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ABSTRACT
Smartwatch is becoming one of the most popular wearable
device with many major smartphone manufacturers such as
Samsung and Apple releasing their smartwatches recently.
Apart from the fitness applications, the smartwatch provides
a rich user interface that has enabled many applications like
instant messaging and email. Since the smartwatch is worn
on the wrist, it introduces a unique opportunity to under-
stand user’s arm, hand and possibly finger movements using
its accelerometer and gyroscope sensors. Although user’s
arm and hand gestures are likely to be identified with ease
using the smartwatch sensors, it is not clear how much of
user’s finger gestures can be recognized. In this paper, we
show that motion energy measured at the smartwatch is
sufficient to uniquely identify user’s hand and finger ges-
tures. We identify essential features of accelerometer and
gyroscope data that reflect the movements of tendons (pass-
ing through the wrist) when performing a finger or a hand
gesture. With these features, we build a classifier that can
uniquely identify 37 (13 finger, 14 hand and 10 arm) ges-
tures with an accuracy of 98%. We further extend our ges-
ture recognition to identify the characters written by the
user with her index finger on a surface, and show that such
finger-writing can also be accurately recognized with nearly
95% accuracy. Our presented results will enable many novel
applications like remote control and finger-writing-based in-
put to devices using smartwatch.

Categories and Subject Descriptors: C.5.3 [Computer
System Implementation]: Microcomputers – portable de-
vices

Keywords: Wearables; Gesture Recognition; Mobile Com-
puting.

1. INTRODUCTION
There has been a sharp increase in the popularity of smart-

watches in last one year. With recent release of smart-
watches from Apple [1], LG [2], Motorola [3] and Samsung
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gesture - rotate
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Figure 1: Examples of arm, hand and finger gestures

[4], it is expected that they will be at the forefront in adapta-
tion of wearable devices. Apart from the fitness applications
(which are also available in wrist-bands such as Fitbit [5]),
the smartwatches provide a rich user interface to interact
via voice or touch. Current smartwatches support applica-
tions like email, instant messaging, calendar, navigation by
connecting to user’s smartphone over Bluetooth.

This increasing popularity of smartwatch presents a unique
opportunity. Because the smartwatch is worn on the wrist,
it is possible to understand user’s hand and arm movement
better than ever before. Most of today’s smartwatch have
accelerometer and gyroscope sensors built in them. If we
can capture and analyze these sensors’ data, we can under-
stand user’s arm, hand and finger gestures. It is expected
that smartwatch sensors would be able to identify user’s
arm gestures (when the gesture involves the movement of
shoulder or elbow joint) with ease, however, it is not clear
if it can recognize user’s hand and finger gestures. The fin-
ger gestures are especially challenging to be detected using
smartwatch since the movement in the wrist when doing a
finger gesture is very small and it is not clear whether it can
be recognized uniquely. If this is feasible, there can be a
plethora of applications. A user wearing a smartwatch can
remotely control nearby television, computer, smartphone
or any smart device using the finger gestures. If the finger
movements are captured by the smartwatch, user can write
with her finger (in the air or on a surface) to input text on
smartwatch or any other connected device.

In this paper, we investigate the following questions: Can
accelerometer and gyroscope sensors in smartwatch be used
for identifying user’s arm, hand and finger gestures? Al-
though it is likely that arm and hand gestures can be rec-
ognized using smartwatch sensors, how accurately can we
determine user’s finger gestures e.g. zoom-in, zoom-out etc.
(Fig. 1)? Even further, can we identify the characters when
user writes with her index finger in air or on the surface by



simply monitoring smartwatch sensors? Our study provides
affirmative answers to all these questions. The contributions
of our work are as follows:

(1) We first show that measured motion energy in ac-
celerometer and gyroscope of smartwatch can be used to
distinguish the type of a gesture - arm, hand or finger. We
then show that even low-intensity finger gestures such as
moving index finger up and down is captured with corre-
sponding motion energy in the smartwatch sensors. This
motivates us to design a hand and finger gesture recognition
technique using smartwatch.

(2) We show that due to the tendons passing through hu-
man’s wrist, it is possible to uniquely identify a finger gesture
using the smartwatch. We provide essential features derived
from accelerometer and gyroscope data that can be used to
identify the gestures. Our machine learning classifier can
identify 37 (13 finger, 14 hand and 10 arm) gestures with an
accuracy of 98%.

(3) We then extend our gesture recognition technique to
identify the characters when user writes with her index finger
on a surface while wearing the watch. Our classifier can
identify the characters from 26 alphabets with an accuracy
of nearly 95%.

The rest of the paper is organized as follows. In Sec-
tion 2, we provide the details of our experiment settings and
describe how motion energy can be used to distinguish the
type of gestures. Section 3 provides the details of our ges-
ture recognition technique and Section 4 shows how finger-
writing characters can be detected when wearing the smart-
watch. Additional challenges and our ongoing work are de-
scribed in Section 5. Section 6 discusses the related work
and Section 7 concludes the paper.

2. MOTION ENERGY AND GESTURE TYPE
In this section, we describe our experiment settings and

show how we can determine the gesture type using the mea-
sured motion energy from the smartwatch.

2.1 Experiment Settings
Sensor Data Collection: We use a Shimmer [6] de-

vice attached to a wristband as the smartwatch as shown
in Fig. 2a. The Shimmer contains an accelerometer sensor
and a gyroscope sensor. The sensor data is collected at 128
Hz on Shimmer and transferred to a smartphone via Blue-
tooth. We use the Shimmer instead of any commercially
available smartwatch because most smartwatch available in
market provide only a limited API support for collecting ac-
celerometer and gyroscope data. The sampling frequency of
128 Hz for Shimmer is not too high since the typical sam-
pling frequency for accelerometer on current smartphones
and smartwatches is 200 Hz [10] and 100 Hz [7] respectively.
This means that a Shimmer closely resembles a smartwatch
in terms of the motion sensors.

Gesture Experiments: Although our primary focus in
this work is to identify finger and hand gestures using smart-
watch, we also consider arm gestures for comparison. This
way, we classify all the gestures in three types: arm, hand
and finger. The list of all gestures we tested in our exper-
iments is provided in Table 1. A total of 37 gestures are
considered in our work which consists of 13 finger gestures,
14 hand gestures and 10 arm gestures. The data is collected
for each gesture by repeating it for 10 times. Apart from the
gestures, we also recognize characters when user writes on

X

YZ

(a) Shimmer as a
smartwatch

(b) Finger Gesture

(c) Hand Gesture (d) Arm Gesture

Figure 2: Experiment settings showing how we perform
different types of gestures

the surface while wearing the Shimmer. These experiments
are described in Section 4.

Type Gestures
Arm ThumbsDown, Push, Left, Right, Up, ClockwiseCircle,

Cross, AntiClockwiseCircle, LeftTwice, RightTwice
Hand AntiClockwiseCircle, ClockwiseCircle, DownOnce,

DownTwice, GunShoot, LeftOnce, LeftTwice, Phone
Call, RightOnce, RightTwice, RotateLeftVolume-
Down, RotateRightVolumeUp, UpOnce, UpTwice

Finger IndexFingerClick, ZoomIn, ZoomOut, One, Two,
Three, Four, Five, OneTwice, ThumbsUp, Singleclick,
DoubleClick, TwoTwice

Table 1: List of gestures used in our experiments

In order to maintain consistency across the gestures of
each type, we adhere to the following guidelines. As shown
in Fig. 2b, while doing the finger gestures, the wrist and the
arm are affixed to the chair arm. For the hand gestures, the
arm is affixed, however, the wrist is free to move and/or ro-
tate (Fig. 2c). The arm gestures have the highest freedom of
movement where only user’s elbow is assumed to be touching
the chair arm (Fig. 2d). Note that other arm gestures with
movement of shoulder joint can also be recognized using our
approach without requiring any major modifications.

2.2 Classifying Gesture Type - Finger, Hand
or Arm

In this section, we answer the following question: can we
determine if a given gesture is a finger, hand or arm gesture
based on the smartwatch sensor data?

The motion energy behind the movement in different types
of gesture is likely to be different. We can expect that mo-
tion energy observed during the arm gesture to be the high-
est, followed by hand gestures and then the finger gestures.
The motion energy (or simply energy) can be measured for
smartwatch’s accelerometer and gyroscope as shown in [11].
The energy is computed as

Energy =

window length/2∑
i=1

magnitude2i (1)

where magnitude values are the Fast Fourier Transform (FFT)
coefficients calculated over the time window. Because all
gestures considered in this work last for very small dura-
tion, we set the window size to be the time of the complete
gesture. The energy is only calculated for half the window
since the remaining magnitude values are redundant which
follows from the symmetry of FFT. Also, we only choose to



Figure 3: 3 Shimmers used to measure
finger, wrist and forearm motion
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Figure 4: Motion energy in finger, wrist
and forearm when doing a finger gesture
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Figure 5: Motion energy in finger, wrist
and forearm when doing a hand gesture
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Figure 6: Accelerometer and gyroscope motion energy can be
used to differentiate the type of gesture: arm, hand or finger

calculate the energy within the lower frequency range of 0
to 1 Hz which is known to indicate low intensity activities
and minor changes in posture [11].

Fig. 6 shows the energy of accelerometer and gyroscope
for different gestures. We calculate the energy for all three
axis and show the highest among the three axis in Fig. 6. It
can be seen that the energy values can clearly distinguish the
type of gesture. The finger and arm gestures have the lowest
and the highest accelerometer and gyroscope energy respec-
tively, while the energy values of hand gestures fall between
the two. Arm gestures that involve more wrist rotation (such
as ThumbsDown) will result in higher gyroscope energy. On
the other hand, the arm gestures with more motion but less
rotation (e.g. up or down) have more accelerometer energy
and less gyroscope energy.

Using these attributes, we build machine learning classi-
fiers to classify gestures in the three types. We use three
different machine learning methods - Naive Bayes, Logistic
Regression and Decision Tree - for comparison. We will use
these three methods along with 10-fold cross-validation to
present our evaluation throughout the paper. The results
of the classifications are presented in Table 2. It can be
observed that the True Positive Rate (TP Rate) for arm
gesture classification is 100% while the classification accu-
racy is slightly lower in finger and hand gestures. Logistic
regression-based classifier achieves the highest overall accu-
racy (maximum weighed TP rate) among all three meth-
ods. Table 3 provides the confusion matrix for the logistic
regression-based classifier. It shows that hand and finger
gestures are often misclassified among each other especially
when some hand gestures such as UpOnce or DownOnce
have similar motion energy as the finger gestures.

Classifier TP Rate
Finger Hand Arm

Naive Bayes 91.50% 81.40% 100.00%
Logistic Regression 99.20% 97.10% 100.00%

Decision Tree 99.20% 93.60% 100.00%

Table 2: Gesture type classification accuracy

Classified as –> Finger Hand Arm
Finger 129 1 0
Hand 3 136 1
Arm 0 0 100

Table 3: Confusion matrix for logistic regression classifier

2.3 Motion Energy in Wrist from Finger and
Hand Gesture

We now investigate the resultant motion energy in wrist
when performing a finger or a hand gesture. Higher resultant
energy would mean that wrist motion is a good representa-
tion of the finger/hand gesture and it might be possible to
uniquely identify the gesture itself.

For analyzing this, we use three separate Shimmer sen-
sors - one on the index finger, the second on wrist (like the
smartwatch as before) and the third one on the forearm.
The setup is shown in Fig. 3. When the user performs a
finger or a hand gesture, measured motion energy in index
finger Shimmer sensor would be the highest. However, it is
not clear how much of this motion is reflected by the mo-
tion energy measured at the wrist and the forearm Shimmer
sensors. We study the forearm case because it was shown
by [8] that forearm muscles are good representatives of the
hand movements.

With this setup of three sensors, the user performs a fin-
ger gesture and data is collected from all the three sensors.
The user moves her index finger up and down with increas-
ing the frequency of up-down with time. This is shown in
Fig. 4. We can observe that motion energy measured in
index finger sensor is very high, and it increases with time
as user increases the frequency of motion. The motion en-
ergy at the wrist and the forearm sensors are also shown in
Fig. 4. It is observed that forearm has lesser motion energy
compared to the wrist sensor. We also see that the motion
energy measured in the wrist sensor is a good indication
of finger movements. Since the finger motion energy is the
highest while doing a finger gesture, we can use a wearable
ring (such as [9]) to identify the gestures, however, its limi-
tation is that it can only be used to understand gestures of
one specific finger on which the ring is worn. While with
smartwatch, it is possible to recognize gestures of all fingers
as we will show in Section 3.

We repeat the experiment with a hand gesture where user
continuously makes a fist and releases the fist. The results of
measured motion energy are presented in Fig. 5. Compared
to the finger gesture, more motion energy is observed in the
index finger sensor. We conclude the same phenomenon as
Fig. 4 that motion energy in wrist is more compared to the
forearm and it is also a good representative of the hand
movement.



3. GESTURE RECOGNITION
We know from the previous section that there is a notice-

able motion energy observed in the wrist when performing
a finger or a hand gesture. In this section, we leverage this
to build a gesture recognition technique. We first provide
a brief description of anatomy of human hand and wrist to
describe how tendons are responsible for creating a unique
signature of different gestures.

3.1 Anatomy of Hand and Wrist
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t14
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Figure 7: Tendons in posterior (left) and anterior (right) view
of human hand and wrist

There are a total of seven different muscles in the fore-
arm which are responsible for extension (releasing a fist)
and flexion (making a fist) motions. These muscles include
five extensor muscles and two flexor muscles. Each of these
muscles are responsible for movements of different sets of
fingers. The movement itself, however, is carried out using
the tendons which are tissues that connect the muscles with
the finger bones (refer Fig. 7). There are seventeen tendons
on the front and back of the wrist. When user moves a finger
or the hand, these tendons get pushed or pulled, resulting
in some movement around the wrist area. As we show next,
this movement is sufficiently rich to recognize different finger
and hand gestures.

3.2 Primitive Gestures
To demonstrate that movement of tendons can be used

to distinguish different gestures, we first take examples of
primitive gestures and show how smartwatch accelerometer
and gyroscope data is different for each of them. Fig. 8 shows
the accelerometer data for Y-axis when the four fingers and
the thumb individually perform a simple up-down gesture
once. Simple visual inspection reveals that each finger (or
the thumb) has clearly distinct pattern when performing the
same gesture. This is because different tendons are involved
in the movement of different fingers and the thumb. For
example, for the index finger, extensor tendons t3 and t4
(Fig. 7) enable the up movement, while for the little finger,
extensor tendons t7 and t8 create the up movement.

We also test how the accelerometer pattern is different
when performing different gestures using the same finger.
For this, user performs three different gestures - up-down,
circular motion and left-right - using her index finger. Fig. 9
shows that the accelerometer data from smartwatch is suffi-
ciently different for each gesture even when performed using
the same finger.

3.3 Gesture Recognition
After our preliminary study with primitive gestures, we

now attempt to identify each gesture (finger, hand or arm)
uniquely given the accelerometer and gyroscope data from
smartwatch. In order to perform this gesture recognition, we
collect the data of all gestures listed in Table 1 (each gesture
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Figure 8: Accelerometer Y-axis when performing the same
up-down gesture with four fingers and the thumb

-4

-2

 0

 0  0.5  1

A
C

-Y
 (

m
/s

2
)

time (s)

Up-Down

-2

 0

 2

 4

 0  0.5  1

time (s)

Left-Right

-2

 0

 2

 0  0.5  1

time (s)

Circle

Figure 9: Accelerometer Y-axis when doing three different
primitive gestures with index finger

repeated 10 times). Since each gesture has a different time
duration, we use a time interval between two gestures where
user’s hand is stationary to delimit the gesture boundaries
for both training and testing.

Feature Extraction and Evaluation: After collect-
ing the data for all gesture instances, we calculate various
features using the data. The complete list of features is pro-
vided in Table 4. This forms a subset of features extracted
from [11]. In [11], it was shown that these features closely
correlate to human activity (e.g. walking, running etc) and
various postures (e.g. sleeping, sitting etc.). Because these
features were initially proposed for smartphone to evaluate
human body movement, it is not clear that their direct ap-
plication to smartwatch gesture recognition would be useful
or not. To calculate the worth of these features, we use
Information Gain-based feature evaluation.

Type Features
Motion Energy ACEnergy, ACLowEnergy

Posture
DCMean, DCTotalMean, DCArea,
DCPostureDist

Motion Shape
ACAbsMean, ACAbsArea,
ACTotalAbsArea

Motion Variation ACVar, ACAbsCV, ACIQR, ACRange

Table 4: Features selected from [11]; refer [11] for complete
definitions and full names; all features are calculated for both

accelerometer and gyroscope; some features calculated across all
three axis while the others for all three axis individually

Information gain [13] measures the number of bits of in-
formation obtained in predicting a gesture in presence of a
feature compared to the feature being absent. It is measured
by calculating the entropy. Let F be a feature and G be the
set of gestures then Equ. 2 and Equ. 3 calculate the entropy
of G in absence and presence of feature F respectively.

E(G) = −
∑
g∈G

p(g) log2p(g) (2)

E(G|F ) = −
∑
f∈F

p(f)
∑
g∈G

p(g|f) log2p(g|f) (3)

Here, p(g) is the fraction of instances for gesture g ∈ G,
p(f) is the probability that feature F has the value f and
p(g|f) is the fraction of instances of g given F = f . The
information gain of F is then calculated as E(G)−E(G|F ).

We calculate the information gain for all features in Ta-
ble 4 and order them in decreasing order of their information
gain. Fig. 10a shows the information gain of top 10 features.
It is observed that features of motion energy, posture and



shape have high information gain in distinguishing the ges-
tures, while motion variation features are of little use in
classification. This is expected given that motion shape and
posture related features are likely to be useful in distinguish-
ing among the gestures of one type - arm, hand or finger, and
as we saw in Section 2, motion energy is useful in classifying
the gesture type itself. Hence, we only use motion energy,
posture and shape related features in our identification.
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Figure 10: (a) Top 10 features with highest information gain;
acl- and gy- indicate features calculated for acclerometer and
gyroscope respectively (b) Experiment settings of how user
writes alphabets on a surface while wearing the smartwatch

Identification Performance: Using the features selected
from previous section, we build three classifiers as before -
Naive Bayes (NB), Logistic Regression (LR) and Decision
Tree (DT). The results of the gesture identification are pre-
sented in Tables 5 and 6. Table 5 shows the maximum,
minimum and average TP rate for all gestures, and top
three most misidentified gestures for each classifier. We ob-
serve that Naive Bayes outperforms the other two classifiers
with an overall accuracy of 98%. The top 3 misidentified
gestures of NB and DT suggest that finger gestures recog-
nition is comparatively more difficult than hand and arm
gestures. For the LR classifier, the model performs well to
classify finger and hand gestures but the accuracy of arm
gestures recognition is relatively lower (top 3 misidentified
are arm gestures). Since in this paper, we are interested in
understanding the feasibility of gesture recognition, we only
use the data collected from a single person. However, the
method can be extended for more than one user where a
separate classifier is trained for each user based on how she
performs the given gesture. We leave the accuracy evalua-
tion of such user-specific classifier to future work.

Table 6 shows the confusion matrix for each gesture type
for the NB classifier. The arm gestures have high TP rate of
identification and they are only misidentified as other arm
gestures. This is in line with our results in Table 3 where
arm gestures were not misclassified as other types of ges-
tures. The hand gestures have the highest TP rate in Ta-
ble 6 although they had the lowest classification accuracy
in Table 3. This means that they were often misclassified
but with additional set of features, they are rarely misidenti-
fied. The finger gestures, on the other hand, have the lowest
classification and identification accuracy.

4. FINGER WRITING WITH SMARTWATCH
We saw in the previous section that even finger gestures

can be identified with a very high accuracy. Motivated by
this, we now take a look at detecting finger writing using the
smartwatch. Writing with the index finger (on a surface or in
the air) is one of the most intuitive way of human-computer
interaction. If we can detect what a user is writing with her

Classifier
TP Rate Top 3

MisidentifiedMax. Min. Avg.

NB 100% 80.00% 98.11%
Finger-One, Arm-Left,

Finger-Two

LR 100% 60.00% 94.60%
Arm-Up, Arm-Clock-
wiseCircle, Arm-Cross

DT 100% 80.00% 95.41%
Finger-One, Arm-Left,

Finger-TwoTwice

Table 5: Gesture recognition accuracy and top three
misclassified gestures

Gesture Type TP Rate
Misidentified as

Finger Hand Arm
Finger 93.85% 2 1 0
Hand 98.57% 0 1 0
Arm 96.00% 0 0 2

Table 6: TP rate of each type of gestures in NB classifier; finger
gestures have the lowest TP rate among the three types

index finger using her smartwatch, it can be used to input
text to smartwatch itself or other connected nearby devices
such as a smartphone. For example, a user can finger-write
an instant message to her smartwatch or an email to her
smartphone. In this section, we investigate the question: can
we detect the characters written by the user with her index
finger using the smartwatch accelerometer and gyroscope
sensors?

Finger-writing on Surface: A user can write with her
index finger on a surface or in the air. Writing on the surface
(on a desk, on a wall or on one’s thigh) is often preferred
as it provides a touch-based feedback to the user, allowing
her to be more accurate in writing. In this work, we have
focused on detecting writing on the surface and we are cur-
rently extending this to air-writing as discussed in Section 5.
The touch-based feedback received by the user when writ-
ing on the surface generates a counter-acting force, push-
ing and pulling the index finger tendons in different ways.
This movement of tendons is reflected in the smartwatch ac-
celerometer and gyroscope, and it allows us to detect the
characters.

To collect the sensor data, we use the settings shown in
Fig. 10b where user writes a character on any surface. The
size of the alphabet written by the user is approximately
2.5” in width and height, however, user writes on a surface
without any printed characters or box. The accelerometer
and gyroscope data is collected when user writes all 26 al-
phabets 10 times. We calculate the same set of features as
in the gesture recognition and put them to test for classifi-
cation.

Classification Performance: Table 7 shows the results
for character classification using the three machine learning
methods. It is observed that logistic regression outperforms
the other two classifiers in overall accuracy. It shows that
characters in finger-writing can be uniquely identified with
an accuracy of 94.6%. Table 7 also shows that “D” and
“U” are the most often misclassified alphabets in all three
classifiers. In our classification, “D” and “U” are most often
misclassified as “B” and “V” respectively. This is because
these alphabets have similar primitive strokes. Some of the
other misclassified instances include “W” as “N” and “R” as
“A”. In general, the classification accuracy of approximately
95% means that finger-writing on a surface while wearing
a smartwatch can be an accurate way of inputting text to



Classifier
TP Rate

Top 3 Misclassified
Max. Min. Avg.

NB 100% 70.00% 90.00% “D”, “U”, “W”
SL 100% 80.00% 94.62% “D”, “U”, “R”
DT 100% 70.00% 88.08% “D”, “U”, “A”

Table 7: Classification accuracy of recognizing finger-written
alphabets and top three misclassified alphabets
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Figure 11: Accelerometer Y-axis data for four primitive strokes
when writing in the air using the index finger

smartwatch itself (e.g. instant messaging) or other devices
connected to the smartwatch (e.g. smartphone).

5. POTENTIAL AND CHALLENGES
During this research, we discovered that smartwatch has

a great potential in enabling gesture recognition and finger-
writing. Our findings suggest that the smartwatch can also
be used to detect fine-grained movements of user’s fingers.
This opens a new avenue for research where the smartwatch
can be used for many novel applications such as virtual touch
screen and interaction with smart-environment.

There are numerous challenges in realizing the true po-
tential of smartwatch. First, in this paper, we have only ex-
plored finger gesture recognition when user’s wrist and arm
are affixed to the chair arm. Recognizing finger gestures
while the arm and wrist are allowed to move freely is chal-
lenging as it requires a method that can cancel the noise
due to arm/wrist movement to distill the signals of finger
movement. Another challenge is that different people write
and perform different gestures in different ways. Such user-
specific characteristics (e.g. right vs. left handed user etc.)
require a separate user-specific classifier to be trained. Re-
ducing the computational complexity, memory requirements
and energy consumption of training and testing such a clas-
sifier is an important direction of future work. Additional
challenges are introduced when extending our finger-writing
on surface to finger-writing in the air due to unconstrained
movement of user’s finger. In our ongoing work, we are pur-
suing to design such air-writing system. Fig. 11 shows some
preliminary results where we can see how different primi-
tive strokes in the air are different in terms of smartwatch’s
accelerometer data. We are also addressing additional chal-
lenges such as detecting continuous writing to form words
and sentences. The same framework will be further extended
to create a virtual touch-screen where user can interact with
remote devices by simply moving her fingers in the air.

6. RELATED WORK
Gesture recognition related research has gained a lot of

interest in recent years. The research can be classified in
two types: motion sensor-based approaches and RF-based
approaches. Similar to our work, in the motion sensor-
based gesture recognition, accelerometer and gyroscope sen-
sors embedded in various devices are used for gesture recog-
nition. In [9], authors presented a wearable ring platform

which can be used to understand user’s finger gestures and
writing. However, this limits the gestures to a specific fin-
ger, and gestures using other fingers like little finger or
thumb can not be identified. In this work, we showed that
smartwatch-based gesture recognition is more general as it
allows us to recognize gestures from all fingers and hand.
Similarly, [8] introduced an arm-band which is worn on the
forearm to be able to recognize many arm and hand gestures.
As we showed in Section 2.2, more motion energy is observed
in the wrist compared to the forearm, making smartwatch
a more accurate way of gesture recognition. Also, due to
limited motion energy in forearm, it can not be used for
detecting finger gestures or writing. In RF-based gesture
recognition, [12] showed how Doppler shift can be used to de-
tect user’s arm gestures even when user is not equipped with
any device. In our previous work [14], we showed how an
access point can detect user’s arm gestures performed while
holding the smartphone. Such device-free gesture recogni-
tion is difficult to be applied to identify low-intensity finger
gestures and writing.

7. CONCLUSIONS
In this work, we explored how smartwatch can be used

for gesture recognition and finger-writing. We showed that
smartwatch sensors can accurately detect arm, hand and
even finger gestures. It was also demonstrated that smart-
watch can detect the characters when user writes on a sur-
face using her index finger. Gesture recognition and finger-
writing using smartwatch can be used to create novel ap-
plications for interacting with nearby devices and remotely
controlling them. As part of our ongoing work, we are de-
signing a virtual touch-screen and techniques to detect user’s
finger-writing in the air based on smartwatch sensors.
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