
Quantifying DNS Namespace Influence✩

Casey Deccioa,∗, Jeff Sedayaob, Krishna Kantc, Prasant Mohapatrad

aSandia National Laboratories, PO Box 969, Livermore, CA, USA
bIntel Corporation, 2200 Mission College Blvd., Santa Clara, CA, USA

cGeorge Mason University, 4400 University Dr., Fairfax, VA, USA
dUniversity of California Davis, 1 Shields Ave., Davis, CA, USA

Abstract

Name resolution using the Domain Name System (DNS) is integral to today’s

Internet. The resolution of a domain name is often dependent on namespace

outside the control of the domain’s owner. In this article we review the DNS

protocol and several DNS server implementations. Based on our examination,

we propose a formal model for analyzing the name dependencies inherent in

DNS, and experimentally validate the model with actual domain names. Us-

ing our name dependency model we derive metrics to quantify the extent to

which domain names affect other domain names. It is found that under certain

conditions, more than half of the queries for a domain name are influenced by

namespaces not expressly configured by administrators. This result serves to

quantify the degree of vulnerability of DNS due to dependencies that adminis-

trators are unaware of. When we apply metrics from our model to production

DNS data, we show that the set of domains whose resolution affects a given

✩This research was supported in part by the National Science Foundation under the grant
CNS-0716741.

✩✩This is a revised personal version of the journal article published by Elsevier in Com-

puter Networks, Volume 56, Issue 2, on 2 February 2012, pages 780 – 794, available at
http://dx.doi.org/10.1016/j.comnet.2011.11.005

∗Corresponding author
Email addresses: ctdecci@sandia.gov (Casey Deccio), jeff.sedayao@intel.com

(Jeff Sedayao), kkant@gmu.edu (Krishna Kant), pmohapatra@ucdavis.edu
(Prasant Mohapatra)

1Sandia National Laboratories is a multi-program laboratory managed and operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-AC04-
94AL85000.

Preprint submitted to Computer Networks February 27, 2012

domain name is much smaller than previously thought. However, behaviors

such as using cached addresses for querying authoritative servers and chaining

domain name aliases increase the number and diversity of influential domains,

thereby making the DNS infrastructure more vulnerable.

Keywords: DNS, Networks

1. Introduction

The Domain Name System (DNS) is one of the systems most critical to the

Internet. Nearly all Internet applications rely on the DNS for proper function.

Although Internet hosts communicate using the Internet Protocol (IP) and are

identified by IP addresses, the DNS abstracts IP addressing from users and

clients, so they can identify Internet hosts with domain names representative

of human-friendly words. In addition to IP address lookup, the DNS is also

necessary for email delivery, service discovery, and host identification.

Because applications rely on the DNS for name resolution, its integrity and

security are critical. While temporary failures due to misconfiguration may

cause inconvenience, targeted attack by malicious parties could be much less

discernible, and the repercussions more severe. Tainted DNS responses may

transparently redirect user applications to servers within adversarial control,

where sensitive information can be stolen.

While the concept of name resolution is relatively simple, the overall sys-

tem is complex. The DNS allows configurations that create dependencies for

a domain name on servers well outside the control of the domain’s owner and

managed by third parties. Domain names with such configurations are in turn

affected by the security and accuracy of the namespaces they depend on. An un-

derstanding of a domain’s context in the entire system will allow architects and

administrators to better design and configure their DNS services to maximize

the reliability of DNS name resolution.

In this work we present a quantitative analysis of name dependencies in

DNS. We review pertinent aspects of the DNS protocol and derive a model to

2

probabilistically determine the namespace influencing resolution of a domain

name. Based on our model, we define several metrics to assess the quality of

name resolution for a domain name, based on the other names that affect its

resolution. The behaviors of name server implementations, some of which are

configurable, can affect these metrics. We analyze a large sample of recent DNS

data in light of the presented model. The results show the impact of name

dependencies in terms of the size of the namespace that influences a domain

name, and in the percentage of queries that will reach namespace not explicitly

configured by DNS administrators.

We list the following as primary contributions of this article:

• A detailed study of DNS protocol specification and name server imple-

mentation, with respect to DNS name dependencies

• A formal model for analysis of DNS name dependencies, based on specifi-

cation and implementations

• Metrics for quantifying the influence domain names have on other domain

names

Our analysis shows that 92% of influential namespace of domain names is

explicitly configured by domain administrators. However, certain caching be-

haviors reduce that figure, and increase the probability that resolution of a

domain name is influenced by names or organizations not explicitly configured

by administrators. A diverse set of dependencies has the potential to affect the

reliability of name resolution for a domain name. Based on our findings, we

discuss best practices for design and administration of DNS services to contain

influence of domain names.

We begin our analysis with a review of the DNS protocol in Section 2. We

describe previous work in this area in Section 3. Pertinent behaviors of DNS

server implementations are described in Section 4. In Section 5 we introduce the

concept of DNS name dependencies, present a graph model for their analysis,

and derive methodology for quantifying influence. We describe methodologies

3

Figure 1: The zone hierarchy for the the zone data shown in TABLE 1.

employed for data collection and an analysis of the observed quality of name

resolution in Section 6. We explore considerations that increase outside influence

in Section 7 and discuss extensions to our model in Section 8. We conclude our

analysis in Section 9.

2. DNS Background

The Domain Name System (DNS)[1, 2, 3] provides a name-based lookup ser-

vice for the Internet. The DNS namespace is organized hierarchically, and each

domain name reflects its ancestry. For example, the ancestry of www.soccer.com

is: www.soccer.com, soccer.com, com, and the root domain (represented by a sin-

gle dot with no labels: “.”). All domain names are descendants of the root.

DNS data is managed within the DNS zone to which it pertains. A zone

includes all the subdomain namespace below its origin, except that whose man-

agement has been explicitly delegated to child zones. Figure 1 illustrates a

zone hierarchy in which the com zone delegates management of the soccer.com

namespace to the soccer.com zone.

2.1. Zone data

DNS zone data consists of resource records (RRs), each identified by an owner

name (e.g., www.soccer.com), a class (e.g., IN)2, and a type (e.g., A). Among the

2We abstract RR class from the remainder of our analysis, as our research focuses on

specific RR types in the IN class.

4

RR types defined, the following are pertinent to this article: A (IP address)3,

CNAME (canonical name), and NS (name server). Each RR contains record data

specific to its RR type. For example, the record data for an A RR is an IPv4

address (e.g., 192.0.2.1). The record data for RRs both of type CNAME and NS is

another domain name—a target for further lookup (e.g., www.tennis.com). An

RRset is comprised of all RRs matching a given owner name and type.

TABLE 1 contains zone data for some fictitious zones.

The NS RR type is used to designate the names of servers authoritative for

a zone. The NS RRset for a zone must not only exist in the child zone, but also

in its parent—as a set of delegation records. In TABLE 1 the delegation and

authoritative NS RRsets for soccer.com are found on lines lines 4–6 of the com

zone and lines 1–3 of the soccer.com zone, respectively.

2.2. Name resolution

DNS servers have two primary roles: resolver and authoritative server.

The resolver queries authoritative servers to find the answers to domain name

lookups. The answers, comprised of RRsets, may be stored in the resolver’s

cache for later retrieval. Each RRset includes time-to-live value (TTL), which

designates the lifetime for which it may persist in a resolver’s cache.

DNS responses are comprised of several sections. The question section con-

tains the name and type of the current query. Answers are returned in the

answer section. Information about the servers authoritative for the answer are

contained in the authority section. The additional section contains supplemen-

tal information that may be helpful or necessary for the resolver. The anatomy

of a response that might be issued by a server authoritative for soccer.com in

response to a query for www.soccer.com is shown in Figure 2.

A resolver begins the name resolution process by issuing a query to one of

3This work focuses on DNS name dependencies, which affect name resolution to both IPv4

and IPv6 addressing using RRs of types A and AAAA, respectively. For simplicity, however, our

analysis references only RRs of type A.

5

$ORIGIN soccer.com. (SoccerMania, Inc.)

Name Type Value

1 soccer.com. NS ball.soccer.com.

2 soccer.com. NS racket.tennis.com.

3 soccer.com. NS ns1.sports.net.

4 ball.soccer.com. A 192.0.2.1

5 www.soccer.com. CNAME www.tennis.com.

$ORIGIN tennis.com. (Tennis Pro, Inc.)

Name Type Value

1 tennis.com. NS ns1.tennis.com.

2 tennis.com. NS ball.soccer.com.

3 tennis.com. NS ns1.sports.net.

4 ns1.tennis.com. A 192.0.2.2

5 www.tennis.com. A 192.0.2.3

6 racket.tennis.com. A 192.0.2.4

$ORIGIN athletics.com. (Sports Central, Inc.)

Name Type Value

1 athletics.com. NS ns1.athletics.com.

2 ns1.athletics.com. A 192.0.2.8

$ORIGIN com. (VeriSign, Inc.)

Name Type Value

1 com. NS ns1.com.

2 ns1.com. A 192.0.2.5

3 athletics.com. NS ns1.athletics.com.

4 soccer.com. NS ball.soccer.com.

5 soccer.com. NS racket.tennis.com.

6 soccer.com. NS ns1.sports.net.

7 tennis.com. NS ball.soccer.com.

8 tennis.com. NS ns1.tennis.com.

9 tennis.com. NS ns1.sports.net.

10 ball.soccer.com. A 192.0.2.1

11 ns1.tennis.com. A 192.0.2.2

12 ns1.athletics.com. A 192.0.2.8

$ORIGIN sports.net. (Sports Central, Inc.)

Name Type Value

1 sports.net. NS ns1.sports.net.

2 sports.net. NS ns1.athletics.com.

3 ns1.sports.net. A 192.0.2.6

$ORIGIN net. (VeriSign, Inc.)

Name Type Value

1 net. NS ns1.net.

2 ns1.net. A 192.0.2.7

3 sports.net. NS ns1.sports.net.

4 sports.net. NS ns1.athletics.com.

6

QUESTION

www.soccer.com. A

ANSWER

www.soccer.com. 3600 CNAME www.tennis.com.

www.tennis.com. 3600 A 192.0.2.3

AUTHORITY

soccer.com. 3600 NS ball.soccer.com.

soccer.com. 3600 NS racket.tennis.com.

soccer.com. 3600 NS ns1.sports.net.

ADDITIONAL

ball.soccer.com. 3600 A 192.0.2.1

racket.tennis.com. 3600 A 192.0.2.4

ns1.sports.net. 3600 A 192.0.2.6

Figure 2: A response for www.soccer.com issued by ns1.sports.net, which is authoritative for

soccer.com.

the servers authoritative for the root zone. The root server responds with a

referral, populating the authority section of its reply with the NS RRset for the

top-level domain (TLD) of the name in question. The resolver then re-issues the

query to one of the TLD servers. The resolver iteratively continues this process

until it receives a response from an authoritative source containing either an

answer or an indication that the requested RRset does not exist. If a CNAME

(canonical name) RR is returned as an answer in an authoritative response, the

resolver must subsequently resolve the target of the alias to obtain an address.

For example, www.soccer.com is an alias for www.tennis.com in TABLE 1.

The NS RRset in a referral specifies the authoritative servers for a delegated

zone by name, but a resolver must have IP addresses to actually query the

servers. Any addresses already known by the resolver initially populate the au-

thoritative server list for the zone, and it initiates requests in parallel to acquire

the addresses for any others. For any NS targets that are subdomains of the

delegated zone the referring server must provide the addresses in the additional

section of its response to avoid a chicken-and-egg problem with resolving the

server names. Such glue records are maintained in the referring parent zone,

7

so name resolution can be properly “bootstrapped” [1]. The A glue record for

ns1.tennis.com is on line 11 of the com zone in TABLE 1.

If a server issuing a referral has pertinent non-glue A RRsets available locally,

they may be included in the additional section of the response. Such RRsets

might be available if the referring server is also authoritative for the zones to

which the names belong or if it has in its cache the A RRset for one of the

names in question [1]. However, RRsets with names that are not subdomains

of the referring zone are considered out-of-bailiwick (i.e., outside its authority).

Resolver implementations should independently obtain an authoritative answer

for the out-of-bailiwick target names before querying such servers.

3. Previous Work

In this section we review related research. First we summarize previous

studies analyzing DNS dependencies, misconfiguration, and availability. We

then describe some of the solutions which have been proposed to protect name

resolution from unwanted influence.

3.1. Analysis

Ramasubramanian, et al. [4] demonstrate the far-reaching effects of DNS

dependencies by surveying the DNS namespace and tracing the dependencies

of a large number of domain names. They identify the set of all authoritative

name servers potentially involved in resolution of each name, which comprise

the potential attack target for that name. Their results show that a domain

name relies on 44 authoritative servers on average and 6% of names depend

on more than 200 servers. We perform further examination of name resolution

behaviors to create a formal model of name dependencies in DNS and quantify

the significance of such dependencies.

A survey of common DNS misconfigurations is presented by Pappas, et al. [5].

The authors identify lame delegation, diminished server redundancy, and cyclic

dependencies as problem areas, and an empirical study is performed to show

8

their pervasiveness in DNS. The formal model presented in this article creates

a foundation to systematically identify and quantify the impact of such miscon-

figurations on security and availability.

3.2. Solutions

The DNS Security Extensions (DNSSEC) [6] are the leading standard for

cryptographically validating DNS queries. DNSSEC extends the DNS proto-

col [1, 2] to allow resolvers to authenticate DNS responses using cryptographic

public keys and signatures embedded in new RR types [6, 7].

The IKS Jena (Information, Communication, and Systems) [8] and SecSpi-

der [9, 10] projects have monitored the deployment of DNSSEC, maintaining an

online listing and status of signed zones. The SecSpider and IKS project sites

report the number of production signed zones at roughly 24,000 and 44,000,

respectively, at the time of this writing [8, 10]. Only 0.02% of the the zones we

used in our analysis (see Section 6) were signed with DNSSEC, as observed by

the presence of DNSKEY and RRSIG RRs.

Proper application of DNSSEC foils attempts at cache poisoning and other

attacks on DNS integrity. However, just like unsigned names, DNSSEC-signed

names also rely on the proper configuration and availability of their dependen-

cies. We address DNSSEC considerations in more detail in Section 8.

Several non-cryptographic approaches have been proposed for defending

against response spoofing attacks. Dagon, et al. [11] present a technique in

which a resolver mixes the case of the name being queried and requires the au-

thoritative server to preserve the case of the name in the question section of the

response. This increases the probability space that attackers have to work with.

Another technique for increasing entropy is WSEC DNS [12], which introduce

wildcard DNS records into a zone, which aliases the actual DNS records. Clients

generate a random string which is prepended to the wildcard name, and attacks

require a larger effort to spoof responses for the randomized queries.

Additional entropy makes guesswork by a third-party more difficult. How-

ever, if an authoritative server on which a domain name is dependent for its

9

resolution is run by a nefarious organization or otherwise compromised by of-

fenders, then no guesswork is needed. An understanding of DNS dependencies

will aid administrators in employing practices that will help them maintain

control of the name resolution for their domains.

4. Characteristics of DNS Server Implementations

An analysis of certain behaviors exhibited by name server implementations

is relevant to our analysis of DNS name dependencies. We reference several

products in our research. The Berkeley Internet Name Daemon (BIND, ver-

sion 9.6) [13] implements both a resolver and an authoritative server. unbound

(version 1.0.2) [14] and dnscache (version 1.05) [15] implement resolvers. The

Name Server Daemon (NSD) [16] and tinydns [15] implement authoritative

name servers.

4.1. Trust ranking

In certain situations, a resolver or authoritative server may receive in a DNS

response RRsets whose owner name and type match RRsets previously obtained

from other data sources, such as from earlier queries or local zone data. It is

therefore essential that a mechanism be employed for establishing precedence

of RRsets, based on their sources. RFC 2181[17] outlines a relative ranking of

trustworthiness of data for name servers to consider as part of operation. Among

the total ranking are the following (in decreasing order of trustworthiness):

• Data from a zone for which the server is authoritative, other than glue

data

• The authoritative data included in the answer section of an authoritative

reply

• The data in the authority section of an authoritative reply

• Glue from a zone for which the server is authoritative

10

• Data from additional section of a response

This ranking affects behavior of both resolvers and authoritative servers. A

resolver must initially use the delegation records provided in a referral. However,

when it receives an answer from a server authoritative for the zone itself, the

authoritative server often includes the authoritative NS RRset for the zone in its

authority section. If these sets differ, the resolver will use the NS RRset returned

in the authoritative response in preference to the delegation records received in

the referral.

If a resolver receiving a referral has the A RRset for an NS target in its cache,

previously received in the answer section of an authoritative response, then the

resolver deems the cached data more trustworthy than any data received in the

additional section of the referral. Thus, it will use the locally cached data in

preference to any glue records.

Both the BIND and unbound resolvers respect the notion of trustworthiness

described in RFC 2181, using the NS RRset from an authoritative response in

preference to that received in the authority or additional section of a referral.

However, dnscache updates its cache with the most recently received RRset,

regardless of the section in which it was received.

The combined service of cached and authoritative data by a single name

server is allowed by specification, although best practices suggest that these

functionalities not co-exist [18]. BIND’s implementation allows an authorita-

tive server to additionally maintain a cache, unlike NSD and tinydns, which

only serve locally available zone data. If an authoritative server so configured

has cached the A RRset for an NS target from the answer section of an authori-

tative response (i.e., from another server), it will use the data from its cache to

populate the additional section of a referral to a resolver, rather than the glue

record, which might be different.

Section 7 describes practical examples of these caching behaviors in more

detail.

11

4.2. Name server selection

RFC 1035[2] dictates that a resolver associate historical statistics, such as

response time and success rate, with each server address. After trying all au-

thoritative servers at least once, it prefers the server with the best performance

record, thus fine-tuning the performance for lookups for a zone [2].

The BIND and unbound resolvers both follow the performance-based selec-

tion guideline, giving preference to authoritative servers with historically better

responses. The dnscache resolver, however, selects an authoritative server uni-

formly at random for each query.

Although individual resolvers following specification may gravitate towards

a particular authoritative server, we assume that requests for a zone arrive from

resolvers in diverse network and geographic locations with varying proximity to

authoritative servers. Based on this assumption we use a uniform distribution to

describe queries issued to authoritative servers for a zone, such that any server

has an equal chance of being queried for names within the zone.

5. DNS Dependency Model

In this section we introduce the notion of domain name dependencies and

establish a formal model for identifying and quantifying domain name influence.

5.1. Name dependencies

Various DNS dependencies stem from the DNS protocol specification. Three

specific components introducing dependencies are the following:

• Parent zones : A resolver must learn the authoritative servers for a zone

from referrals from the zone’s hierarchical parent.

• NS targets : The NS RR type uses names, rather than addresses, to specify

authoritative servers, so a resolver must resolve the names before it can

query the authoritative servers.

• Aliases : If a name is an alias, then to obtain an address, a resolver must

subsequently resolve the alias target.

12

We say that name u depends on domain name v if resolution of v may

influence resolution of u. Influence is categorized into two classes: active and

passive. If domain name u is actively influenced by domain name v, then with

some non-zero probability resolution of v will be required for resolution of name

u. If domain name u is passively influenced by domain name v, then although

v may not be required for resolution of u, resolution of v may affect resolution

of u with some probability.

Parent zones and aliases are both examples of active influence because both

are required for resolution of the dependent name. However, NS target depen-

dencies may either be the cause of passive or active influence, depending on the

state of server cache and server implementation behavior.

We establish some notation for our discussion of NS target dependencies. To

distinguish NS RRsets from different sources, we useNSz andNS′
z to respectively

denote the sets of NS target names for zone z, as configured in zones z and

Parent(z), respectively. Let NSAz and NSA′
z denote the sets of IP addresses

corresponding to the server names in NSz and NS′
z, respectively.

Suppose v ∈ NSz is a subdomain of Parent(z), Parent(v) 6= z, and Parent(z)

is properly configured with a glue record for v. Such is the case when z =

tennis.com and v = ball.soccer.com. If an authoritative answer for v has previ-

ously been resolved and cached by either authoritative server s ∈ NSAParent(z)

or resolver c, then z is affected by v and its name dependencies, based on the

trust ranking discussion from Section 4. This behavior describes passive influ-

ence of v on z. The probability of passive influence, P{s,c}(v), is the combined

probability of Ps(v) and Pc(v), the likelihood that either s or c has and uses

a cached authoritative answer for v. Since the probabilities are independent of

one another, P{s,c}(v) is calculated:

P{s,c}(v) = Ps(v) ∨ Pc(v) = 1−
(

1− Ps(v)
)(

1− Pc(v)
)

A resolver is responsible for resolving any names from NSz which are out-

of-bailiwick or not included in the additional section of a response from an

authoritative server. An example is ns1.sports.net, which is authoritative for

13

Term Definition

r The root name “.”

Iu(v) The measure of name v’s influence on name u

Iu(D) The aggregate influence of names in set D on

name u

Parent(d) The nearest ancestor zone of name d

Cname(d) The alias target of name d

NSz , NS′
z The set of NS target names authoritative for

zone z as configured in z and Parent(z),

respectively

NSAz , NSA′
z The set of addresses corresponding to the

names in NSz and NS′
z , respectively

PNS(z) The probability that a resolver has cached the

NS RRset for z from an authoritative source

P{s,c}(v) The probability that either s or c has in cache

and uses NS target name v from an

authoritative source

Gd = (Vd, Ad) Name dependency graph for name d

G′
d
= (V ′

d
, A′

d
) Active influence dependency graph for name d

Pq(z, v) The probability that NS target v is used to

resolve z

w(u, v) The weight of edge (u, v) in Ad

Su The set of addresses corresponding to name u

U ′
d
⊆ Ud ⊆ Zd The sets of first-order, non-trivial, and all

zones in Vd, respectively

Table 2: Notation used in this research.

soccer.com. Such induced queries indicate active influence of the resolved names

on z, since it is directly dependent on their resolution.

5.2. Name dependency graph

To model the dependencies of domain name d we use a directed, connected

graph, Gd = (Vd, Ad). The graph Gd contains a single sink, r, which is the root

zone. Each node in the graph v ∈ Vd represents a domain name, and each edge,

(u, v) ∈ Ad, signifies that u is directly dependent on v for proper resolution

of itself and any descendant names. Each edge, (u, v) ∈ Ad, carries a weight,

14

Figure 3: The dependency graph for the domain name www.soccer.com, derived from the zone

data in TABLE 1. The solid lines represent active influence, and the dashed lines represent

passive influence.

v subdomain Glue

of Parent(z) exists Parent(v) = z w(z, v) Influence type Example (TABLE 1 and Figure 3)

no Pq(z, v) Active soccer.com→ ns1.sports.net

yes no Pq(z, v) Active soccer.com→ racket.tennis.com

yes yes no P{s,c}(v)Pq(z, v) Passive tennis.com→ ball.soccer.com

yes yes yes 0 None soccer.com→ ball.soccer.com

Table 3: Rules for determining whether or not and with what weight w(z, v) a edge is placed

between a zone z and an NS target v ∈ NSAz .

w(u, v), indicative of the probability that it will be followed for resolving u. A

name dependency graph for domain name www.soccer.com is shown in Figure 3,

built from the data in TABLE 1.

Edges are placed on the graph from each domain name u, u 6= r to its parent

Parent(u) with w
(

u, Parent(u)
)

= 1; a domain name is always dependent on

its parent. If resolution of domain name u yields a CNAME RR, then an edge is

placed between u and its target name, Cname(u), with w(u,Cname(u)) = 1;

the resolution of an alias is always dependent on the resolution of its target. Such

edges in Figure 3 are those between www.soccer.com and its parent, soccer.com,

and between www.soccer.com and its canonical name, www.tennis.com.

Placement of edges and weights corresponding to NS target dependencies

draws from the discussion in Section 5.1 and is summarized in TABLE 3.

We first identify the proportion of queries distributed among each of the

15

Name Type Value Pq(z, v)

foo.com. NS ns1.foo.com. 2

3
= 0.67

foo.com. NS ns2.foo.com. 1

3
= 0.33

ns1.foo.com. A 192.0.2.9

ns1.foo.com. A 192.0.2.11

ns2.foo.com. A 192.0.2.10

bar.com. NS ns1.bar.com. 1+0.5
2

= 0.75

bar.com. NS ns2.bar.com. 0.5
2

= 0.25

ns1.bar.com. A 192.0.2.12

ns1.bar.com. A 192.0.2.13

ns2.bar.com. A 192.0.2.12

Table 4: Example zone data to illustrate query distribution among NS target names of servers

authoritative for a zone.

NS target names in NSz, which we use as a base for calculating the weights of

edges in Ad stemming from NS target dependencies. Resolvers prepare their

lists of servers for selection from addresses rather than names of authoritative

servers, as explained previously. Although a particular resolver instance will

gravitate towards querying a single authoritative server for a zone, we reiterate

our assumption that queries from arbitrary resolvers are distributed uniformly

among the servers, due to network diversity. Thus, the probability, Pq(z, v),

of querying any NS target v ∈ NSz for resolution of z will be some fraction of

|NSAz| that reflects the proportion of server addresses attributed to v. Let Sv

represent the set of addresses to which v ∈ NSz resolves. A näıve formula for

determining query probability Pq(z, v) is to simply calculate the fraction of total

server addresses authoritative for z that correspond to v:

Pq(z, v) =
|Sv|

|NSAz|

The zone data for foo.com in TABLE 4 shows that an NS target name that

resolves to multiple addresses, such as ns1.foo.com, has a higher probability of

being queried for names in the zone than an NS target name that resolves to

only a single address, such as ns2.foo.com.

It is possible that multiple NS target names in NSz resolve to the same

16

address, so a single address in Sv may also be attributed to other names in

NSz. A more complete approach to determining query probability therefore is

to evenly divide the probabilistic weight attributed to a server address among

all the names that resolve to that address:

Pq(z, v) =

∑

s∈Sv
|{u ∈ NSz|s ∈ Su}|

−1

|NSAz|

For example, in TABLE 4 both ns1.bar.com and ns2.bar.com resolve to 192.0.2.12,

so the weight of that server is split evenly among both names. The result is that

ns1.bar.com is queried with 0.75 probability for bar.com because it also resolves

to 192.0.2.13, and ns2.bar.com is queried with only 0.25 probability.

When NSz 6= NS′
z, the query probability of an edge to NS target v depends

on v’s existence in NSz and NS′
z and the likelihood that the resolver has cached

the NS RRset for z from the answer or authority section of an authoritative

response received previously. We use PNS(z) ∈ [0, 1] to denote that likelihood:

Pq(z, v) = PNS(z)P
(

v ∈ NSz

)

∑

s∈Sv

|{u∈NSz|s∈Su}|
−1

|NSAz|
+

(

1− PNS(z)
)

P
(

v ∈ NS′
z

)

∑

s∈Sv
|{u∈NS′

z
|s∈Su}|

−1

|NSA′
z
|

For simplicity we assume that NSz = NS′
z unless specified otherwise.

If NS target v ∈ NSz is not a subdomain of Parent(z), edge (z, v) is added

to Gd with w(z, v) = Pq(z, v). Resolution of v is required for (i.e., actively influ-

ences) resolution of z. An example is soccer.com’s dependency on ns1.sports.net.

If target name v ∈ NSz is a subdomain of z, the Parent(z) zone should

include a glue record for v. If no glue record exists for v in the Parent(z) zone,

then resolution of v is required for (i.e., actively influences) resolution of z, and

an edge (z, v) is added to Gd with w(z, v) = Pq(z, v). Such is the case with

soccer.com’s dependency on racket.tennis.com.

If v is in-bailiwick, and a glue record for v exists, then resolution of v is not re-

quired for resolving z because the resolver will use the address provided from glue

in the additional section of the referral from Parent(z). When Parent(v) = z,

there is no edge (z, v) in Gd; all servers authoritative for z have the authoritative

data for v, such as with ball.soccer.com’s relationship to soccer.com. However,

17

when Parent(v) 6= z an edge (z, v) is added with w(z, v) = P{s,c}(v)Pq(z, v);

the name v passively influences z, dependent on the probability that either the

resolver or the authoritative server has the address for v cached from an au-

thoritative source. An example is tennis.com’s dependency on ball.soccer.com.

Passive influence is analyzed more closely in Section 7.

5.3. Level of influence

The trusted computing base (TCB) for domain name d is the set of all domain

names in its dependency graph, Gd. An analysis of the raw size of domain

name’s TCB or even an enumeration of its constituents may be interesting, but

insufficient for understanding the makeup of its influence. Using the well-formed

dependency graph and its edges we can calculate the level of influence, which

is the probability that one domain name will be utilized for resolving another.

Quantifying influence of name dependencies shows that some names may be

much more influential than others. We let Iu(v) ∈ [0, 1] denote v’s level of

influence on u.

An analysis of the dependency paths in Gd is necessary to determine the

level of influence of the domain names v ∈ Vd on d. The dependency paths

in Gd are modeled by performing a depth-first traversal of Gd, beginning with

d. This depth-first traversal produces the exhaustive set of acyclic intermediate

paths of name dependencies for resolving d. The level of influence is calculated

by determining the probability that paths leading from d will reach v during

resolution:

Id(v) = P (d, . . . , v)

To calculate P (d, . . . , v), the probabilities of encountering v in the depen-

dency paths beginning with each of u’s direct dependencies must first be recur-

sively calculated and aggregated. The probability of encountering v in a path

beginning with edge (u, j) ∈ Ad is calculated by multiplying the probability,

w(u, j), of following edge (u, j) by the probability of encountering v in a path

18

beginning with j:

P (u, j, . . . , v) =

w(u, j) if j = v (direct dep)

0 if j = r (root)

w(u, j)P (j, . . . , v) otherwise

A particular domain name u ∈ Vd may be directly dependent on multiple

names, resulting in multiple out-edges from u. Some of these dependencies

are mutually exclusive, and others are independent of one another. At most

one NS target dependency of u is necessary for resolution (assuming the server

queried is responsive), but alias and parent dependencies exist independently of

the NS target dependencies. For example, when resolving names in tennis.com

using the zone data from TABLE 1, either ns1.tennis.com, ball.soccer.com, or

ns1.sports.net will be selected for query, each with equal probability, and only

the latter two result in a name dependency. However, resolution of tennis.com

remains entirely dependent on its parent, com, regardless of which server is

selected for query.

Aggregating the probability of encountering v in paths beginning with each

of u’s direct dependencies is as follows. First the probability of encountering v

through any NS-type dependencies is determined by calculating the sum of en-

countering it in each of the NS-type dependency edges because the probabilities

are dependent on one another:

P (u, [NS dep], . . . , v) =
∑

j∈NSu

P (u, j, . . . , v)

This probability is then combined independently with the probability of encoun-

tering v in paths beginning with any alias- or parent-type dependencies:

P (u, . . . , v) = 1−
(

1− P
(

u, Parent(u), . . . , v
)

)

(

1− P
(

u,Cname(u), . . . , v
)

)

(

1− P
(

u, [NS dep], . . . , v
)

)

Using these expressions, we calculate the level to which sports.net influences

19

Zone I NT FO Zone I NT FO

soccer.com yes yes yes com yes no no

tennis.com yes yes yes net yes no no

sports.net yes yes yes . yes no no

athletics.com yes yes no

Table 5: Influential (I), non-trivial (NT), and first-order (FO) zones for www.soccer.com.

soccer.com:

Iwww.soccer.com(sports.net) =

1−
(

1− P (www.soccer.com, soccer.com, . . . , sports.net)
)

(

1− P (www.soccer.com,www.tennis.com, . . . , sports.net)
)

. . .

= 0.62 + 0.06P{s,c}(ball.soccer.com)

5.4. Dependency metrics

Calculating the individual influence of all dependencies of a domain name is

computationally complex and ultimately not useful for a comparable analysis of

two domain names. A more useful metric would aggregate influence of a domain

name in a representative way such that can be meaningfully compared with that

of other names.

In this section we present several qualitative graph properties describing

the makeup of the dependency graph for a domain name and use TABLE 5 to

exemplify these properties for www.soccer.com (Figure 3). We then use these

properties to create normalized metrics for a quantitative analysis of domain

names.

Influential zones. The set of zones influencing domain name d is a subset of all

the influential domain names in d’s dependency graph, Zd ⊆ Vd. It represents

the diversity of the namespace influencing resolution of d.

Non-trivial zones. Non-trivial zones are the result of explicitly configured inter-

zone dependencies. Included in this set are the parent zones of any NS or alias

targets in Ad: Ud ⊆ Zd. A non-trivial zone foo.bar.com that influences d may

20

1: procedure NonTrivialZones(d)

2: D ← {Parent(d)}

3: for all (u, v) ∈ Ad do

4: if (u, v) is an NS target or alias dependency then

5: D ← D
⋃

{Parent(v)}

6: return D

Figure 4: The NonTrivialZones algorithm identifies all non-trivial zones in the dependency

graph for a domain name, d.

contribute up to four zones to Zd, itself and each of its ancestors. However,

if no in-edges resulting from alias- or NS-type dependencies exist for any of

its ancestor zones, then they exist in Zd only because foo.bar.com is explicitly

configured as a dependent zone and are thus trivial. The algorithm in Figure 4

identifies non-trivial zones by iterating the set of edges Ad and adding the parent

zones of NS and alias targets.

First-order zones. A subset of non-trivial zones U ′
d ⊆ Ud are explicitly con-

figured by d (or Parent(d), if d is not a zone) and comprise first-order zones.

This subset also includes the non-trivial zones in the ancestry of each explicitly

configured zone. Figure 5 finds all the alias (lines 5–7) and NS target (line 11)

dependencies for a name d and then includes the parent zone for each target

(line 15) and each non-trivial zone in its ancestry (lines 16–21).

The sizes of the sets of all, non-trivial, and first-order zones influencing a

domain name can be used for a quantitative analysis. However, these metrics

are unbounded and may not be entirely representative. It might be the case,

for example, that a zone has a large number of influential zones, but 90% of its

influence is contained within 5% of those zones. The following metrics use the

preceding graph properties to quantify influence with values normalized between

0 and 1, for representative comparison.

First-order ratio. The first-order ratio is used to determine the percentage of

non-trivial zones that are expressly configured by the administrators of d:
U ′

d

Ud
.

Values closer to 1 indicate that the administrators are largely in control of the

21

1: procedure FirstOrderDeps(d)

2: N ← NonTrivialZones(d)

3: /* M is the set of explicitly configured names for d */

4: M ← {d}

5: if d is not a zone then

6: if d is an alias then

7: M ←M
⋃

{Cname(d)}

8: d← Parent(d)

9: /* Add NS target edges for zone d to M */

10: M ←M
⋃

{u ∈ Vd|∃(d, u) ∈ Ad, NS target dep.}

11: D ← {d}

12: /* Add non-trivial zones in M ’s ancestry to D */

13: for all u ∈M do

14: v ← Parent(u)

15: while v 6= r do

16: if v ∈ N then

17: D ← D
⋃

{v}

18: v ← Parent(v)

19: return D

Figure 5: The FirstOrderDeps identifies all the non-trivial zone dependencies for domain

name d which are explicitly configured by DNS administrators.

zones comprising the TCB.

Third-party influence. Third-party influence (TPI) is used to quantify how much

domain name d is influenced by names not explicitly controlled by its adminis-

trators, i.e., Id(Ud−U ′
d). Figure 6 details the ThirdPartyInf algorithm, which

is used to calculate TPI. The TPI of d’s alias, if any (lines 5–7), is combined

(lines 15–16) with the TPI of its parent zone (lines 9–10) and that of its collec-

tive NS target dependencies (lines 11–14). Two helper algorithms are utilized:

the ControlledAlias algorithm (lines 17–26) analyzes a name to determine

whether or not it aliases (directly or indirectly) another name outside of the set

of zones in set D. The ThirdPartyInfD algorithm (lines 27–42) determines

the probability that resolution of u will utilize a name outside the set of zones

in set D.

22

6. Data Collection and Analysis

In this section we describe the methodology we employed for collecting data

from the DNS infrastructure, and provide analysis of the data collected. We

analyze several different characteristics of our data using the metrics presented

in Section 5 to assess quality of name resolution.

6.1. Data collection

We populated a database of name dependencies by crawling the namespace

of known domain names. A set of over 3 million hostnames was extracted from

URLs submitted to the Open Directory Project (ODP) at DMOZ [19]. These

names were combined with over 100,000 names received as queries by the recur-

sive servers at the International Conference for High-performance Computing,

Networking, Storage and Analysis (SC08) [20]. The ODP/SC08 seed names

represent both names with some intention of being resolved for access to pro-

duction services (ODP names) and names actually queried by clients (SC08

names). We recursively analyzed and identified dependency relationships for

each ODP/SC08 name by issuing directed queries for the name itself and each

of its dependencies, consisting of names in its ancestry and the targets of NS,

MX (mail exchange), and CNAME RRs.

For each zone z, we obtained the delegation and authoritative NS RRsets

using the following methodology. We directed a query for z to each server au-

thoritative for Parent(z) to elicit a referral, seeking a response without the

authoritative answer (AA) flag set. Since it is possible for a server to be au-

thoritative for both z and Parent(z), only if the AA flag was clear could we

be sure that the NS RRset returned reflected the delegation records maintained

in the Parent(z) zone. We obtained the authoritative NS RRset by querying a

server authoritative for z. A mismatch between the two RRsets indicated an

inconsistency.

We searched the additional section for the presence of glue records in refer-

rals. Additional records may not necessarily indicate the presence of glue. For

23

Measurement Values

ODP/SC08 hostnames 3,167,594

ODP/SC08 hostnames with label count < 3 5%

ODP/SC08 hostnames with label count = 3 78%

ODP/SC08 hostnames with label count > 3 17%

Total domain names collected 8,439,927

Total zones 2,996,460

NS target dependencies 6,855,379

NS targets requiring glue 3,723,203 (54%)

NS targets missing required glue 901 (0.024%)

Zones for which NSz 6= NS′
z 587,865 (20%)

Table 6: A summary of results collected from surveying the DNS namespace, seeded with

ODP/SC08 hostnames.

example, a referring server might be authoritative for the NS target for which

the address record is being supplied. However, we optimistically assume that

an additional record corresponding to an in-bailiwick NS target reflects a glue

record in the parent.

If we were unable to elicit a non-authoritative referral for z, then we could not

determine inconsistencies between NS′
z and NSz nor detect the presence of glue

records. However, in practice, if the set of servers authoritative for Parent(z)

are a subset of those authoritative for z, then consistency is satisfied implicitly

since all servers will send the authoritative records from z over corresponding

records from Parent(z) [17]. For all zones in our analysis we assumed a 0.5

likelihood that a resolver had in its cache the authoritative NS RRset for z (i.e.,

PNS(z) = 0.5), such that NS target names in both NSz and NS′
z were considered

for server selection with equal probability.

The results from our analysis are summarized in TABLE 6. Included in

the data is the label count distribution for the ODP/SC08 names, to provide a

perspective of the levels of the DNS hierarchy represented in our analysis. Not

surprisingly, over 75% were comprised of three labels (e.g., www.example.com).

One interesting caveat to our analysis is that the authoritative server names

for several TLDs are not subdomains of the TLDs for which they are authorita-

24

tive. For example, the authoritative servers for com are in the gtld-servers.net

zone. These server names don’t result in active influence on affected TLDs be-

cause they are in-bailiwick (subdomains of the root zone) and glue records exist.

However, these TLDs are subject to passive influence if resolvers have A RRsets

in their caches from authoritative responses.

As part of our analysis we evaluated TCB size and third-party influence with

different values of P{s,c}(v), the likelihood that an authoritative A RRset for any

NS target v exists in the cache of the resolver or the referring authoritative server.

The third-party influence for subdomains of affected TLDs was always at least

the value of P{s,c}(v) in such cases. When P{s,c}(v) = 1, for example, any

domain names ending in com or edu had a third-party influence of 1.0.

While the passive influence of such TLDs is legitimate, its presence in our

analysis obscures the level of passive influence incurred due to configuration of

subdomains. Because the naming convention of TLD authoritative servers is

deliberate, and the effects of passive influence on TLDs are likely negligible,

we did not consider their passive influence, with the exception of country-code

TLDs (e.g., us, fr), which we felt might be more interesting because influence

indicates the potential crossing of political boundaries.

6.2. Trusted computing base

The raw size of the TCB for hostnames collected in terms of influential zones

and non-trivial zones is shown in Figure 7 as a cumulative density function

(CDF), and the statistics are shown in TABLE 7. Nearly all hostnames have a

TCB smaller than 20 zones when P{s,c}(v) = 0, and the average size of the TCB

was 2.26 non-trivial zones and 5.26 total zones—both of which are reasonably

small. When P{s,c}(v) > 0, the average size of the TCB increases several times

to 11.65 non-trivial and 16.53 total zones. Only about 80% have fewer than

20 zones; most of the remaining 20% have between 30 and 90 non-trivial and

total zones in their TCB. Caching and using NS target names from authoritative

sources, rather than glue, can increase the size of the TCB of a domain by several

times.

25

Metric P{s,c}(v) Avg. Max.

Influential zones 0 5.26 72

Influential zones > 0 16.53 180

Non-trivial zones 0 2.26 45

Non-trivial zones > 0 11.65 146

First-order zone ratio 0 0.92 1.0

First-order zone ratio > 0 0.63 1.0

Third-party zone influence 0 0.08 1.0

Third-party zone influence 0.5 0.38 1.0

Third-party zone influence 1.0 0.55 1.0

Non-trivial organizations 0 1.67 37

Non-trivial organizations > 0 8.41 113

Third-party organization influence 0 0.04 1.0

Third-party organization influence 0.5 0.34 1.0

Third-party organization influence 1.0 0.49 1.0

Table 7: TCB and influence statistics for the ODP/SC08 hostnames.

6.3. Controlled influence

The first-order ratio of the ODP/SC08 hostnames is shown in Figure 8. The

average first-order ratio was 0.92 for P{s,c}(v) = 0 and 0.63 for P{s,c}(v) > 0,

indicating that control of the TCB is lost as caching of NS target names is

introduced. When P{s,c}(v) > 0, third-party zones comprise more than half of

the the non-trivial zones in the TCB of roughly 40% of the hostnames surveyed.

Figure 9 shows the third-party influence of the ODP/SC08 hostnames. When

P{s,c}(v) = 0, 85% of the hostnames are not influenced at all by third parties.

At P{s,c}(v) = 0.5 only 60% of the hostnames are influenced less than 50% by

third parties. When P{s,c}(v) = 1 nearly half of the hostnames are influenced

almost certainly by third parties. Again the behavior of caching preference of

NS target names from authoritative sources at the resolver and authoritative

servers greatly affects third-party influence of domain names.

6.4. Alias chains

One behavior affecting the third-party influence of domain names is the

practice of chaining aliases. As an example, www.example.com is configured as

26

an alias for www.example.net which, in turn, is an alias for www.example.org.

The practice is common among content distribution networks for offloading

the burden of addressing from the administrators of the original name (e.g.,

www.example.com). In our survey, we found that 33,873 (1%) of the ODP/SC08

names were affected by alias chains. Using that subset of affected names, we

graphed the third-party influence for analysis in Figure 10 using P{s,c}(v) =

0.5. Only 10% of the names dependent on alias chains exhibit no third-party

influence, compared to 42% of the entire set of ODP/SC08 names. However,

when we removed the effects of the alias chains in our analysis, nearly half of

the names avoided third-party influence completely, even with P{s,c}(v) > 0.

6.5. Organizational dependencies

Throughout Sections 5 and 6 we have used zones as the unit of measure-

ment for describing properties of the DNS name dependency graph. In reality

the grouping of names or servers for analysis is arbitrary, and the methodology

employed depends on certain assumptions and the desired results. Using zones

as a unit of measurement may seem reasonable because of the assumption that

security and reliability across the servers whose names are in a common zone

are consistent. A similar assumption may hold for use of administering orga-

nizations as a unit of measurement. Analysis of domain name influence may

yield different results when zones are grouped by organization. For example,

sports.com and athletics.net (TABLE 1) are both run by Sports Central, Inc.

Although the athletics.net zone is a third party to www.soccer.com, when ana-

lyzed by organization it is grouped with sports.com under Sports Central, Inc.,

a first-order dependency.

To further our analysis, we used the domain suffix from the contact email

in theSOA (start of authority) RR of a zone as a method for grouping different

zones into a single organization, under the assumption that such reflect the

organization responsible for maintenance of the zone. The results are shown

in Figure 11. Using this organizational grouping, we found that the number of

domain names with no third-party influence increased from 85% to over 90%

27

when P{s,c}(v) = 0 and from 42% to 48% when P{s,c}(v) > 0.

7. Reducing Passive Influence

We have observed an increased third-party influence on dependent domain

names when there is a higher likelihood of passive influence caused by the ex-

istence of an A RRset from an authoritative response in cache for an NS target

name for which a glue record exists. This likelihood, P{s,c}(v), is comprised of

the probability that the A RRset from authoritative source is in the cache of

the authoritative server, s, offering the referral or in the cache of the resolver,

c, Ps(v) and Pc(v), respectively. We discuss in this section considerations that

affect passive influence and make recommendations to contain third-party in-

fluence with proper configuration.

7.1. Authoritative servers

The obvious way to minimize Ps(v) is to remove caching functionality from

authoritative servers, a DNS best practice [18]. Both NSD and tinydns act

as authoritative servers without caching. BIND allows dual functionality but

provides a configurable option to disallow the inclusion of cached RRsets in the

additional section of responses. However, this option is not enabled by default,

so if a BIND authoritative server with default settings has records in cache, it

will use them to populate the additional section in preference to any glue records

in its local configuration.

During our survey of the production DNS space we queried 7,781 distinct

servers authoritative for a parent zone in an attempt to detect glue records and

discrepancies in the delegation records for a child zone. We found that 1,486

(19%) of these servers returned additional records whose TTL decreased when

issued a subsequent request seconds later, indicating that they had come from

the cache of the authoritative server. This demonstrates the pervasiveness of

caching functionality on production authoritative servers.

28

7.2. Resolvers

Many factors may contribute to an increased probability of RRsets from au-

thoritative sources in a resolver’s cache, Pc(v). Some are environment-specific.

For example, the rate of queries to the resolver requesting an authoritative an-

swer for the A RRset of an NS target name would certainly affect this probability,

but this behavior is local to the resolver’s environment. One consideration that

has effects in any environment is the dynamics of TTL values for related RRsets.

Passive influence is minimized when the TTL of a glue record is equal to that

of the NS RRset for which it is an NS target. When the TTL of the glue record

is less than that of the NS RRset, there is an increased chance that queries for

names within the zone will result in induced query for an authoritative response

for the A RRset.

We consider a practical example using the zone data from TABLE 1 and

illustrate it in Figure 12. Suppose the TTL of the NS RRset for tennis.com

is 160 and the TTL for the glue record for ball.soccer.com is 80. If a resolver

with empty cache receives a query for tennis.com at time t = 0, it caches

the tennis.com NS RRset and ball.soccer.com A RRset from the authority and

additional sections of the referral, respectively. For lookups in tennis.com during

0 < t ≤ 80 the resolver can query ball.soccer.com using the address from its glue

record. When 80 < t ≤ 160 the tennis.com NS RRset is still cached, but now

a lookup is required to obtain the address for ball.soccer.com, resulting in an

A RRset cached from an authoritative source. Such is the case with the query

at t = 110. Not until t > 160, when the tennis.com NS RRset expires and

a referral from a com server is again required, does the resolver again receive

a glue record for ball.soccer.com in the additional section of a response. The

query at t = 170 causes this lookup. However, because of the relative ranking of

trustworthiness explained in Section 4, the RRsets from the additional section do

not override data from authoritative sources already in cache. Thus at t = 260,

when the A RRset from authoritative source has expired, the query induces

another authoritative lookup, and passive influence persists until both the NS

and the A RRsets expire from cache. After both RRsets have expired, the query

29

at t = 350 induces a query by the resolver resulting in a referral response with

the NS RRset and the A RRset from glue, which will both be used for subsequent

queries.

We observed this pattern of passive influence in both the BIND and unbound

resolvers. However, the behavior exhibited by dnscache varies because of its

cache renewal policy. BIND and unbound do not renew the lifetime of an NS

RRset cached from the authority section of an authoritative response, even when

subsequent responses are received with the same contents. However, every time

dnscache receives a response, it updates its cache with RRsets from all sections.

This means that additional RRsets from referrals will replace any answer RRsets

from authoritative responses. It also means that dnscache does not require a

referral from a com server as long as the cached tennis.com NS RRset is renewed

from the authority section of responses. With such behavior passive influence

may enter less frequently on a dnscache resolver, but it may persist longer,

depending on query rates.

We note that the presence of authoritative data for an NS target in cache does

not necessarily mean that a resolver selects the respective server for query—only

that the source of the address is now a product of passive influence, and that if

selected, it exhibits dependencies of that name, following the model described in

Section 5. Also, our example assumes for simplicity that only queries for names

in tennis.com are received by the resolver during the time span shown.

We use the difference in TTL value between the NS RRset for zone z and the

A RRset for v ∈ NSz as a measure of the impact on cache probability, Pc(v).

This difference represents the window in which a resolver has the NS RRset for

z cached, but the A RRset has expired, following an initial query for z. We

normalize this value by dividing it by the TTL of the NS RRset. For simplicity,

we assume that the TTLs for delegation and glue records in the parent zones

are the same as the corresponding RRsets in the child zone.

Figure 13 shows a CDF of the normalized difference between authoritative

NS and glue A RRsets for the 40% of total NS target dependencies meeting

the criteria for potential passive influence. Over 92% of the dependencies are

30

configured such that there is no difference between the TTLs of the NS and A

RRsets. But for nearly 6% of the dependencies, the TTL of the NS RRset is two

or more times that of the A RRset for the corresponding target.

8. Further Model Considerations

The dependency model described in this article considers only the basic

process for resolving domain names to IP addresses. In this section we describe

how dependency relationships stemming from other DNS processes and record

types might be integrated into the model. We also describe how our model is

affected by the deployment of the DNS Security Extensions (DNSSEC).

8.1. Extensions

Our DNS dependency model is based on the three relationships fundamental

to resolution of domain names to IP addresses, specifically those between parent

and child zones, between CNAME RRs and their targets, and between NS RRs and

their targets. However, the model may be extended to consider other depen-

dency relationships in the DNS. We provide several such examples, though fully

integrating them into our model is beyond the scope of this article.

The record data of an MX (mail exchange) RR contains a target domain name

designating the host to which mail addressed to the owner name of the RR

should be delivered, as well as a numerical preference for that target. Because

lower values for MX preferences have higher priority, we use distance instead of

priority to disambiguate, such that lower distances are preferred. Multiple MX

RRs may exist for a single owner name, each with different target and distance

values. A mail server will first attempt to send a message to the target with

the smallest distance. If connectivity fails, it will attempt delivery to hosts

referenced in other MX RRs, in increasing order of distance. The dependency

model for mail exchange involving domain name d extends the dependency

model for resolving d to an IP address. To the already constructed dependency

graph Gd, we simply add edges from d to the targets of each of the MX RRs. The

31

weight of each such edge is based on the availability of the targets with smaller

distances. The dependencies for each MX target are then added to the graph,

following the original dependency model (i.e., without further considering MX

RRs), since the behavior of a mail server is to resolve each target to an IP

address for delivery.

The DNAME RR type [21] was introduced to allow an entire domain to alias

another domain, e.g., for seamless organizational transition. The net effect is

that any name which is a subdomain of a domain name for which a DNAME RR

exists results in a substitution of the DNAME owner for its target in the name’s

suffix. For example, if example.com has a DNAME RR whose target is example.net,

then www.example.com will alias www.example.net in the DNS response. Our

dependency model can be extended to include the DNAME RR type by simply

adding a dependency edge from the node with the owner name to the DNAME

target, and recursively following the dependencies of its target.

8.2. DNSSEC

The DNS Security Extensions (DNSSEC) [6, 7, 22] introduce authentication

into the DNS. DNS data is signed on a per-zone basis and the signatures and

public keys for the data are published in the zone and returned in DNS responses.

Public keys for zones are authenticated by their parent zones, which creates a

chain of trust from a zone through its ancestry to the root zone. We provides a

few insights on DNSSEC from the perspective of our dependency model.

First, DNSSEC enables authentication of RRsets. Thus, barring key com-

promise, third parties in a domain name’s TCB cannot tamper with an RRset

for the name without being detected by a validating resolver. However, in

the case of alias chains involving one or more aliases that span multiple zones,

every RRset in the chain must be authenticated for security to be complete.

In our DNS example, if soccer.com is signed, but tennis.com is not, then

www.tennis.com is still vulnerable to tampering, and it is the ultimate source

of data for www.soccer.com.

32

While DNSSEC provides a means to protect against forgery, it also intro-

duces additional complexity into the DNS, both in protocol and administrative

overhead. Research has shown that early deployment has been challenging, and

misconfiguration has been pervasive [23]. A larger TCB for a domain name leads

to a larger set of zones that must be properly configured, and DNSSEC adds

potential complications to that. Administrators should be particularly aware

of their DNS deployment in a system that employs DNSSEC to avoid name

resolution outage due to misconfiguration.

9. Conclusion

In this article we have presented a graph model for analysis of name de-

pendencies in DNS, which was based on specification and behavior of deployed

DNS servers. We defined the trusted computing base (TCB) of a domain name

in terms of zones and organizations. We also derived metrics for assessing the

dependency model of a domain name. Among these were the level of influence of

influential domain names, and third-party influence—the probability that reso-

lution of a domain name will utilize namespace outside the explicit configuration

of domain administrators.

We observed that the TCB of domain names, when measured by influential

zones and organizations, is much smaller than previously thought. On average

92% of the non-trivial zones in the TCB of a domain name were explicitly con-

figured by the domain administrators. However, the practice of resolver and au-

thoritative servers using address records corresponding to NS targets from cache,

rather than from additional records in a response or from glue, can increase the

size of the TCB and the influence of third-party namespace significantly.

To maximize the reliability of name resolution from the perspective of both

resolver and authoritative server, administrators and designers of DNS services

should be aware of their server configurations as well as the names and organiza-

tion comprising the TCBs of their domain names. Administrators should review

the role of name servers in their environment to minimize the influence of third

33

parties. The practice of chaining domain name aliases increases the potential

for third-party influence and should be avoided, as suggested in RFC 1912 [24].

Additionally, we recommend that the roles of authoritative server and caching

server be kept distinct or that authoritative servers be configured to not include

information from their caches, as this creates additional dependence. Also, DNS

administrators should minimize the difference in TTL value between NS RRsets

and the glue records for their corresponding NS targets.

A better understanding of DNS dependencies and an application of that

understanding will put more control into the hands of DNS administrators and

mitigate the risks associated with large and diverse TCBs and high third-party

influence.

[1] P. Mockapetris, RFC 1034: Domain names - concepts and facilities (1987).

[2] P. Mockapetris, RFC 1035: domain names - implementation and specifica-

tion (1987).

[3] P. Mockapetris, K. J. Dunlap, Development of the domain name

system, SIGCOMM Comput. Commun. Rev. 18 (4) (1988) 123–133.

doi:http://doi.acm.org/10.1145/52325.52338.

[4] V. Ramasubramanian, E. G. Sirer, Perils of transitive trust in the domain

name system, in: IMC ‘05: Proceedings of the 5th ACM SIGCOMM confer-

ence on Internet Measurement, USENIX Association, USENIX Association,

Berkeley, CA, USA, 2005, pp. 379–384.

[5] V. Pappas, Z. Xu, S. Lu, D. Massey, A. Terzis, L. Zhang, Impact of config-

uration errors on DNS robustness, in: SIGCOMM ‘04: Proceedings of the

2004 conference on Applications, technologies, architectures, and protocols

for computer communications, ACM, ACM, New York, NY, USA, 2004,

pp. 319–330.

[6] R. Arends, R. Austein, M. Larson, D. Massey, S. Rose, RFC 4033: DNS

security introduction and requirements (2005).

34

[7] R. Arends, R. Austein, M. Larson, D. Massey, S. Rose, RFC 4034: Resource

records for the DNS security extensions (2005).

[8] IKS, DNSSEC.

URL https://www.iks-jena.de/leistungen/dnssec.php

[9] E. Osterweil, D. Massey, L. Zhang, Deploying and monitoring DNS security

(DNSSEC), in: 25th Annual Computer Security Applications Conference

(ACSAC ’09), 2009.

[10] SecSpider.

URL http://secspider.cs.ucla.edu/

[11] D. Dagon, M. Antonakakis, P. Vixie, T. Jinmei, W. Lee, Increased DNS

forgery resistance through 0x20-bit encoding: security via leet queries, in:

Proceedings of the 15th ACM conference on Computer and communications

security, ACM, 2008, pp. 211 – 222.

[12] R. Perdisci, M. Antonakakis, X. Luo, W. Lee, WSEC DNS: Protecting

recursive DNS resolvers from poisoning attack, in: Dependable Systems &

Networks, 2009. DSN ’09. IEEE/IFIP International Conference on, IEEE,

2009, pp. 3 – 12. doi:10.1109/DSN.2009.5270363.

[13] ISC BIND. [link].

URL http://www.isc.org/products/BIND/

[14] Unbound. [link].

URL http://www.unbound.net/

[15] djbdns. [link].

URL http://cr.yp.to/djbdns.html

[16] NSD. [link].

URL http://www.nlnetlabs.nl/projects/nsd/

[17] R. Elz, R. Bush, RFC 2181 - clarifications to the DNS specification (1997).

35

[18] R. Chandramouli, S. Rose, Secure domain name system (DNS) deployment

guide.

URL http://csrc.nist.gov/publications/nistpubs/800-81r1/sp-800-81r1.pdf

[19] Open Directory Project. [link].

URL http://www.dmoz.org/

[20] SC08: The International Conference for High-performance Computing,

Networking, Storage and Analysis. [link].

URL http://sc08.supercomputing.org/

[21] M. Crawford, RFC 2672 - non-terminal DNS name redirection (1999).

[22] R. Arends, R. Austein, M. Larson, D. Massey, S. Rose, RFC 4035: Protocol

modifications for the DNS security extensions (2005).

[23] C. Deccio, J. Sedayao, K. Kant, P. Mohapatra, Quantifying and improving

dnssec availability, in: Proceedings of the 20th International Conference on

Computer Communication and Networks (ICCCN 2011), 2011, pp. 1 – 7.

[24] D. Barr, RFC 1912 - common DNS operational and configuration errors

(1996).

Dr. Casey Deccio is a Senior Member of Technical Staff

at Sandia National Laboratories in Livermore, CA. He joined

Sandia in 2004 after receiving his BS and MS degrees in Com-

puter Science from Brigham Young University, and he earned

his doctoral degree from the University of California, Davis,

in 2010. Dr. Deccio’s research interests lie primarily in mod-

eling and availability analysis of DNS and DNSSEC.

Jeff Sedayao is an enterprise architect in Intel’s IT Re-

search Group. He focuses on applying distributed systems

technologies such as cloud computing to enterprise IT prob-

lems. Jeff has participated in IETF working groups, pub-

lished papers on policy, network measurement, network and

36

system administration, and authored the O’Reilly and Asso-

ciates book, Cisco IOS Access Lists.

Dr. Krishna Kant has been with Intel Corporation since

1997 and is currently on a visiting appointment at George

Mason University, Fairfax, VA. He is also serving as a pro-

gram director at the National Science Foundation where he

manages the computer systems research program. His cur-

rent areas of research include energy efficient and sustainable

computing, robustness in the Internet, and cloud computing security. He car-

ries 29 years of combined experience in academia, industry, and government.

He has published in a wide variety of areas in computer science and authored a

graduate textbook on performance modeling of computer systems.

Dr. Prasant Mohapatra is currently the Tim Bucher Fam-

ily Endowed Chair Professor and the Chairman of the De-

partment of Computer Science at the University of Califor-

nia, Davis. In the past, he has been on the faculty at Iowa

State University and Michigan State University. He has also

held Visiting Scientist positions at Intel Corporation, Pana-

sonic Technologies, Institute of Infocomm Research (I2R),

Singapore, and National ICT Australia (NICTA). He was/is on the editorial

board of the IEEE Transactions on Computers, IEEE Transactions on Mo-

bile Computing, IEEE Transaction on Parallel and Distributed Systems, ACM

WINET, and Ad Hoc Networks. He has been on the program/organizational

committees of several international conferences.

Dr. Mohapatra received his doctoral degree from Penn State University in

1993, and received an Outstanding Engineering Alumni Award in 2008. He is

a Fellow of the IEEE.

Dr. Mohapatra’s research interests are in the areas of wireless networks,

sensor networks, Internet protocols, and QoS.

37

1: procedure ThirdPartyInf(d)

2: D ← FirstOrderDeps(d)

3: PA ← 0

4: if d is not a zone then

5: /* If d is an alias, calculate the TPI of Cname(d) */

6: if d is an alias then

7: PA ← ThirdPartyInfD(Cname(d), D)

8: d← Parent(d)

9: /* Calculate the TPI of Parent(d) */

10: PP ← ThirdPartyInfD(Parent(d), D)

11: /* Calculate the TPI of each NS target of zone d */

12: PNS ← 0

13: for all u ∈ Vd|∃(d, u) ∈ Ad, NS target dep. do

14: PNS ← PNS + w(d, u)ThirdPartyInfD(u,D)

15: /* Aggregate the TPI of all name dependencies */

16: return 1− (1− PP)(1− PA)(1− PNS)

17: procedure ControlledAlias(u,D)

18: H ← {u}

19: while u is an alias do

20: if Parent(Cname(u)) /∈ D then

21: return False

22: else if Cname(u) ∈ H then /* Loop detected */

23: return True

24: H ← H
⋃

{u}

25: u← Cname(u)

26: return True

27: procedure ThirdPartyInfD(u,D)

28: if u is not a zone then

29: /* u aliases a name outside of D */

30: if ¬ControlledAlias(u,D) then

31: return 1.0

32: u← Parent(u)

33: P ← 0

34: /* Aggregate influence outside D for u’s ancestors */

35: while u 6= r do

36: Pu ← 0

37: for all v ∈ Vd|∃(u, v) ∈ Ad, NS target dep. do

38: if Parent(v) /∈ D or ¬ ControlledAlias(v,D) then

39: Pu ← Pu + w(u, v)

40: P ← 1− (1− P)(1− Pu)

41: u← Parent(u)

42: return P

Figure 6: The ThirdPartyInf algorithm returns the third-party influence for domain name d.

The ControlledAlias helper algorithm returns False if domain name u directly or indirectly

aliases a name outside of a set of zones, D; otherwise it returns True. The ThirdPartyInfD

helper algorithm returns the influence on domain name u by names outside of a set of zones,

D.

38

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

C
D

F

Trusted Computing Base (Number of zones), PNS(z) = 0.5

All zones, P{ s,c} (v) = 0
All zones, P{ s,c} (v) > 0

Non-trivial zones, P{ s,c} (v) = 0
Non-trivial zones, P{ s,c} (v) > 0

Figure 7: The CDF for the size of the TCB of ODP/SC08 hostnames. Included are the CDF

for the number non-trivial and total zones in the TCB, for P{s,c}(v) = 0 and P{s,c}(v) > 0.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

First-order Ratio (Ud′/Ud), PNS(z) = 0.5

P{ s,c} (v) = 0
P{ s,c} (v) > 0

Figure 8: The CDF for the first-order ratio of the ODP/SC08 hostnames.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Third-party Influence, PNS(z) = 0.5

P{ s,c} (v) = 0
P{ s,c} (v) = 0.5

P{ s,c} (v) = 1

Figure 9: The CDF for the third-party influence of the ODP/SC08 hostnames, grouped by

zone.

39

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Third-party Influence, PNS(z) = 0.5, P{ s,c} (v) = 0.5

Alias chains in tact
Alias chains removed

Figure 10: The CDF for the third-party influence of ODP/SC08 hostnames affected by alias

chains, grouped by zone.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Third-party Influence, PNS(z) = 0.5

P{ s,c} (v) = 0
P{ s,c} (v) = 0.5

P{ s,c} (v) = 1

Figure 11: The CDF for the third-party influence of ODP/SC08 hostnames, grouped by

organization.

A(glue)

(80)

NS

(160)

A(auth)

(80)

NS

(160)

NS

(160)

A(auth)

(80)

A(glue)

(80)

t

Cached

RRset

(TTL)

0 110 170 260 350

Figure 12: A timeline of queries received by a resolver for names within a particular zone, not

found in the resolver’s cache. The cache lifetimes for the zone’s NS RRset and corresponding

glue and authoritative A RRsets are shown above the timeline, labeled by TTL. Ticks below

the timeline mark query arrival times. Queries inducing lookups of A RRsets are circled, and

the shading highlights the lifetime of authoritative A RRsets in cache.

40

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Difference in TTL of NS RRset and A RRset (normalized)

Figure 13: The CDF showing the normalized difference between NS and A RRsets for NS-type

dependencies in the data seeded by the ODP/SC08 names.

41

