user devices.

Other deployed sensors: Deploying speci�c sensors for detect-
ing presence of a user can provide high-accuracy and room-level
occupancy estimates. But installing these additional hardware is
potentially expensive and time consuming. One commonly used
approach involves use of PassiveInfrared (PIR) sensors inside rooms
[5, 14] to detect the presence of an individual. Since detecting idle
occupants in this method can be di�cult, [45] proposed deploying
of such sensors in the walkways or entry/exit points. Use of acous-
tic sensors [9, 43, 44] can aid in occupant detection as the human
body re�ects sound waves in ways di�erent to other furniture in
a room. A number of research works have used ultrasonic signals
and observed the multipath characteristics or changes in received
signal strength as compared to the non occupied state to detect
occupancy. Image processing techniques applied on images taken
by deployed cameras [47, 50], or monitoring the thermal hotspots
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in camera based thermal sensors [8, 42] can also help in count-
ing occupants. Deploying ambient motion sensors [29, 32, 39] or
pressure sensors [38, 46] have also been used to detect occuapancy.
[52] has combined CO2 sensors and ambient light sensors with the
afore-mentioned sensors to detect the occupancy.

Many of the sensor based approaches (thermal imaging, motion
sensors) are e�cient in detecting low occupant counts and fail in
estimating higher values of occupancy. In addition to cost incurred
from se�ing up sensors, another challenge in deploying sensors
in speci�c rooms is the preservation of user privacy. Usage of
camera based techniques have serious �aws related to user privacy.
�is approach of occupancy detection has mostly been used to
count occupants within speci�c zones or areas of buildings and not
estimate the entire occupancy as a whole.
Other Related Work: Many of the occupancy detection tech-
niques are agnostic to varying contextual information, speci�c
of the space where the occupancy is being detected. �e behav-
ior of the sensors (intrusive or non-intrusive) can vary signi�-
cantly depending on the building context. Use of smart meter data
to decipher contextual household characteristics, like age-range,
employment-status, �oor area, number of occupancts, number of
bedrooms, etc. has been studied in [7]. Other research works
[40, 41] have discussed how varying context, like presence of hol-
idays, or low-income levels, or extent of urbanization e�ect the
overall energy demand. �e electric demand change for these works
are coarse-grained, whereas, in this work, the focus in on more
�ne-grained variation related to context. Location context and its
e�ect on usage of WiFi network and devices have been discussed
in [48] and [16]. Contextual information has also been extensively
used for e�cient recommendation systems [4], be�er sentiment
analysis and opinion mining [10] and mobility prediction [28]. An-
other important related work is about users having multiple WiFi
enabled devices. Recent works [1, 12] have shown that more than
50% users possess multiple devices and that di�erent locations and
device types govern the usage of the WiFi network in various ways.
Our proposed work is in line with the research on multi-device
users and exploits their existence for occupancy estimation.

8 CONCLUSION
In this paper, we investigated the feasibility of estimating occupancy
using three readily available, non-intrusive building data sources -
WiFi device count, electrical energy demand and water consump-
tion rate. We �nd that although the utilities (electricity and water)
data by themselves can only provide coarse-grained building occu-
pancy estimation, they can supplement the WiFi data in achieving
�ne-grained, accurate occupancy estimation. We use WiFi session
logs with username information to estimate our ground truth -
which can be limited to a certain extent as it does not count the
percentage of users with wired devices or users without devices.
�rough occupancy-agnostic and occupancy-aware clustering, we
propose methods to reduce the per-building training overhead by
developing occupancy estimation models for building clusters. We
evaluate our clustering and multi-modal fusion techniques using a
large university dataset collected over 28 days from 76 buildings.
Our evaluation shows that clustering based on occupancy-data
source relationship with decision-level fusion achieves an accu-
racy of 13.22%. We use the occupancy-agnostic clustering scheme

to facilitate the occupancy estimation of new untrained buildings
where occupancy ground truth is unavailable to perform the initial
clustering. We also observe that addition of water consumption
data does not provide signi�cant improvement over WiFi and smart
meter based estimation. In our approach, we use linear regression
for building our estimation models. Change in the estimation per-
formance by using non-linear approaches are le� as a scope for
future work.
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