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ABSTRACT
Individuals with the knowledge of electrical energy consumed by
them can take steps to reduce their energy footprint, which can lead
to energy conservation. Current energy apportionment schemes ei-
ther require prohibitively large amounts of user-appliance training
or performs poorly in detecting user-appliance interaction when
there are multiple users and appliances in close proximity to each
other. In this paper, we build MotionSync, a privacy-aware, scal-
able and robust personal energy analytics system. The system ex-
ploits the similarity between the motions of user’s arm/hand (cap-
tured through wrist-worn wearable) and appliance interface (cap-
tured through a motion tag) to determine user-appliance interaction.
We show that commonly used plugload devices can be classified in
five categories based on their interfaces - button, door, free-floating,
knob and switch. Based on this, it is possible to train a generic
machine learning model for each category to detect user-appliance
interaction with a significant lower training overhead. MotionSync
is privacy-aware and allows users to measure their own energy con-
sumption without sharing any private information with building in-
frastructure. MotionSync is also robust to crowded scenarios since
it does not depend on user’s location. We implement and evaluate
our system on a real testbed, and find that it can determine user-
appliance interaction with an average accuracy of 92.5% and has
low average false positive rate of 8.6%. We also show that pre-
trained models of five interface types provide very high accuracy
even for new and untrained appliances and users, eliminating per-
appliance and per-user training overhead.
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1. INTRODUCTION
Determining the amount of energy consumed by each individ-

ual user in a home or an office (also referred as energy appor-
tionment) is crucial in energy conservation and reducing carbon
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footprint. Accurate energy apportionment and eco-feedback have
shown to reduce the per-user energy footprint by a considerable
amount (7.6% - 19.4% for home energy usage [1]).

Unfortunately, energy apportionment is a challenging problem
encompassing many complex aspects. It requires accurate deter-
mination of usage of different appliances by users. Many of the
current solutions [2, 3] rely on tracking a user’s location in a build-
ing to estimate her proximity from different appliances. The loca-
tion based approaches perform poorly in the case of multiple ap-
pliances and users close to each other due to insufficient accuracy
of current localization techniques. Additionally, they can reveal
user’s location and activity traces to the building, reducing user’s
motivation to subscribe to energy-feedback systems. Other ap-
proaches [4] based on user-object interaction can provide location
independence. However, they require a large amount of training
for each appliance and user, making them difficult to deploy for
everyday usage in homes and offices.

With the increasing popularity of wearable mobile devices, it has
become possible to sense and infer a wide variety of user activities.
Similarly, due to advances in ubiquitous computing and Internet-
of-Things (IoT), more and more everyday devices/objects are be-
coming smarter. In this paper, we present a novel energy appor-
tionment technique that leverages user’s wrist-worn wearables and
appliances equipped with motion sensors. We show that there is
a strong similarity between the motion of user’s hand/arm and the
motion of appliance’s interface when the user operates the appli-
ance. The motion can be captured using low-power, low-cost IMU
sensors (accelerometer and gyroscope) in the motion tags which
can be deployed on the interface (e.g. switch, knob etc.) of the
appliances. Most current wrist-worn devices such as smartwatch
or fitness trackers are already equipped with the IMU sensors. The
motion matching can be used to detect user-appliance interaction,
which can then be integrated with the information available through
the smartmeter for accurate energy apportionment.

In this work, we design and implement MotionSync, a personal
energy analytics system that leverages motion matching for de-
tecting user-appliance interaction. It has three salient features -
(1) MotionSync does not require user’s location to detect interac-
tion with an appliance. This independence from location allows
accurate determination of user-appliance interaction events even
when there are multiple users and appliances in a close proxim-
ity (for example, users in an office kitchen during lunch time). (2)
MotionSync is private, which means that it does not reveal any user
information such as her location traces, history of appliance usage
etc. to any entity in the building. Instead, with the help of building
sensors (motion tags on appliances and building smartmeter) and
personal devices (wearable and smartphone), it enables a personal
energy auditing. (3) MotionSync significantly reduces the required



training by eliminating per-appliance and per-user training. It relies
on generic training that is only required for the category of appli-
ance interface.

Our work is the first step towards a far-reaching research objec-
tive of creating an accurate and personal energy analytics system
where a user can track her own energy consumption on a daily
basis across multiple buildings (home, office etc.) in a privacy-
preserving manner. In this paper, we approach the energy appor-
tionment problem through the point-of-view of user-appliance in-
teraction. Although this approach is effective in cases where an
appliance is serving only one user at a time (for example, a user
heating up food in a microwave), it cannot properly apportion the
energy when the appliance is serving multiple users (for example,
a user switches on lights in a conference room with many other
users) without integrating additional information. To the best of
our knowledge, this limitation exists in majority of current appor-
tionment schemes including the ones which depend on user loca-
tion to detect appliance interaction. In this work, our objective is
to make the user-appliance interaction-based apportionment more
robust (multiple users, appliances in close range), private and scal-
able (significantly reducing training overhead).

The contributions of the work can be summarized as follows -

1. We propose categorization of commonly used plug-load ap-
pliances into five classes based on the type of their interface
- button, knob, switch, door and free-floating. Because users
interact with different appliances of the same class in a simi-
lar way, this categorization enables us to develop one generic
machine learning model for each category. It also eliminates
the need of separate training for each new appliance and user.

2. We show that when a user interacts with an appliance, for a
very short time duration, the motion of user’s arm/hand ex-
hibits strong similarity with the motion of appliance interface
(e.g. switch, door). This observation can be used for de-
tecting which user interacted with which appliance. We pro-
vide a motion matching framework where low-power motion
tags can be deployed on appliance interfaces to measure their
motion and compare it with the motion of user’s wrist-worn
wearable.

3. We implement MotionSync as a practical system using com-
pact embedded boards as motion tag, wearables and smart-
phone, and evaluate it using 24 appliances and over 1400
user-appliance interactions. We find that MotionSync can
determine user-appliance interaction with an average accu-
racy of 92.5% across all appliances, users and interaction
events with average false positive rate of 8.58%. Using generic
models, the average accuracy is observed to be 90.1% and
90.5% for untrained appliances and untrained users respec-
tively.

The rest of the paper is organized as follows. Section 2 dis-
cusses the related work. Section 3 provides an overview of our
MotionSync with its design goals. Section 4 outlines the motion
matching algorithm and its integration with smartmeter data for
energy apportionment. Implementation details and evaluation of
MotionSync are discussed in Section 5. We discuss the relevant
insights, limitations and scope for future work in Section 6.

2. RELATED WORK
Energy Disaggregation: Disaggregation is an important prob-

lem within the field of energy conservation and analytics. En-
ergy disaggregation methods can be separated into two main cate-

gories of Intrusive Load Monitoring (ILM) techniques [5] and Non-
Intrusive Load Monitoring (NILM) techniques [6]. These methods
are helpful in Appliance Load Monitoring (ALM) which is essen-
tial in energy management solutions. ILM methods rely on intru-
sive (located within the living environment) appliances that use a
low-end metering device, while NILM methods generally rely on
using machine learning to disaggregate the energy usage from a
centralized meter panel. Since NILM requires a pre-training phase,
it is difficult for any NILM method to perform well in discerning
all types of different appliances having differences in size, make
or manufacturer. Most energy disaggregation approaches attempt
to detect the appliance states or state transitions to aid in energy
disaggregation [7–12].

One approach uses smartphone acoustic sensors in conjunction
with NILM methods to determine the ON/OFF states of appliances
to aid in energy disaggregation [7]. However, the appliances cov-
ered by acoustic sensors are limited to noise generating appliance
such as fans, heaters, dryers and washers and also compromises the
privacy of the user by using an always-listening microphone sensor.
Some other approaches use sensors that measure electromagnetic
field changes to determine state transitions and the user of appli-
ances [8, 9]. In [13], the authors have used deep neural networks
for disaggregation, whereas [14] has used unsupervised clustering
to improve electric appliance-based event detection. Some research
works have used information regarding users’ activities of daily liv-
ing (inferred from sensors on users’ smartphones) and users’ in-
door location (inferred from Wi-Fi signal strength data) [15, 16]
to reduce the search space of electrical appliances considered for
disaggregation. In [10], authors make use of smart plug sensors,
perform feature extraction and apply machine learning to estimate
appliances states for detecting user interaction events. Real-time
measurement of power consumed by a plug load has been pro-
posed in [17] which attaches a small unobtrusive sensor directly to
the plug and wirelessly transmits the power data to nearby smart-
phones.

Energy Apportionment: MotionSync’s primary objective is
the apportionment [18] of energy usage to users; this is different
from energy disaggregation’s primary objective of mapping energy
usage to appliances. Our system seeks to determine a user’s per-
sonal energy usage for plug load devices within the home, which
provides a personalized feedback of energy usage. A number of
research efforts have explored the challenge of apportioning en-
ergy usage to individual users in home or office settings. The main
challenge of apportioning energy usage to users is determining the
match between a user and an appliance usage event. The general
approach to matching a user and an appliance is done by tracking a
user’s location within a building or office [2,3,19–21]. The authors
in [22] use wrist worn magnetic radiation sensors to detect the user
interaction with devices based on the change in the surrounding
magnetic field.

The location-based systems match an appliance to a user based
on their proximity and rely on tracking a user’s location within a
home or office environment either by RFID sensors [19,20], track-
ing sensors within the home [3], or by WiFi localization [2, 21].
Many of these localization methods depend on building sensors to
track user’s location, creating a privacy leakage issue where the
user’s location, activity trace, and interaction with appliances can
be monitored by the building. Additionally, state-of-the-art WiFi-
based localization accuracy is not always sufficient to distinguish
between two or more appliances or users within the range of in-
accuracy. MotionSync attempts to provide personal energy usage
feedback to the user while preserving the privacy of the user with-
out the need of the user’s location. In [3], the challenge of multi-
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Figure 1: MotionSync overview, sample user-appliance interaction and multi-user scenario

ple users present in the same room is handled by the utilizing the
knowledge of the proportion of time for which the user is present in
the area to the total operating time of the device. This implies that
users that do not cause an usage event will be penalized with energy
usage for being in the vicinity of an appliance during its use. In [19]
and [21], a study set of two people were used in the experiments.
In the presence of increasing number of non-users, our system will
be able to determine the correct user because of the uniqueness of
the matching motion between the true user’s wrist-worn wearable
and appliance’s motion tag.

Wrist-worn Motion Sensors: Our system relies on the match-
ing of accelerometer and gyroscope data in order to determine user-
appliance interaction. Many research projects have focused on uti-
lizing motion data from a wearable device to provide new and inter-
esting insights. In [23, 24], wrist-worn motion data is used to pro-
vide finger-hand gesture recognition and remote interaction through
arm tracking, whereas [25] explores how motion sensors from users’
smartwatches can reveal what an user is typing on a keyboard.
In [26] the authors build a model to recognize smartphone hotwords
(like, Okay Google) by utilizing the sensitivity of accelerometer to
users’ voice. Chang et. al use accelerometers embedded in tele-
vision remote controls or mobile devices with machine learning in
order to identify specific household members [27] and Ranjan et.
al proposes the use of wrist worn sensors to identify object-user
identification [4]. These method rely on training a model for nu-
merous features for every unique user. MotionSync seeks to create
a method that ensures accurate user-appliance identification but is
not reliant on training per user or per appliance.

3. SYSTEM OVERVIEW
In this section, we describe the design goals, discuss the main

idea behind MotionSync, and provide its overview.

3.1 Design Goals
Our personal energy analytics system is designed to meet the fol-

lowing goals. These goals are related to the limitations of previous
approaches as discussed in Section 2.

(1) Limited Training: Current models of user-appliance inter-
action identification can be used for energy apportionment. How-
ever, they scale poorly due to their dependence on training required
for each new appliance and user. Our goal is to develop a system
that can substantially reduce the required training by eliminating
the per-appliance and per-user training.

(2) Private Analytics: Previous research on energy apportion-
ment heavily relies on tracking user’s location and actions through

sensors deployed in the buildings. This can reveal private user in-
formation such as location, which appliance a user used, activity
traces etc. in homes and offices. Our goal is to design a private
energy analytics system where a user can determine her own en-
ergy footprint through the help of sensors deployed in the building,
without revealing any private information beyond her own devices.

(3) Multi-user Scenarios: Current approaches of energy appor-
tionment often rely on user’s location to determine user-appliance
interaction. These approaches are not only limited to stationary
appliances, but also to a single user within the localization range
of accuracy. With state-of-the-art localization accuracy, they also
cannot accurately apportion energy in the cases with multiple users
close to each other in a room (e.g. two users in a kitchen). Since
such multi-user scenarios can be very common in homes and of-
fices, our goal is to design an accurate energy apportionment tech-
nique that does not rely on location estimates.

3.2 Approach
To meet the design goals mentioned above, we propose a novel

personal energy analytics scheme through matching the motion of
a user’s arm/hand and the appliance the user interacted with. We
show that appliances can be equipped with motion tags, and the
motion captured by the tag when a user interacts with the appli-
ance can be matched with the motion of the user’s arm/hand cap-
tured by her wrist-worn wearable. With increasing adaptation of
Internet-of-Things (IoT), it has become possible to embed sensors
in everyday objects such as appliances. Fig. 1a shows an overview
of MotionSync. Here, the motion data captured by user’s wrist-
worn wearable (referred as smartband here onward) can be trans-
mitted to the user’s smartphone. Similarly, when a user interacts
with an appliance, as seen in Fig. 1b, the motion tag on the ap-
pliance broadcasts the observed motion data. The broadcast can
be performed using any low-power, short-range wireless commu-
nication standard such as Bluetooth Low Energy (BLE). This data
is also received by user’s smartphone, which in turn compares the
motion tag data with the smartband data to determine if the owner
user interacted with an appliance or not. This user-appliance inter-
action can then be combined with the building’s smartmeter data
to apportion the appliance’s energy usage to the user (more details
about apportionment in Section 4.4).

One main advantage of MotionSync’s motion matching approach
is that it does not require per appliance or per user training. Instead,
the training in MotionSync can be generalized to per category of
appliance interface. As we will discuss in Section 4, motion match-
ing is accomplished through training for five appliance interface
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Figure 2: Appliances are categorized in five categories based on their interface type. The ways in which users typically interact with an
appliance of each category is depicted using a red arrow

types - button, door, free-floating, knob and switch. By separating
training on different types of appliances, the presented model sub-
stantially reduces the amount of training required from per user, per
appliance to simply per appliance type.

MotionSync is privacy-aware because it does not reveal any in-
formation about a user’s interaction with an appliance to any en-
tity in the building. Specifically, when the appliance tag transmits
its motion data, it does so through broadcast. This ensures that
the user’s smartphone can receive the data without establishing a
connection with the motion tag (which could lead to the tag know-
ing/remembering user/phone identity). Although this broadcast can
be received by other users also in the vicinity, it will not result in
a match with the motion of their smartband. Once a user’s smart-
phone has detected that the user interacted with an appliance, it can
lookup the smartmeter data to determine the energy usage of her
appliance interaction (more details in Section 4.4). Also, our sys-
tem is different from other approaches [3,19,21] where the building
measures the energy consumption of users by tracking their loca-
tion and/or proximity to appliances. MotionSync is personal en-
ergy analytics system where a user can choose to install the smart-
phone app and subscribe to measuring her personal energy con-
sumption locally on her smartphone.

Additionally, the system is effective in scenarios with many users
in the vicinity of an appliance. For example, location-based ap-
proaches [3, 19, 21] perform poorly in cases like home or office
kitchen where there can be many appliances and possibly multiple
users depending on time of the day. An example of multiple users
and appliances is shown in Fig. 1c. It can be observed that even
when multiple users are receiving motion data from all appliances,
the system matches only the specific user who is interacting with
the appliance because of motion matching with user’s smartband.
As a result, accurate apportionment can be performed.

We note that MotionSync can allow a user to accurately estimate
personal energy usage anywhere and not limited to home environ-
ments. We envision a scenario where a user can estimate personal
energy usage not only at home but also at work and leisure en-
vironments, given that appliances are equipped with motion tags
and smartmeter data is available (possibly through a cloud ser-
vice). However, our evaluation is primarily concerned with homes
and small office scenario with a focus on plugload devices (appli-
ances, electronics, lighting etc. [28]). In its current form, the sys-
tem equally apportions the energy consumption of other types of
systems including air conditioning, heating etc. and any other sys-
tems that are not directly controllable by user’s interaction with a
device or an appliance.

4. MATCHING ALGORITHM
MotionSync relies on low-cost, low-power accelerometer and

gyroscope sensors commonly available in today’s wrist-worn wear-
ables such as smartwatches or fitness trackers. The motion tags
also includes the two IMU sensors for capturing the appliance mo-

Button Light and Fan Button, Microwave
Coffee Maker, Desktop Button

Door Oven, Washer, Dryer

Free-Floating Phone and Laptop Charger,
TV Remote, Hair Dryer

Knob Stove Knob, Espresso Machine,
Dishwasher, Convectional Oven

Switch Light and Fan Switch, Toaster,
Rice Cooker, Water Heater

Table 1: Electrical appliances under each of the five interface types

tion. The objective of the motion matching process is to accurately
match the accelerometer and gyroscope data available from appli-
ance motion tag and user’s smartband.

The motion matching is complex because even though the ap-
pliance tag observes motion only when it is interacted with, the
user’s wrist IMU sensors constantly register motion due to a user’s
arm/hand movements. We address this using an observation that
for a short duration of interaction (i.e. user pressing a light switch),
the motions of appliance tag and user’s arm are similar. When care-
fully matched, they can accurately reveal a user-appliance interac-
tion event. The magnetometer sensor is not used in our system, as
we observe that the use of electric appliances result in significant
change the magnetic field readings.

To eliminate per-user and per-appliance training, we categorize
the appliances based on their interface type as discussed next.

4.1 Appliance Categories
In MotionSync, we group the appliances into five different types

of interfaces: (1) button, (2) door, (3) free-floating, (4) knob and
(5) switch. We find that most common appliances found in homes
can be categorized in one of these interface types as shown in Ta-
ble 1. The intuition behind this interface type based categorization
is that it captures the underlying nature of motion when users in-
teract with appliances, allowing us to reduce the training to five
different interface types.

The motion tag can be attached on the interface (i.e. knob of a
dishwasher or door of a dryer) to make sure that there is sufficient
similarity between the motion of the tag and user’s arm/hand. Note
that the motion tag is only used to detect user-appliance interaction.
It is not used for detecting the switching ON/OFF of the appliance.
MotionSync relies on the smartmeter data for determining when
the appliance of switched ON and OFF (Section 4.4). If an appli-
ance possesses multiple different types of interfaces (e.g. switch
and knob on a toaster), the motion tag is affixed to any of the inter-
faces that the user interacts with. In some cases, using the interface
which triggers the ON/OFF state change of the appliance can be ad-
vantageous (such as the pull down switch of a toaster instead of the
duration knob seen in Fig. 2) for easier integration with smartmeter
readings.

We now define the five interface types and the characteristics of



(a) User smartband motion

(b) Motion of tag on appliance

Figure 3: Motions of user’s smartband and tag on appliance when
user interacts with the knob interface of a gas stove. The figures
on the right show accelerometer motion of both sensors for exact

period of interaction, whereas the figures on left show motion for a
longer time period before and after the interaction.

resultant motion. Fig. 2 shows corresponding example of appliance
of each type.
(1) Button: A button type interface is characterized by a small in
and out motion. An example of this is seen in a microwave button
or small tactile buttons on a coffee maker.
(2) Door: A door type interface is characterized by a large smooth
rotary motion. An example of this is seen in an oven or a door of a
washing machine.
(3) Free-Floating: Free floating is a class of interfaces that does
not rely on a consistent pattern of motion between the user and ap-
pliance. The way the user interacts can vary and is characterized
by unconstrained motion. An example of this can be a hair dryer,
laptop charger or a TV remote.
(4) Knob: The knob type interface is a class of interfaces charac-
terized by a quick, small rotary motion. An example of this type of
motion is seen in most stove tops.
(5) Switch: A switch type interface is characterized by a small up
and down motion. An example of this is seen in a standard light
switch or on a toaster.

It is worth noting that the same appliance or device (for example
a light) can have button as its interface in one building and switch in
another. However, because MotionSync simply relies on the type
of interface (not type of appliance), user-appliance interaction can
still be detected simply by choosing appropriate trained model of
the given interface type.

4.2 Exploiting Similarity in Motion
In this section, we show that the motion observed on a user’s

smartband and the appliance tag are similar within the short dura-
tion of user-appliance interaction. Accelerometer data is oriented
under the earth’s axes for the user and the appliance tag. This is
done to keep gravity from polluting accelerometer data when the
user and appliance experience different orientations.

Fig. 3 shows the accelerometer data for the motion tag and user’s
wrist-worn smartband when a user rotates the knob of a gas stove.
It can be seen that the observed acceleration in 3 axis for the motion
tag remains unchanged before and after the motion. On the other
hand, user’s arm/hand movements before and after the interaction

(a) Motion of user’s smartband

(b) Motion of appliance tag

Figure 4: Z-axis gyroscope motion of user’s smartband and
appliance motion tag when user switches on a light button. The
figures on the right show motion of both sensors for exact period

of interaction whereas, the figures on left show motion for a longer
time period before and after the interaction.
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(b) Appliance tag motion

Figure 5: Smartband and motion tag gyroscope readings for 10
user interactions with the door of an appliance

can result in large changes in acceleration for user’s smartband.
However, we observe that for the short time duration of interac-
tion (from 3s - 4.6s), both accelerometer sensors exhibit noticeable
similarity. Similarly, Fig. 4 plots Z-axis gyroscope data for tag and
smartband when a user pushes a button (shown in Fig. 2) to switch
on a light. Due to the relative location of the tag and the button,
pushing of the button results in a rotary motion, which however
small, is captured in a gyroscope axis. In Fig. 4, it is also observed
that even for a short period of interaction (e.g. pushing a button),
significant similarity is observed between tag and wristband mo-
tions.

Motion Tag Broadcast: As discussed in Section 3.2, the appli-
ance motion tags broadcast their accelerometer and gyroscope data,
which is then received by smartphones of users in close proximity.
To save energy, the tags can only broadcast the data when an in-
teraction event happens and refrain from broadcasting when they
are idle. From Figs. 3b and 4b, it can be observed that acceleration
and speed of rotation remain unchanged when the appliance is idle.
MotionSync utilizes a simple threshold to detect when the appli-
ance is being interacted with. When the threshold (for accelerom-
eter and/or gyroscope) is crossed, the tag starts broadcasting the
sensor data. The broadcast stops when the sensor data is observed
to be lower than the threshold for a certain amount of time.

Robustness of Motion Similarity: We further evaluate the simi-
larity between tag and wristband motion by studying its robustness
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Figure 6: Comparison of computed DTW distances for interaction
and non-interaction events in appliances with free floating and

switch based interfaces

over multiple user-appliance interaction events. Fig. 5 shows the
gyroscope data for 10 different events of user’s interaction with the
door of a washing machine. Note that in all experiments presented
throughout the paper, users interact with the appliance in their nat-
ural and unconstrained manner. It can be observed from Fig. 5 that
even though there are more similarities between different tag events
than there are between different user events, the general motion of
the tag and the user show similar patterns. Higher variance within a
user’s hand motion is expected as hand motion is more volatile and
random than a static tag. Despite the higher variance in user data,
the trend of the hand motion is consistent over multiple instances of
interaction. This means that the similarity between tag and wrist-
band motion can be exploited for robust detection of user-appliance
interaction.

4.3 Dynamic Time Warping and Learning
Once the accelerometer and gyroscope data from user’s smart-

band and appliance motion tag is available on user’s smartphone,
the motion matching procedure is initiated. In order to quantify
the similarity in motion, MotionSync uses Dynamic Time Warp-
ing (DTW). Specifically, it calculates six DTW distances (for 3-axis
accelerometer and 3-axis gyroscope) for the sensor data available
from smartband and appliance tag. DTW is especially suitable for
motion matching in our system because the data from smartband
and motion tag can be loosely synchronized and collected at differ-
ent sampling rates. DTW’s ability to compare two time series data
even when they are not perfectly synchronized allows us to perform
motion matching.

Fig. 6 shows the effectiveness of DTW distances in motion match-
ing. It plots DTW distances (averaged for 3 axis of accelerometer
and gyroscope) for over 400 user-appliance interaction events and
500 non-interaction events. For the two appliance categories (free-
floating and switch), these interaction events were tested for multi-
ple appliances and users. We define a non-interaction event as an
event where when a user is not using the appliance but is in the
proximity that the user’s smartphone receives the BLE broadcast
from the appliance tag. The non-interaction events are created by
collecting accelerometer and gyroscope data from the smartband of
different users over multiple days, and uniform randomly choosing
time periods when a user was not interacting with any appliance
(i.e. performing any other activity). It can be observed that the av-
erage DTW distances between interaction events are consistently
lower than the average DTW distances of non-interaction events.

MotionSync utilizes the accelerometer and gyroscope DTW dis-
tances (a total of six features) to learn a machine learning model
of interaction for each appliance category. As we show in Sec-
tion 5, the model can be trained using data of user interactions
with sample appliances of a category and can be used for detect-
ing user-appliance interaction events for other appliances of the
same category. This eliminates the requirement of training for ev-
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Figure 7: Smartmeter power data variation based on three
controlled user experiments - 1) pressing a light button, 2) opening
washer door but not switching it on and 3) opening a microwave

and switching it on after a minute’s delay.

ery new appliance and user, substantially decreasing the barriers of
widespread system deployment.

4.4 Energy Apportionment through Smart Me-
ter Integration

Once a user’s smartphone matches the motion of user’s wrist-
band and the appliance’s motion tag, the smartphone will use elec-
tric power consumption information available from the smartmeter
of the building to determine the amount of energy to apportion to
the user. The appliance motion tag broadcasts, in addition to its
IMU sensor readings, the average power rating (kW) of it’s cor-
responding appliance. This rating information can be hardcoded
in the tag by the device manufacturer. When an interaction event
is detected, MotionSync will use smartmeter energy readings after
the time of the detected interaction. Each event has different gains
and drops in electric demand depending on the power draw of the
appliance being used. With the power draw of the appliance known
through the broadcast, MotionSync can calculate the total energy
used in that particular interaction.

In Fig. 7, we show the variation of smartmeter power readings
for a 10 minute duration of controlled experiments. We utilize the
Rainforest Eagle [29] to collect and stream smartmeter data in a
home. The Rainforest Eagle is an Ethernet gateway that connects
to a smartmeter and provides energy usage in real time (one sample
every eight seconds). We discuss three important cases in terms
of smartmeter data after a user-appliances interaction is detected as
follows -

(1) Immediate increase: The power demand can increase im-
mediately after a user-appliance interaction event is detected. This
is shown in Fig. 7 where a user pushes a light button to turn on the
light. This results in immediate increase of 100 Watts in the smart-
meter readings. Note that user’s smartphone, which successfully
detected a user-appliance interaction, also received a power rating
of approximately 100 Watts broadcast from the appliance tag. The
smartphone can then use the motion matching, power ratings and
smartmeter readings to apportion the energy to the user.

(2) No increase: It is possible that user’s smartphone detects a
user-appliance event, receives the power rating broadcast from the
appliance tag, but there are no corresponding changes observed in
the smartmeter. This is possible when a user interacts with an appli-
ance but does not necessarily switches it on (no change in electrical
state). As shown in Fig. 7, a user can open a washer door, but does
not switch it on. In this case, the smartphone can monitor the smart-
meter for a certain amount of time and if the increase of expected
power usage does not occur, no energy usage is apportioned to the
user.

(3) Delayed increase: In many cases, a user can interact with
an appliance and switch it on after a certain delay. Fig. 7 shows an



example where a user opens a microwave to heat up the food, how-
ever, the actual switching on of the microwave (increase in power
usage) happens after a certain delay. The broadcast power ratings
can be used for apportionment as long as the interaction and switch-
ing on events occur within a certain amount of time.

A user-appliance interaction is also detected when user switches
off the appliance (e.g. turning off lights, removing food from mi-
crowave etc.). However, there will be no corresponding increase in
the smartmeter data due to this action. Hence, such events are not
used in the apportionment. The energy consumed for an interac-
tion is calculated from the duration of active time followed by an
immediate or delayed increase in demand.

We note that the above mentioned apportionment technique works
even when there are multiple user-appliance events occurring si-
multaneously. As an example, consider two users Alice and Bob in-
teracting with microwave and coffee-maker respectively. Both the
users receive motion data from both the appliances, however, due
to motion matching with smartband and power rating information,
correct user-appliance interaction can be accurately determined. It
is worth noting that both, motion matching and smartmeter inte-
gration procedures, does not have to performed in real time. This
means that user’s smartphone can collect the appliance tag data in
real time, but the smartband motion data and smartmeter readings
can be available at a later time for motion matching and apportion-
ment. The procedures can be carried out once a day during low
activity periods (e.g. charging of phone at night).

5. EVALUATION AND RESULTS
In this section, we study the effectiveness of MotionSync from

the point of view of the design goals summarized in Section 3.
Overall, we study how accurately the system detects the user in-
teraction with the appliance - without new training for every addi-
tional appliance and user.

5.1 Experimental Setup
In this section, we describe the experimental setup for the evalu-

ation of our system. As observed in Fig. 1a, MotionSync requires
a motion tag on the electric appliances, a smartphone that receives
broadcast data from the tag, a wrist-worn smartband to record the
user’s motion, and smartmeter readings from the building where
the system is evaluated.

TinyDuino Motion Tag for Appliances: For the motion tag de-
ployed on the interfaces of the electric appliances, we use the Tiny-
Duino platform [30]. TinyDuino is a miniature open-source mod-
ular electronics platform that is compromised of a processor board
and multiple TinyShields (modules) which add specific functional-
ity. MotionSync’s motion tag utilizes a 9-axis IMU TinyShield for
motion data and a BLE TinyShield Nordic chipset to broadcast the
motion data over BLE. We modify the BLE advertisement packets
(broadcast) on the tinyshield platform to include the accelerometer
and gyroscope data in each packet. In addition, we use a module
to connect a rechargeable battery to the tag. In our experiments,
we affix the motion tag to the appliances’ interface in order to cap-
ture motion data of the appliance interface as seen in Fig. 8. We
program the TinyDuino tag to sample and broadcast accelerometer
and gyroscope data at 40 Hz. We fix the motion tag on appliances
in such as way that its orientation matches the orientation of smart-
band when user is standing and her arm is pointing towards the
floor (in rest position).

User Wearable and Bluetooth Sniffer: We use a Google Nexus
5 smartphone, affixed to the user’s wrist to collect the sensor data
for users’ motion. We collect the accelerometer and gyroscope data
using the AndroSensor app [31] at 40 Hz. To simulate the smart-

Microwave - Button
9-axis IMU

Rechargeable
Battery

BLE Nordic 
Chipset

TinyDuino
Processor 

Stove Top - Knob

Figure 8: Motion tags: We affix a TinyDuino motion tag to the
appliance at the point of user interaction with the appliance - the
microwave open button and stove knob. The motion tag on the

stove shows the 4 modules of the TinyDuino platform.

phone sniffing Bluetooth packets, we utilize a ComProbe BPA 600
Dual Mode Bluetooth Protocol Analyzer [32]. The ComProbe, in
BLE mode, can capture BLE advertising or broadcast packets on
all three advertising channels. We use a laptop that collects the
tag broadcast as well as the smartband data, and run MotionSync
to detect user-appliance interaction events. Energy is apportioned
after integrating the smartmeter readings.

5.2 User Experiments
We test the efficiency of our model by conducting experiments

with at least four different appliances for each appliance interface
category. A list of all the appliances used in our experiments is
shown in Table 1. For every appliance, we test with 3 users where
each user interacts with an appliance at least 20 times. Overall,
for each appliance, we have 60 user-appliance interaction events.
Non-interaction events are simulated by collecting gyroscope and
accelerometer data from smartband while the user is carrying out
normal everyday tasks. We collect this data for three different users
and for about three hours each over multiple days. For every unique
user interaction event, we have a corresponding non-interaction
event created from this data (chosen uniform randomly).

The main objective of MotionSync is to detect user-appliance
interaction events correctly, in order to determine personal energy
usage. We evaluate the system based on the True Positive (TP) and
False Positive (FP) rates of detection of correct and incorrect user-
appliance interactions. A true positive is defined as a detection of
a user-appliance interaction event when the user actually interacts
with the appliance. A false positive is defined as a detection of
a user-appliance interaction when the user does not interact with
any appliance. In such as case, the user was in the vicinity of an
appliance tag to receive its broadcast, however, she did not interact
with the appliance, and the system incorrectly detected that the user
interacted with the appliance.

5.3 Numerical Results
In our system, we train a machine learning model for each appli-

ance interface category using logistic regression. For each appli-
ance interface category, we compute the DTW distances between
the sensor data collected for user motion (smartband) and the mo-
tion tags (appliances). We calculate the afore-mentioned distances
for the three axes of gyroscope and three axes accelerometer data
for both, interaction and non-interaction events. Overall, our ma-
chine learning model is built using six features.

Overall System Performance: We start with evaluating the TP



 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

Button
Door

Free-Floating

Knob
Switch

T
P

 R
a

te

Per Appliance Interface Category Model
Per Appliance Model

(a) TP rate for models built based on
each appliance interface category
and each specific appliance. The
category based models achieve
comparable TP rate with much

lower training overhead

 0

 0.05

 0.1

 0.15

 0.2

 0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

FP Rates of
 Interface Types

Button

Door

Free-Floating

Knob

Switch

F
P

 R
a

te

Duration of Interaction (seconds)

(b) Variation of FP rate with
duration of user-appliance

interaction - shorter interaction
duration result in random matches
with non-user activity and higher

FP rate
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rate for each of the models build for the five appliance interface
categories - Button, Door, Free-floating, Knob and Switch. Here,
10-fold cross validation is used for training and testing.

(1) TP rate: The results of TP rate are presented in Fig. 9a. For
every appliance category, we observe 85% or higher accuracy in
determining user-appliance interaction events. The relatively high
TP rate across all interface appliance categories shows that motion
matching between the tag and the smartband is a clear indicator of
user-appliance interaction. Additionally, we train a separate model
for each and every appliance (listed in Table 2) to evaluate how
well our per-appliance category models perform compared to per-
appliance models. The TP rates of these per-appliance models (av-
eraged over all appliances in a category) are presented in Fig 9a.
We observe that the “per appliance" models achieve only slightly
better accuracy than the models built per appliance category, with
an average improvement of 2.66%. Thus, the models built per ap-
pliance category not only reduce the training substantially, but also
achieve comparable detection accuracy, and the appliance-specific
models do not provide significant accuracy gain.

(2) FP rate: We also calculate the FP rate for each appliance
interface category in order to study, how well MotionSync is in
discarding non-interaction events. FP rates for each appliance cat-
egory is shown in Fig. 9b. With the exception of one interface
category (i.e. Button), all other classes of appliances have FP rate
less than 10%. From Fig. 9b, we can also observe that shorter dura-
tion of interaction between user and the appliance interface leads to
higher FP rates. Specifically, we see that appliance categories with
longer duration of interaction between user and appliance (door,
free-floating and knob) has lower FP rates than appliance classes
with shorter interactions (button and switch). Combined and aver-
aged together, instances with duration of interaction greater than 1
second has 96% and 5.3% TP and FP rate respectively, while the
instances where the motion is less than one second (mostly buttons
and switches) has an average of 87.5% and 13.5% TP and FP rate.
This is because the IMU data of a short user-appliance interaction
is more likely to match to the IMU data of a non-interaction (cho-
sen randomly in our case) than a longer one. This is particularly
observed in the button class which has the highest false positive
rate 17%. Based on this, it is clear that as the duration of the user’s
interaction with the appliance increases, the TP rate also increases
and the FP rate decreases.

(3) Performance of Individual Appliances: We further evaluate
how MotionSync performs for individual appliances within each
specific interface category. In Table 2, we show the TP and FP rates
of every appliance tested in our system, based on the model created

Interface
Class Appliance TP Rate FP Rate

Button

Light Button 0.873 0.190
Microwave 0.842 0.088
Coffee Maker 0.914 0.190
Desktop 0.897 0.034
Fan Button 0.968 0.190

Door

Oven 1 0.931 0.026
Oven 2 1.00 0.051
Washer 0.968 0.051
Dryer 0.933 0.00

Free-
Floating

Phone Charger 0.966 0.026
Laptop Charger 0.969 0.00
Remote 1 1.00 0.051
Remote 2 0.952 0.051
Hair Dryer 1.00 0.00
Hair Dryer 2 0.900 0.00

Knob

Espresso Maker 1.00 0.050
Stove Top 1 0.981 0.110
Stove Top 2 0.900 0.017
Toaster Oven 0.948 0.052

Switch

Toaster 1 1.00 0.067
Toaster 2 1.00 0.00
Rice Cooker 1.00 0.25
Light Switch 0.828 0.276
Water Heater 1.00 0.032

Table 2: TP and FP rate for individual appliances under each
appliance interface category

above. It is observed that across all appliances within the same
class, there is a similar pattern of TP and FP rates. This shows that
the system successfully exploits the similarity of the interface type
for an appliance category to eliminate the per-appliance training.

Multiple Users in the Vicinity: MotionSync is designed with a
goal of accuracy in environments where multiple users are present
(Section 3). It is important that, in these environments, our system
is able to correctly apportion energy usage to the correct user and
to ignore the non-users. Fig. 10a represents the performance of our
system in this aspect, by showing how the FP rate varies with the
change in the number of non-users present in the vicinity - all of
whom receive the BLE broadcast from the motion tags. For exam-
ple, if a user operates the stove in the presence of N other users
in the kitchen, all users receive the BLE broadcast of the appliance
motion tag, but only the user who operated the stove should detect
an interaction event based on the motion matching. We are inter-
ested in understanding how the FP rate increases when the number
of non-users (N ) increase. The results are presented for all five ap-
pliance interface categories. We observe only a small increase in FP
rate as the number of users increase. Despite the addition of more
users, MotionSync is able to maintain considerably similar FP rate
as compared to when only one additional user is present. Because
the FP rate is directly impacted by the kind of actions non-users are
doing, the presented FP rate is an average (±standard deviation) of
the false positives achieved with multiple actions performed by 5
additional users. Fig. 10a shows that as the number of users in prox-
imity increase, FP rate also increases but only by a small marginal
amount (in average, an increase of only 2.08% after four additional
users).

We emphasize that in real world settings, the FP rate will be
lower than observed in our experiments. False positives are only
introduced when a non-user receives BLE broadcast from the ap-
pliance motion tag. However, in real settings, the number of non-
users within the vicinity of BLE broadcast range (≈ 15 meters) are
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Figure 10: Performance of MotionSync from the point of view of multiple non-users, new and untrained appliances and users.

likely to be very small, reducing the observed FP rate. Additionally,
it is possible to reduce the BLE transmission power on the tags to
further reduce the FP rate. We leave this exploration to future work.

Untrained Users and Appliances: In order for the system to
be easily adapted, it must be able to determine user-appliance in-
teraction for untrained users and untrained appliances. We envi-
sion a scenario where a developer/manufacturer can create an user-
appliance interaction model trained with their own set of users and
appliances. However, in presence of an appliance with motion tags
on them, when a new user installs this model on her smartphone,
the system should be able to determine user-appliance interactions
even for new users and new appliances. Thus, the appliances with
the motion tag can be deployed on any appliance interface with-
out users having to train on their own appliances or on themselves.
Limiting the training of the model to generic users and appliance in-
terface classes will greatly improve the adaptation of MotionSync.

Fig. 10b shows the TP rates of the five different interface cate-
gory classes on new and untrained appliances. We test our model
on two untrained appliances for each interface category with 50 in-
teraction events each. The TP rates of untrained appliances highly
resemble those in the trained model in Fig. 9a. We find that our
system can detect a user-appliance interaction event even on un-
trained appliances as long as the interface category of the appliance
matches one the five types listed in Table 1. This is primarily due
to the fact that the system relies on generic characteristics of inter-
face type while performing the motion matching which is common
across trained or untrained appliances.

In addition to limit training to appliance interface class, the sys-
tem also seeks to limit training to a limited number of users. We
now show that training per user is not required for MotionSync
to determine an user-appliance interaction event. We evaluate this
by taking two of the three users originally used to create our train-
ing model and create a new training model. Similar to before, we
train the new models by using logistic regression. We create these
new models for every appliance interface category. We then test
the third (excluded) user’s interaction events on the newly trained
model. We show the TP rates of the untrained user for each ap-
pliance interface category in Fig. 10c. The results show a similar
results of TP rates to that shown in Fig. 9a. MotionSync’s perfor-
mance (TP rate) on untrained users does not degrade, allowing the
system to limit it’s training on generic users and not require training
for every unique user in order to determine user-appliance interac-
tion. Multiple users might interact with the appliance in different
ways, but still our model can correctly identify user-appliance in-
teraction. This is because, our model seeks to capture the differ-
ence in the motion of users’ hand/wrist and the motion of the appli-
ance interface. Even though users interact differently, the motion of

wearable and the appliance tags remain similar. Thus, any variance
introduced by the way a user interacts with an appliance does not
significantly affect the performance of our system.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we presented MotionSync, a personal energy ana-

lytics system that exploits motion matching to detect user-appliance
interaction and energy apportionment. Our evaluation showed that
motion matching can be performed using generic models trained
per category of appliances, significantly reducing the training over-
head. This paper focuses primarily on a MotionSync’s ability to ac-
curately detect user-appliance interaction events. The evaluation of
MotionSync’s energy apportionment of real-time smart meter data
is reserved for the scope of future work. The following aspects of
MotionSync design can be improved in the future work. First, the
system is designed to only work with plugload appliances. This ex-
cludes other energy consuming systems such as the HVAC system.
It also excludes devices that users do not directly interact with such
as network printers or WiFi routers, all of which consume differ-
ent amount of energy based on user’s actions. Second, our system
needs a systematic framework to account for energy consumed by
the shared appliances (for example, TV being watched by many
users or light in an office corridor). Currently, MotionSync assigns
the consumed energy to the user who interacted with the appliance
instead of enabling a way to properly share it. Existing location
based approaches can be integrated with our solution in a privacy-
preserving manner, which is an important direction of future work.
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