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Abstract— Network forensics is widely used in tracking down 
criminals and detecting network anomalies, and data capture is 
the basis of network forensics. Compared to traditional networks, 
data capture faces significant challenges in cognitive radio net-
works. In traditional wireless networks, one monitor is usually 
assigned to one channel to capture traffic, which incurs very high 
cost in a cognitive radio network because the latter typically has a 
large number of channels. Furthermore, due to the uncertainty of 
the primary user’s activity, cognitive radio devices change their 
operating channels randomly, which makes data capturing more 
difficult. In this paper, we propose a systematic method to cap-
ture data in cognitive radio networks with a small number of 
monitors. We utilize incremental support vector regression to 
predict packet arrival time and intelligently switch monitors be-
tween channels. In addition, a protocol is proposed to schedule 
multiple monitors to perform channel scan and packet capturing 
in an efficient manner. The real-world experiments and simula-
tions show that our method is able to achieve the packet capture 
rate above 70% using a small number of monitors, which out-
performs the random scheme by 200%-300%.  

I. INTRODUCTION 

The ubiquitous wired and wireless networks play an impor-
tant role in our daily lives; at the same time, cyber crimes and 
information security issues are increasing at an unprecedented 
pace. Network forensics is a discipline that monitors and ana-
lyzes network traffic, aiming at detecting malicious network 
activities and preserving network data as evidences. It is widely 
used in preventing attacks, tracing down criminals, diagnosing 
the network, etc. Although it is a newly emerged research area, 
network forensics attracts a great attention from both network 
researchers and law enforcement practitioners. 

Generally speaking, network forensics is composed of two 
steps: data capture and data analysis. Between them, data cap-
ture is the basis of network forensics, on which the quality of 
data analysis largely depends. However, data capture is not as 
easy as it seems, especially in wireless networks. Channel fad-
ing, signal interference, mobility of transceivers and ever-in-
creasing data rate make data capture a non-trivial task. 

Existing work on network forensics as well as data capture 
is studied in the context of traditional networks. As an emerg-
ing type of network, cognitive radio network is a promising 
technology to mitigate the scarcity of wireless spectrum. How-
ever, in cognitive radio networks, data capture faces additional 
challenges.  

First, according to the FCC’s regulation, unlicensed users 

should evacuate immediately when an incumbent user appears, 
which means unlicensed users may frequently change their 
working channels. Second, cognitive radio networks have a 
much wider spectrum than other wireless networks. For exam-
ple, the white space is from 50MHz to 700MHz approximately. 
Assuming a channel width of 6MHz (the same as the TV chan-
nel-width in U.S.), there can be more than one hundred avail-
able channels. If we capture the traffic of cognitive radio net-
works in the traditional way, one monitor should be tuned to 
listen to one channel. That is, we will need over a hundred 
monitors in total, making the cost prohibitively high. 

In this paper, we propose a novel method, which intelli-
gently switches monitors between different channels to capture 
the network data spread over a large number of channels with a 
small number of monitors. Our method is based on two obser-
vations. First, although a cognitive radio network may have a 
large number of channels, not all of them are busy at the same 
time. Second, for a single channel, there are always intervals 
between packets. Furthermore, a typical network forensics sys-
tem usually does not require all the packets; instead, they are 
only interested in certain packets depending on their specific 
purposes.  

Based on these observations, we propose to predict the ar-
rival time of the next interesting packet by using incremental 
support vector regression, and then switch monitors between 
different channels according to our prediction result. To the 
best of our knowledge, this is the first work investigating data 
capture for network forensics in cognitive radio networks, and 
also the first effort to monitor multiple channels with fewer 
monitors by predicting packet arrival time.  

We conduct extensive experiments and simulations. The 
results demonstrate that given a large number of channels, we 
can achieve a high packet capture rate with a small number of 
monitors. Our method outperforms the random scheme by 
200%-300%. 

The rest of this paper is organized as follows. Section Ⅱ
discusses related work. Section Ⅲ states the problem, and 
Section Ⅳ introduces our method for packet arrival time pre-
diction. In Section Ⅴ, we present the protocol for efficient 
data capture in cognitive radio networks. Section Ⅵ evaluates 
our work. Section Ⅶ discuses several related technical issues 
and Section Ⅷ concludes the paper. 

II. RELATED WORK 

Data capture techniques for network forensics can be cate-
gorized into two types: catch-it-as-you-can and stop-and-listen 
[1]. The former category requires larger amounts of storage 
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while the latter puts higher pressure on the CPU performance. 
Wireshark, WinPcap, TCPdump, etc. are the tools commonly 
used for data capture. These tool fall into the first category, but 
they are also capable of capturing certain packets based on pre-
defined filters. 

Efforts have been made to effectively capture packets in 
high speed networks [2] [3]. Siles studied the performance re-
lated issues and encryption-overcoming of data capturing in 
wireless networks [4]. Geiger et al. [5] pointed out that a moni-
tor can capture the packets from adjacent channels in WLAN 
when the data rate is low. 

In almost all the existing studies, including the work men-
tioned above, one monitor is used for capturing data in one 
channel (or link). Choong proposed to use a single software 
defined radio device to sample multiple channels in ZigBee 
networks [6]. The feasibility is based on the fact that the maxi-
mum channel width of the software defined radio can cover 
multiple ZigBee channels. However, their approach only works 
when the modulation rate of the channels being sampled is very 
low (250kbps). It is acceptable for ZigBee networks, but far 
from practical for general data capturing. When the modulation 
rate goes higher, the sampling and computation overhead 
quickly exceeds the hardware processing ability. Besides, the 
channel width of ZigBee is only 2MHz. For other types of 
wireless networks, even a software defined radio device cannot 
cover many channels at the same time. In contrast, our method 
reuses monitors in the time domain, therefore is not constrained 
by the modulation rate or the bandwidth of the channel being 
watched. 

Chhetri et al. proposed to schedule sniffers among multiple 
channels [19], but the goal is to monitor the appearance of 
wireless users, which is much easier compared to traffic cap-
turing. Moreover, in their work, a pre-known transmission 
probability is assumed for each user; the sniffers are scheduled 
without considering the realtime user behavior.  

Arora et al. employed multi-armed bandit to formalize the 
multi-channel monitoring problem [20]. Similar as [19], this 
method is only good for transient activities and cannot be used 
to capture packets. Specifically, a slot system is assumed in 
[20], but they do not care the length of the slot. It is possible 
that during a slot there come multiple packets or a packet lasts 
across multiple slots. Besides, the channel switching overhead 
is not considered in this work. 

Time series prediction has been well studied for decades. 
Autoregressive moving average models and Kalman filter are 
most widely used, but they both require that the process being 
predicted is linear and stationary. Machine learning techniques, 
such as support vector machine and neural network, do not 
have such restrictions [7], but they are usually not fast enough 
for online prediction. Besides, these works are dedicated to 
predict continuous values; they may experience large errors 
when predicting a binary variable (in our case, appearance or 
disappearance of interesting packets). 

Phit et al. proposed to predict packet arrival time using neu-
ral networks [8]. Historical data of packet inter-arrival time are 
used as the input. However, this method is only suitable for 
offline analysis, because the training phase takes considerably 

long time. 

III. PROBLEM DEFINITION 

A. Background 
Cognitive radio networks typically work in white space, 

where unlicensed (secondary) users are allowed to access the 
spectrum opportunistically. However, as mentioned in Section 
Ⅰ, they must evacuate immediately upon incumbent (primary) 
users’ presence.  

Most important primary users in white space are TV towers 
and wireless microphones. They typically transmit analogue 
signals. In practice, network forensics systems are interested in 
capturing data packets (of secondary users) instead of analogue 
signals. 

An alternative to capturing packets wirelessly is to physi-
cally connect to the base station or wired infrastructure of cog-
nitive radio networks. However, forensics systems may not 
have the access to such infrastructure. In addition, in that ap-
proach, information like channel quality and signal strength are 
lost, which can be used to infer users’ location and mobility 
pattern. Wireless forensics is different from wired forensics in 
both methods and applicable scenarios. In this paper, we focus 
on wireless data capture in cognitive radio networks. 

B. Problem Definition 

Assume that there are N channels in a cognitive radio net-
work. We have only M monitors (M<<N). Among N channels, 
L are busy (M<L<N). Here busy channel only refers to the 
channel occupied by secondary users.  

During any period of time, new secondary users may join 
the network (idle channels get occupied); existing secondary 
users may quit (busy channels become idle); they can also 
switch to a new channel and continue communicating (due to 
appearance of primary signals, change of channel quality, or 
requirement of certain network protocol). These changes are, if 
not impossible, very difficult to predict (see discussion in Sec-
tion Ⅶ). 

The goal of our work is to capture as many interesting 
packets from these busy channels as possible.  

Interesting packets are the packets that a network forensics 
system wants to capture and record for future analysis. Whether 
a packet is interesting or not depends largely on the purpose of 
the forensics system. Different systems (applications) may have 
very different interest. For example, a forensics system which 
monitors video streaming traffic may find I-frames more inter-
esting than P-frames and B-frames, because I-frames can be 
decoded independently, and usually contain more fundamental 
information of the video. Another forensics system for network 
anomalies detection may want to capture ICMP packets instead 
of normal IP packets, since ICMP packets tend to relate to ma-
licious or suspicious network activities [9]. To define and de-
cide interesting packets is out of the scope of this paper. We 
assume networks forensics systems know what types of packets 
they need to capture. 

In order to reduce the requirement of the number of moni-
tors (or in other words, to capture more interesting packets with 
a limited number of monitors), we propose to switch monitors 
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between channels by predicting the arrival time of interesting 
packets in each busy channel. We assume our monitors have 
the same ability (radio-wise) as the nodes in the cognitive radio 
network, and all the monitors are connected by dedicated chan-
nels.  

The key idea of our method is to reuse monitors in the time 
domain. The main challenges are listed as follows. 

1) Online prediction. Our method requires that the predic-
tion of interesting packets should be performed on the fly, 
which calls for a very fast prediction algorithm. The sequence 
of packet inter-arrival time is not inherently a linear process, 
which makes traditional moving average models not qualified. 
On the other hand, machine learning based methods usually 
take too much time for training, hence are not efficient enough 
for online prediction. 

2) Overall optimization. The optimization problem of our 
method is not as straightforward as it seems. Conservative 
strategies tend to stay in a channel for longer time, while ag-
gressive strategies tend to switch more often. The tradeoff is 
tricky because failing to capture interesting packets not only 
means the loss of forensics data, but also hurts the accuracy of 
future packet predictions.  

3) Data capture and channel scan. Our monitors have dual 
duties. In addition to capturing packets, they are also 
responsible for scanning the channels in order to find busy 
ones. How to schedule monitors for both tasks is also 
challenging. 

We will provide solutions to these challenges in Section Ⅳ 
and Ⅴ.  

IV. PACKET ARRIVAL TIME PREDICTION 

In this section, we introduce our method for arrival time 
prediction of interesting packets. We present the support vector 
regression in the first subsection and then, in the second sub-
section, we improve its performance for online prediction. 

A. Support Vector Regression for Packet Arrival Prediction 

We propose to switch monitors between channels in order 
to capture more interesting packets. Ideally, we want a monitor 
to stay in the channel when there is an interesting packet, and 
switch to other channels when there is not. Good switching 
strategy requires a good prediction algorithm to tell us when an 
interesting packet is likely to arrive. 

Now we introduce our packet arrival time prediction 
method using support vector regression. As mentioned previ-
ously, traditional methods, such as autoregressive moving av-
erage and Kalman filter, are only applicable to linear processes. 
Among machine learning based methods, support vector ma-
chine / regression is often reported to have superior perform-
ance [7] [18].  

The input of our algorithm is (a0, a1, a2, …, an), which are 
the arrival time of n successive interesting packets in a certain 
channel. The output is an+1, the estimated arrival time of the 
next interesting packet in this channel.  

In a nutshell, support vector machine is a classification tool. 
In the training phase, it tries to divide different groups of sam-
ples apart by a hyperplane (or a set of hyperplanes), which is 
carefully constructed and lies in the “middle” of the margin 

between groups. Support vector regression works similarly. 
The difference is that the hyperplane is built to approximate all 
the samples. An error  is allowed in approximation. That is, 
the distance from any sample to the hyperplane is less than . 

Formally, the hyperplane (i.e. regression function) can be 
expressed as: 

( )f X W X b                                  (1) 

Where W and X are both n-dimensional vectors, b is a real 
number. X is the attributes of samples. In our case, X = (x1, x2, 
x3, …, xn), where xi = ai – ai-1 (the intervals between consecu-
tive interesting packets). The dot between W and X is inner 
product. W determines the slope of the hyperplane. 

As mentioned, all the samples should be within a distance  
to the hyperplane f(X). Apparently, there can be many hyper-
planes satisfying this requirement. Support vector regression 
looks for the one in the “middle” of the region where the sam-
ples spread (referred to as flatness). This requirement equals to 
minimizing ǁWǁ. 

Formally, the problem can be described as minimiz-
ing ǁWǁ2/2, subject to: 

j j

j j

y W X b

W X b y




   
    

 

where Xj is the attributes of the jth training sample, and yi is 
an+1 of this sample. Minimizing ǁWǁ2/2 is equivalent to mini-
mizing ǁWǁ. We use the former for mathematical convenience. 

Up to now, we assume such hyperplane f(X) exists. How-
ever, sometimes it may not be the case due to small  and dis-
persed distribution of training samples. To ensure the existence 
of f(X), we allow some samples to have larger errors than 
which is comparable to the soft margin in support vector 
machine. The problem can be formalized as: 

minimize 2
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where  and ’ are nonnegative values accounting for extra 
errors (as shown in Figure 1, they introduce a penalty while  
does not), and C is a positive constant, which decides the trade-
off between the flatness of the hyperplane and the amount of 
extra errors. l is the number of training samples.  

 
Figure 1.  Error function 
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The above objective function and constrains is equal to 
minimizing L, which is called Lagrange function: 
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1 1
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where ,’, and ’ are Lagrange multipliers and they are 

all positive. Minimizing a Lagrangian can be converted to a 
solvable dual optimization problem. Due to the space limitation, 
we do not present the detailed derivation here. Finally, the hy-
perplane can be expressed as: 

1

( ) ( )
l

j j j
j

f X X 


   X b                      (2) 

Here X is the input (to be predicted) and Xj is the attributes 
of training sample j. In this equation, b can be calculated by 
exploiting Karush–Kuhn–Tucker conditions. Details can be 
referred to [10].  

In the above discussions, hyperplanes are used to approxi-
mate samples. Since packet arrival time is not a linear process, 
using hypersurface could increase the performance. Therefore, 
we introduce the kernel tricks. It can be proven that the prop-
erty of support vector regression still holds if we substitute the 
inner product in Equation 2 with kernel functions. In practice, 
we employ Gaussian radial basis function, which is one of the 
most commonly used kernel functions. It is defined as: 

2( , ) exp( || || )i j i jk         

where  is a positive parameter. We use 1/22 for. The 
updated regression function is: 

2
2

1

1
( ) ( )exp( || || )

2

l

j j j
j

f X  


    X X b          (3) 

In the training phase, assuming we have recorded the arrival 
time of m (m > n+1) interesting packets: a0, a1, a2, …, am-1, we 
first calculate the time interval between them, noted as x1, x2, 
x3, …, xm-1. In the training phase, these m-1 items are organized 
into m-n-1 samples, i.e. (x1, x2, …, xn+1), (x2, x3, …, xn+2), …, 
(xm-n-1, xm-n, …, xm-1). For each sample, first n elements are at-
tributes and the last element is the label (yj). After training, we 
determine the parameters of the regression function f.  

In the prediction phase, n historical time intervals between 
interesting packets are used as input to predict the future ones. 
If we want to predict the arrival time of the kth (k > m-1) inter-
esting packet (ak), then let X = (xk-n, xk-n-1, …, xk-1), we have xk = 
f(X), and ak = ak-1 + xk.  

In Section Ⅵ, we will evaluate the accuracy of this algo-
rithm with different training dataset size (l) and different num-
ber of attributes (n). We will also show that in a single channel, 
if interesting packets can be divided into categories, it is better 
to predict them separately.  

B. Expediting Learning Process 

For support vector regression based algorithms, prediction 
is fairly fast while training phase usually takes more time.  

In this subsection, we propose several approaches in order 

to reduce the training time, which is especially important to our 
method that performs online prediction.  

First, we employ incremental learning for the training of 
support vector regression, which enables us to dynamically add 
or remove a sample from the training dataset without learning 
from scratch [11] [12]. The mathematics explanation of incre-
mental learning is complex; the main idea is described as fol-
lows. 

It can be derived that for most samples, j = ’j in Equation 
2. That is, the regression function only depends on a small 
number of samples, which lie in the “fringe” of the sample 
space. These samples are called support vectors. In the incre-
mental learning, when a new sample comes, it checks if it is a 
support vector. If not, the training result remains unchanged. 
Otherwise, it is added into the support vector set and the pa-
rameters in the regression function are re-tweaked. It works 
similarly when removing a sample. 

Although the regression function can be used to predict re-
peatedly once it is trained, the prediction will become less and 
less accurate as time passes, because the training data gets ob-
solete and the traffic pattern changes. Traditionally, without 
incremental learning, training frequently is not affordable for 
online predictions due to its high computational overhead. 
However, with incremental learning, we are now able to update 
our regression function in a timely fashion.  

Second, we use dual regression functions to reduce retrain-
ing. As introduced in Section ⅣA, in order to predict the kth 
interesting packet (ak), we need the arrival time of n+1 inter-
esting packets just before it (ak-n-1, …, ak-1). If we fail to capture 
an interesting packet (say, k-1th packet), n packets after it can-
not be predicted (from kth to k+n-1th), because the input needed 
by the regression function is incomplete. In this case, we have 
to stay in this channel to capture these n packets, giving up the 
opportunities of capturing packets in other channels. This is a 
non-negligible performance loss. Moreover, we probably have 
to retrain the regression function, because without the predic-
tion results, we cannot compare them with the ground truth, 
and tell whether the regression function is obsolete or not. 

In order to alleviate this situation, we introduce dual regres-
sion functions (f and f’). The former predicts the arrival time of 
the next packet and the latter predicts the one after next.  

1 2 1( , ,..., ) f
n nx x x x   

1 2 1 2( , ,..., ) f
n n nx x x x x

    

f’ is defined similarly as f, and uses the same model we pre-
sented in Section ⅣA. The only difference is that f’ predicts 
two packets ahead. Of course, the training data of f’ are in the 
form of (x1, x2, …, xn, xn+1+ xn+2), in which the first n items are 
attributes and the last is the label.  

We maintain f and f’ simultaneously. If an interesting 
packet is missed (say, k-1th, caused by mis-prediction of f or 
monitor unavailability), we utilize f’ to predict the kth interest-
ing packet. If it is a match, the process goes on as normal. No 
retraining is needed and ak-1 (predicted value) is used as the 
ground truth for the next few predictions. On the other hand, if 
the prediction of f’ still does not match, the monitor will keep 
staying at this channel for at least n interesting packets’ dura-
tion and then perform an incremental retraining. 
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In this updated version of method, two consecutive 
mis-predictions (k-1th and kth) suggest the obsoleteness of the 
regression function f (as well as f’). In contrast, the old method 
has to stick on a channel for quite a while upon a single miss, 
which may occur frequently and does not necessarily imply the 
invalidation of the regression function. Therefore, the updated 
method reduces a large amount of retraining and the time stuck 
in a single channel. Of course, maintaining f’ itself introduces 
overhead. However, the overhead is not high with incremental 
learning, and it is worthwhile because being stuck on a channel 
may cause loss of packets in other channels and thus a vicious 
cycle. 

An alternative method for dual regression functions is to 
treat the sequence of interesting packets arrival time as discrete 
time series. We can still use the model presented in Section Ⅳ
A to perform prediction. However, in this case, the training 
samples are in the form of (j, aj), where j is the single attribute 
(sequence number) and aj is the label (arrival time of the jth 
interesting packet). The advantage of this method is that it is 
able to predict multiple future packets with a single regression 
function. However, compared with the regression function we 
use, it requires much more training samples to achieve decent 
accuracy. We will compare their performance in Section Ⅵ. 

Besides two modifications discussed above, we also apply 
some tricks to further expedite our method. We store the values 
of the kernel (Gaussian radial basis function) in a matrix, thus 
avoid computing every time during training. Besides, the re-
gression function is traditionally trained using various  and , 
and then the one with the best accuracy is adopted. However, 
this process is very time-consuming. We fix the values of  and 
 at /40 and /20 respectively ( is the average inter-arrival 
time of the recent interesting packets), which largely reduces 
the computing time without obvious decrease of prediction 
accuracy. We will show the results in Section Ⅵ.  

V. MONITOR MUTIPLE CHANNELS WITH A SMALL NUMBER 

OF MONITORS 

In the previous section, we present our method for packet 
arrival time prediction. Multiple efforts are launched to accel-
erate the algorithm and make it qualified for online use. In this 
section, we first introduce the monitor scheduling method 
based on the prediction results, and then present the complete 
protocol for data capturing in cognitive radio networks. 

A. Monitor Scheduling 

Packet arrival prediction is independent for each channel. 
Based on these predictions, a limited number of monitors are 
scheduled to cover a large number of channels. In this subsec-
tion, we assume that we already have the prediction results. 

Figure 2 shows an example of three channels. Each square 
is an interesting packet, and we assume there are two monitors, 
originally residing at channel A and C. 

In order to capture all the interesting packets, a valid sched-
uling is that the first monitor catches A1, B1, A2, A3, A4 and 
B4, while the second captures C1, C2, B2, B3, C3 and C4. Of 
course, there are many possible scheduling schemes. Among 
them, the one with minimum channel switches is preferred; the 
reason is as follows. 

First, channel switching has overhead. Although switching 
under the monitor mode is faster than other modes, it still needs 
some time. Taking 802.11bg wireless cards for example, chan-
nel switching takes 3-20ms [13]. The more a monitor switches, 
the less time it can spend on data capturing.  

Second, continuously staying in a channel for longer time 
helps verify the prediction algorithm. Prediction results are 
compared with the ground truth to decide whether retraining is 
necessary. Frequent channel switching impedes the gathering 
of the ground truth.  

 
Figure 2.  Monitor Scheduling 

In the example of Figure 2, the solution mentioned above is 
the optimum in this sense, which only has 5 switches (shown as 
arrows in Figure 2). However, in the general case, assuming the 
arrival time of all the interesting packets are known, finding a 
scheduling scheme that minimizes the number of monitor 
switches is an NP-hard problem (when the number of monitors 
is less than the number of channels). In addition, the prediction 
algorithm cannot forecast very far ahead, and prediction errors 
are inevitable. Therefore, it is not feasible to establish an algo-
rithm that always gives the optimal solution. 

Instead, we propose a greedy method to schedule the moni-
tors with relatively few channel switches. If an interesting 
packet will arrive within v ms by prediction and no monitor is 
now in this channel, a scheduling activity is triggered. Among 
all the available monitors, the one that currently has the longest 
“free interval” is selected and switched to capture this packet. 
The monitor will stay in this channel until being scheduled and 
switched again. The algorithm is shown as follows. 
__________________________________________________ 

An upcoming packet in channel i triggers scheduling 
 latestNext = 0; monitorSel = -1; 
 for any monitor j∈AM 
  if (aN

ch(j) > latestNext) 
   lastestNext = aN

ch(j); 
   monitorSel = j; 
 if (monitorSel != -1) 

switch monitor monitorSel to channel i 
delete monitorSel from AM 

 else return false 
__________________________________________________ 
Algorithm 1.  Monitor scheduling 

Here, AM is the set of available monitors, ch(j) is the cur-
rent channel that monitor j residents, and aN

ch(j) is the predicted 
arrival time of the next interesting packet on channel ch(j). 
Available monitors are defined as follows. 
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Two types of monitors are busy. First, if an interesting 
packet will arrive within w ms by prediction, the monitor cur-
rently on this channel is set to busy until this packet is captured 
or timeout. The other type is the monitors being occupied in a 
retrain process triggered by two successive mis-predictions 
(refer to Section ⅣB). Besides, a few monitors are dedicated 
for scanning (see Section ⅤB). All other monitors are avail-
able. 

This algorithm is linear and fast enough for online schedul-
ing. The greedy strategy it uses is a good approximation of 
minimizing switches in practice. For the example shown in 
Figure 2, the scheduling performed by this algorithm is the 
same as the optimum. w and v mentioned above will be defined 
in the next subsection. 

B. Protocol for Data Capture in Cognitve Radio Networks 

We have discussed the packet prediction and monitor 
scheduling algorithm in the above sections. In this subsection, 
we first present our method for channel scan, which detects 
channels for secondary signals, and then present the complete 
version of the data capturing method in cognitive radio net-
works.  

In Section ⅤA, we introduced our algorithm that switches 
monitors between channels. We assumed these channels are all 
busy. However, in a cognitive radio network, only some of the 
channels are occupied by secondary users (referred to as active 
channels; we do not capture primary users’ traffic, because they 
transmit analogue signal, see Section Ⅲ). The rest of them are 
used by primary users, experiencing low channel quality or 
simply idle (referred to as inactive channels). Leaving monitors 
staying in inactive channels is a big waste. We should find out 
active channels before applying packet prediction and monitor 
scheduling algorithms. 

Before going into the details, we define and recall some 
notations. The cognitive radio network has N channels and we 
have M monitors. Algorithm 1 is executed v ms before a packet 
arrives, and a monitor is set as busy w ms ahead of packet arri-
val (see Section ⅤA). tr is the time relax of packet arrival pre-
diction. That is, for any predicted arrival time a, we schedule 
the time slot [a-tr, a+tr] for packet capture. If an interesting 
packet is captured in this time slot, it is called a match. Other-
wise, a mis-prediction is assumed. ts stands for the time over-
head for channel switching. l is the number of samples needed 
for the first-time training in a new channel. AM is the set of the 
current available monitors. 

We use S monitors dedicatedly for scanning (we choose S = 
┌M/6┐ in our method). It is a tradeoff between the number of 
monitors consumed and the delay of the secondary user detec-
tion. All the inactive channels are averagely assigned to these 
monitors. They sequentially scan their assignments repeatedly 
and report the emergence of secondary users.  

In addition, for any other monitor, if it successfully captures 
an interesting packet in the first half of the scheduled slot ([a-tr, 
a]), it quickly switches to one of the inactive channels to detect 
for secondary signals. This operation is transparent to the 
monitor scheduling algorithm. The reason for doing this is that 
we want to make full use of the scheduled slot, and help those 
dedicated monitors to accelerate the discovery of new secon-

dary users.  
In case of the disappearance of secondary signals, detection 

is easier. After two mis-predictions, a monitor will be sched-
uled to stay in this channel and perform retraining. Absence of 
the secondary signal will be found. No extra efforts are needed. 

Now we briefly describe the protocol of our method for 
data capturing in cognitive radio networks.  

1) Monitors scan the inactive channels in the manner as 
above. Once a new secondary signal is detected, this channel 
is marked as active. At the same time, an available monitor is 
switched to this channel to perform training, and removed 
from AM.  

2) After collecting l interesting packets, the initial training 
is completed. The monitor is set back to available state unless 
the next interesting packet arrives within w ms.  

3) After training, future interesting packets are predicted 
by f and f’in each active channel. v ms before the next packet 
arrival, Algorithm 1 is executed to pick a monitor from AM to 
capture it if no monitor is currently in the channel. Otherwise, 
the monitor in this channel is set to busy w ms before the 
arrival unitl the packet is captured. 

4) If two consecutive mis-predictions occurs in an active 
channel, an available monitor is assigned to this channel and 
perform incremental retraining. This monitor is removed from 
AM until retraining is done. 

5) Once Algorithm 1 returns false (no more available 
monitors), our method enters saturated mode and stops 
marking a channel as active even if a secondary signal is found. 
Saturated mode ends when an existing secondary user quits 
from an active channel.  

6) Under the saturated mode, if Algorithm 1 returns  
false with the ratio higher than a threshold, an active channel 
is marked as inactive, which means we give up data capturing 
in this channel temporarily. By default, remarking process 
starts from the active channel with minimum number of 
interesitng packets per unit time.   

In our method, as mentioned in Section Ⅲ, all the monitors 
are connected by dedicated channels and their clocks are syn-
chronized. This assumption is reasonable, since monitor array 
products are widely available in the market (but the number of 
monitors in the array is limited). Communications between 
monitors (and the controller) are fast and knowledge is shared.  

In the above protocol, one or more channels are temporarily 
relinquished when monitor shortage occurs. We use this con-
servative strategy because recklessly covering more channels 
will cause more retraining, less available monitors, and thus a 
vicious circle.  

Some parameters in the protocol have certain constrains. v 
should be larger than (ts + tr), as well as w. The reason for the 
former is straightforward. For the latter, if the monitor in the 
current channel is marked as available and switched to another 
channel, the remaining time should be long enough for other 
monitors to switch to this channel and catch the next packet. 
Besides, tr is larger than ts, which helps maintain the transpar-
ency when ordinary monitors are opportunistically used for 
channel scan. Concrete value of the parameters will be assigned 
in the next section. 
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VI. EVALUATIONS 

We conduct comprehensive experiments and simulations to 
evaluate our method for data capturing in cognitive radio net-
works. We first test the accuracy of the packet arrival predic-
tion method under various traffics, and then evaluate the per-
formance of monitor scheduling algorithm. After that, the ef-
fectiveness and overall performance of the complete method 
are evaluated.  

A. Performance of Packet Arrival Time Prediction 

In this subsection, we evaluate the performance of our 
method for packet arrival time prediction. As discussed in Sec-
tion Ⅳ, a support vector regression based model is built upon 
training. The arrival time of n+1 latest packets are used to pre-
dict the arrival time of the next packet.  

We first test the influence of different types of traffics on 
our prediction method. Three types of trace data (FTP, VoIP, 
and web browsing traffic) are collected from real-world sce-
narios. In the FTP and VoIP traces, we assume all packets are 
interesting. For web browsing, we test two cases: all packets 
are interesting and only ICMP packets in the trace are interest-
ing.   

The results are shown in Figure 3. The y-axis is the relative 
estimation error of predicted arrival time, which is defined as 
|real – estimated| / , where  is average inter-arrival time of 
interesting packets. The errors of 120 predictions are averaged 
for each point. If there are averagely 50 interesting packets per 
second, relative estimation error is 10% means that the predic-
tion error is 2ms in average. The x-axis shows the number of 
attributes (n) used as input of the regression function. In this 
experiment, all regression functions are trained by 100 recent 
interesting packets.  

 
Figure 3.  Accuracy of packet arrival time prediction 

From the result we can see that our prediction method has 
higher accuracy on FTP and VoIP traffic than web browsing 
and ICMP. This is reasonable because FTP and VoIP traffic 
tend to be more regular and have less randomness. Even the 
case of ICMP performs better than the web browsing traffic 
from which the former is extracted. This result suggests that it 
is better to categorize packets before prediction for hybrid traf-
fics. We will soon further investigate it. 

When n gets larger, the prediction becomes more accurate. 

But large n also has drawbacks, in that a monitor has to stay in 
the channel waiting for (n+1) interesting packets if two con-
secutive mis-predictions occur. The larger n, the longer it waits. 
For our method, we choose n = 6, since the performance gain 
quickly shrinks when n > 5. All the following experiments use 
this value unless otherwise specified. 

In the following experiment, we compare our prediction 
method with two other strategies. Strategy A tests various  and 
, and then chooses the best for the regression function. The 
rest of its settings are the same as our method. Strategy B treats 
the packet sequence as discrete time series, which can predict 
far ahead with current knowledge (please refer to Section ⅣB). 
We use web browsing traffic for this test, and only ICMP pack-
ets are interesting. The results are plotted in Figure 4.   

 
Figure 4.  Comparison of three strategies 

The y-axis is the relative estimation errors, while the x-axis 
stands for the number of samples used for training. Theoreti-
cally, strategy A should perform better than ours, yet the result 
shows that their accuracies are close, which may stem from the 
over-fitting effect of the former. Since strategy A is far more 
time-consuming than ours, we do not choose it. For strategy B, 
it is more sensitive to the size of the training dataset. It cannot 
achieve comparable performance as ours with less training data. 
Considering the result of this test, we use l = 35 for our method 
to balance between training time and performance. All the fol-
lowing experiments use this value unless otherwise specified. 

In the next experiment, we test the scenario of interleaved 
interesting packets, where VoIP traffic and web browsing traf-
fic are transmitted in the same channel. That is, a user is mak-
ing an IP phone call and browsing web pages at the same time. 
Similarly, we assume VoIP packets and ICMP packets are in-
teresting.  

We run our prediction algorithm twice. In the first round, 
VoIP traffic and ICMP packets are treated as a single sequence. 
In the second round, we separate them, and train two different 
regression functions to predict the next VoIP packet and the 
next ICMP packet separately. VoIP packets are also IP packets. 
We distinguish them for the IP packets in web browsing traffic 
by identifying source and destination IP addresses. The result is 
shown in Figure 5.  

From Figure 5, we can see that separate prediction has 
much better performance than mixing them together. Therefore, 
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if a network forensics system wants to capture multiple types of 
packets in a channel, we should categorize the traffic first, and 
then apply our prediction method to each category separately. 

 
Figure 5.  Interleaved interesting packets 

B. Data Capture Performance of Small Number of Channels 

 
Figure 6.  Experiment settings 

We have presented the evaluation results of our prediction 
algorithm above. Now we further incorporate the monitor 
scheduling algorithm (Algorithm 1) to test the overall per-
formance of our data capturing method. In this subsection, 
real-world tests are performed in a simplified scenario, where 
we do not consider dynamic join and leave of secondary users, 
and monitors dedicated for scanning are not used.  

We use HP nc6000 and Dell E5400 laptops equipped with 
802.11bg wireless cards (Atheros or Intel chipset) for our test. 
Three pairs of laptops (or AP-laptop pair) are working at chan-
nel 1, 6, and 11, respectively. It simulates a cognitive radio 
network with three channels and one monitor. 

In the first experiment, channel A is web browsing in which 
ICMP packets are interesting. Channel B is occupied by VoIP 
streaming, which has a data rate of approximately 6Kbps and 
all the packets are interesting. Channel C is not used. We only 
have one monitor (also a laptop with 802.11bg wireless card, in 
monitor mode) to capture the traffic on channel A and B using 
our method. ts (channel switch time) of the monitor is about 
5ms. w and v are both set to (tr + ts), where tr is the time relax 
for packet arrival prediction (see Section ⅤB). 

We vary tr from 2 to 18ms and the packet capture rate (i.e. 
captured interesting packets / total interesting packets) is 
shown in Figure 7. From the experiment result we can see that 
when tr is around 8ms, we are able to achieve the packet cap-
ture rate as high as 82%. When tr is small the capture rate de-
creases because even small prediction errors cannot be toler-
ated. When tr gets larger, w also gets larger, thus the monitor 
may not have enough time to switch to other channels. We 
choose tr = 8ms for our method. The rest of experiments use 
this value unless otherwise specified. 

 
Figure 7.  Influence of tr on packet capture rate 

In the next experiment, we test the influence of traffic loads 
on our method, and compare its performance to the baseline 
(random capture). Channel A and B are the same as above, 
while channel C is used for FTP downloading (assume all 
download packets are interesting). We vary the download 
speed of channel C and use one and two monitors respectively 
to capture the traffic of all three channels. The result is shown 
in Figure 8. 

 
Figure 8.  Influence of traffic load on packet capture rate 

In the one monitor case, we can see the packet capture rate 
of our method decreases quickly when the data rate of channel 
C goes higher than 280Kbps. This is because with higher data 
rate, the time intervals between packets in channel C become 
shorter, which is not enough for a single monitor to switch to 
the other two channels. In the case of two monitors, such per-
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formance deterioration is not found. Even if one monitor is 
stuck in the busiest channel, the other still can switch between 
the other two channels freely.  

For the random scheme, monitor(s) switch between chan-
nels randomly. The experiment results demonstrate that for 
both one or two monitor cases, our method significantly out-
perform the random method. This experiment also implies that 
our data capturing method is able to achieve high chan-
nel-over-monitor rate if the distribution of interesting packets is 
sparse. 

C. Data Capture Performance of Large Number of Channels 

Now we move on to the performance of the complete ver-
sion of our method. In this subsection, we increase the number 
of channels; consider dynamic join and leave of secondary us-
ers; in addition, secondary users will change their current 
communication channel upon the appearance of primary users. 
802.11bg networks only have three non-overlapping channels; 
this part of evaluation is conducted by simulation. 

In our settings, there are 60 channels (N = 60) in total, and 
about 20 (18-22, due to dynamic join and leave) of them are 
occupied by secondary users at any given time. When newly 
coming or changing a channel, a secondary user randomly 
chooses one of the currently available channels. Real traces are 
used to simulate the packet communication. Among active 
channels, 10 are web browsing traffic where in half of them, 
ICMP packets are interesting; and for another half, all packets 
are interesting. 5 channels are VoIP traffic, and another 5 are 
video streaming. For the former, all packets are interesting 
while for the latter, only I-frames are interesting. Primary users 
are simulated by placing special packets in the channel.  

We use 11 monitors (M = 11), and one or two of them are 
dedicated for scanning secondary signal. The rest of parameters 
are the same as experiments above. The result is shown in Fig-
ure 9. The x-axis is the average time a secondary user stay in a 
channel before it quits the network or jumps to another chan-
nel. 

 
Figure 9.  Overall performance of data capturing in CRN 

Our method significantly outperforms the random scheme. 
Without channel scan and packet arrival prediction, 11 moni-
tors had a difficult time dealing with 60 channels. The packet 

capture rate of the random scheme is less than 20%. On the 
contrary, our method is able to achieve a packet capture rate of 
70%-75% most of the time (when secondary users stay in a 
channel longer than 8 seconds averagely). With two scanning 
monitors, the capture rate is higher when secondary users have 
more dynamics. That is because a single scanning monitor has 
higher delay to find newly coming signals. When there is less 
dynamics, the configuration of single scanning monitor has 
better performance, for it in turn leaves more monitors for 
packet capture. In the protocol, we make a tradeoff and ┌M/6┐ 
monitors are assigned dedicatedly for scanning. 

In the next simulation, we vary the numbers of monitors, 
the number of total channels, and the number of busy channels, 
to test the scalability of our method. The average time a secon-
dary user staying in a channel is set to 10 seconds and ┌M/6┐ 
monitors are dedicated for scanning. The traffic types are the 
same as above. The number of traces for each type is adjusted 
proportionally. 

 
Figure 10.  Scalability of our method 

In Figure 10, “20/60” means in total 60 channels 20 are 
busy, and so forth. “R” means the random scheme, while with-
out “R” refers to our method. We can observe from the results 
that our method has good scalability. When the number of 
monitors is relatively small, the capture rate almost increases 
linearly. When the number of busy channels is significantly 
larger than the number of monitors, our method still provides 
best-effort service without sharp performance deterioration. 
Under the various conditions, it always performs much better 
than the random scheme. 

VII. DISCUSSION 

A. Dynamics of Secondary Users 

As mentioned, in cognitive radio networks, secondary users 
opportunistically access the spectrum. They dynamically join 
and leave the network, and also change their channels to avoid 
primary users. An optional operation mode in IEEE 802.22 
even requires channel hopping on a regular basis [14].  

In order to catch up with such dynamics, we employ scan-
ning monitors in our method to scan inactive channels repeat-
edly, as well as opportunistically utilize the free time intervals 
of other monitors (see Section ⅤB).  
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An alternative might be probabilistically predicting the ap-
pearance of secondary signals. Some research work has been 
done to predict channel availability in cognitive radio networks 
[15] [16]. It seems that we can utilize them to predict unavail-
able channels (secondary signals) and save scanning monitors. 
However, these studies assume that secondary users’ behavior 
is consistent over time or follow certain probabilistic distribu-
tions. These assumptions may not be true in practice.  

First, secondary users’ behavior usually has a lot of ran-
domness. Secondary users of a network in a period of time may 
largely different from the users of the same network in another 
period of time. It is difficult to assume they have similar be-
havior. Second, the channel choice of secondary users is a 
function of the scanning algorithm and the channel measure-
ment. Different users may use different scanning algorithms, 
such as sequential scan, optimal stopping, random access, etc 
[17]. On the other hand, a user’s location, environment and 
hardware accuracy can greatly affect the measurements of 
channel state and channel quality. Therefore, the channel 
choice of a secondary user is very difficult to predict. Affected 
by these factors, probabilistically predicting the appearance 
channel of a secondary user can hardly achieve high accuracy 
in practice.  

B. Geographical Coverage Issues 

In the previous sections, we did not discuss the geographic 
issues for data capturing. In a wireless network, especially a 
network with large coverage, monitor(s) in a single place may 
not be able to hear all the links. However, for cognitive radio 
networks, addressing this problem is relatively easy. As the 
mainstream standard for cognitive radio network, IEEE 802.22 
has a star topology; all the secondary users communicate to the 
base station. In order to capture the packets in such a network, 
we can simply put all the monitors close to the base station.  

If such placement is not convenient or not available for 
network forensics systems, or cognitive radio devices work in 
ad-hoc mode, we may need extra monitors. In this case, the 
locations of monitors should be carefully designed, considering 
both geographical coverage and workload balance.  

C. Application Dependent Packet Prediction 

As discussed, we predict the packet arrival time using sup-
port vector regression, which is a general method applied to all 
traffics. In some cases, if the type of application is known, the 
prediction accuracy can be further improved. For example, FTP 
download traffic has a regular pattern that the intervals between 
the packets are almost identical. VoIP and video streaming also 
has very predictable behavior.  

Of course, identifying application type by packets or traffic 
characteristics is a challenging problem, especially the payload 
of wireless packets are typically encrypted. However, for some 
easy cases, information in the header, such as well-known port 
numbers and source/destination IP address can be used to iden-
tify the application and helps improve the accuracy of predic-
tion.  

VIII. CONCLUSION 

In this paper, we introduced a systematic method for data 

capturing in cognitive radio networks. Given a large number of 
channels, our method is able to achieve high packet capture 
rate with a small number of monitors.  

In order to reuse the monitors in the time domain, we pro-
posed a packet arrival prediction method based on incremental 
support vector regression. A monitor scheduling algorithm and 
a comprehensive protocol are provided to coordinate monitors 
among channels. We conducted both real-world experiments 
and simulations to evaluate our method. The results show that 
our method significantly outperforms the random scheme and 
has good scalability. 
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