
Efficient Data Capturing for Network Forensics in
Cognitive Radio Networks

Shaxun Chen†, Kai Zeng‡, Prasant Mohapatra†

†Department of Computer Science, University of California, Davis, CA 95616
‡Department of Computer and Information Science, University of Michigan - Dearborn, Dearborn, MI 48128

sxch@ucdavis.edu, kzeng@umich.edu, pmohapatra@ucdavis.edu

Abstract— Network forensics is widely used in tracking down
criminals and detecting network anomalies, and data capture is
the basis of network forensics. Compared to traditional networks,
data capture faces significant challenges in cognitive radio net-
works. In traditional wireless networks, one monitor is usually
assigned to one channel to capture traffic, which incurs very high
cost in a cognitive radio network because the latter typically has a
large number of channels. Furthermore, due to the uncertainty of
the primary user’s activity, cognitive radio devices change their
operating channels randomly, which makes data capturing more
difficult. In this paper, we propose a systematic method to cap-
ture data in cognitive radio networks with a small number of
monitors. We utilize incremental support vector regression to
predict packet arrival time and intelligently switch monitors be-
tween channels. In addition, a protocol is proposed to schedule
multiple monitors to perform channel scan and packet capturing
in an efficient manner. The real-world experiments and simula-
tions show that our method is able to achieve the packet capture
rate above 70% using a small number of monitors, which out-
performs the random scheme by 200%-300%.

I. INTRODUCTION

The ubiquitous wired and wireless networks play an impor-
tant role in our daily lives; at the same time, cyber crimes and
information security issues are increasing at an unprecedented
pace. Network forensics is a discipline that monitors and ana-
lyzes network traffic, aiming at detecting malicious network
activities and preserving network data as evidences. It is widely
used in preventing attacks, tracing down criminals, diagnosing
the network, etc. Although it is a newly emerged research area,
network forensics attracts a great attention from both network
researchers and law enforcement practitioners.

Generally speaking, network forensics is composed of two
steps: data capture and data analysis. Between them, data cap-
ture is the basis of network forensics, on which the quality of
data analysis largely depends. However, data capture is not as
easy as it seems, especially in wireless networks. Channel fad-
ing, signal interference, mobility of transceivers and ever-in-
creasing data rate make data capture a non-trivial task.

Existing work on network forensics as well as data capture
is studied in the context of traditional networks. As an emerg-
ing type of network, cognitive radio network is a promising
technology to mitigate the scarcity of wireless spectrum. How-
ever, in cognitive radio networks, data capture faces additional
challenges.

First, according to the FCC’s regulation, unlicensed users

should evacuate immediately when an incumbent user appears,
which means unlicensed users may frequently change their
working channels. Second, cognitive radio networks have a
much wider spectrum than other wireless networks. For exam-
ple, the white space is from 50MHz to 700MHz approximately.
Assuming a channel width of 6MHz (the same as the TV chan-
nel-width in U.S.), there can be more than one hundred avail-
able channels. If we capture the traffic of cognitive radio net-
works in the traditional way, one monitor should be tuned to
listen to one channel. That is, we will need over a hundred
monitors in total, making the cost prohibitively high.

In this paper, we propose a novel method, which intelli-
gently switches monitors between different channels to capture
the network data spread over a large number of channels with a
small number of monitors. Our method is based on two obser-
vations. First, although a cognitive radio network may have a
large number of channels, not all of them are busy at the same
time. Second, for a single channel, there are always intervals
between packets. Furthermore, a typical network forensics sys-
tem usually does not require all the packets; instead, they are
only interested in certain packets depending on their specific
purposes.

Based on these observations, we propose to predict the ar-
rival time of the next interesting packet by using incremental
support vector regression, and then switch monitors between
different channels according to our prediction result. To the
best of our knowledge, this is the first work investigating data
capture for network forensics in cognitive radio networks, and
also the first effort to monitor multiple channels with fewer
monitors by predicting packet arrival time.

We conduct extensive experiments and simulations. The
results demonstrate that given a large number of channels, we
can achieve a high packet capture rate with a small number of
monitors. Our method outperforms the random scheme by
200%-300%.

The rest of this paper is organized as follows. Section Ⅱ
discusses related work. Section Ⅲ states the problem, and
Section Ⅳ introduces our method for packet arrival time pre-
diction. In Section Ⅴ, we present the protocol for efficient
data capture in cognitive radio networks. Section Ⅵ evaluates
our work. Section Ⅶ discuses several related technical issues
and Section Ⅷ concludes the paper.

II. RELATED WORK

Data capture techniques for network forensics can be cate-
gorized into two types: catch-it-as-you-can and stop-and-listen
[1]. The former category requires larger amounts of storage

This research was supported in part by the National Science Foundation
through the grant CNS-0831914 and the Army Research Office through a
MURI grant W911NF-07-1-0318.

2011 19th IEEE International Conference on Network Protocols

978-1-4577-1393-4/11/$26.00 ©2011 IEEE 176

while the latter puts higher pressure on the CPU performance.
Wireshark, WinPcap, TCPdump, etc. are the tools commonly
used for data capture. These tool fall into the first category, but
they are also capable of capturing certain packets based on pre-
defined filters.

Efforts have been made to effectively capture packets in
high speed networks [2] [3]. Siles studied the performance re-
lated issues and encryption-overcoming of data capturing in
wireless networks [4]. Geiger et al. [5] pointed out that a moni-
tor can capture the packets from adjacent channels in WLAN
when the data rate is low.

In almost all the existing studies, including the work men-
tioned above, one monitor is used for capturing data in one
channel (or link). Choong proposed to use a single software
defined radio device to sample multiple channels in ZigBee
networks [6]. The feasibility is based on the fact that the maxi-
mum channel width of the software defined radio can cover
multiple ZigBee channels. However, their approach only works
when the modulation rate of the channels being sampled is very
low (250kbps). It is acceptable for ZigBee networks, but far
from practical for general data capturing. When the modulation
rate goes higher, the sampling and computation overhead
quickly exceeds the hardware processing ability. Besides, the
channel width of ZigBee is only 2MHz. For other types of
wireless networks, even a software defined radio device cannot
cover many channels at the same time. In contrast, our method
reuses monitors in the time domain, therefore is not constrained
by the modulation rate or the bandwidth of the channel being
watched.

Chhetri et al. proposed to schedule sniffers among multiple
channels [19], but the goal is to monitor the appearance of
wireless users, which is much easier compared to traffic cap-
turing. Moreover, in their work, a pre-known transmission
probability is assumed for each user; the sniffers are scheduled
without considering the realtime user behavior.

Arora et al. employed multi-armed bandit to formalize the
multi-channel monitoring problem [20]. Similar as [19], this
method is only good for transient activities and cannot be used
to capture packets. Specifically, a slot system is assumed in
[20], but they do not care the length of the slot. It is possible
that during a slot there come multiple packets or a packet lasts
across multiple slots. Besides, the channel switching overhead
is not considered in this work.

Time series prediction has been well studied for decades.
Autoregressive moving average models and Kalman filter are
most widely used, but they both require that the process being
predicted is linear and stationary. Machine learning techniques,
such as support vector machine and neural network, do not
have such restrictions [7], but they are usually not fast enough
for online prediction. Besides, these works are dedicated to
predict continuous values; they may experience large errors
when predicting a binary variable (in our case, appearance or
disappearance of interesting packets).

Phit et al. proposed to predict packet arrival time using neu-
ral networks [8]. Historical data of packet inter-arrival time are
used as the input. However, this method is only suitable for
offline analysis, because the training phase takes considerably

long time.

III. PROBLEM DEFINITION

A. Background
Cognitive radio networks typically work in white space,

where unlicensed (secondary) users are allowed to access the
spectrum opportunistically. However, as mentioned in Section
Ⅰ, they must evacuate immediately upon incumbent (primary)
users’ presence.

Most important primary users in white space are TV towers
and wireless microphones. They typically transmit analogue
signals. In practice, network forensics systems are interested in
capturing data packets (of secondary users) instead of analogue
signals.

An alternative to capturing packets wirelessly is to physi-
cally connect to the base station or wired infrastructure of cog-
nitive radio networks. However, forensics systems may not
have the access to such infrastructure. In addition, in that ap-
proach, information like channel quality and signal strength are
lost, which can be used to infer users’ location and mobility
pattern. Wireless forensics is different from wired forensics in
both methods and applicable scenarios. In this paper, we focus
on wireless data capture in cognitive radio networks.

B. Problem Definition

Assume that there are N channels in a cognitive radio net-
work. We have only M monitors (M<<N). Among N channels,
L are busy (M<L<N). Here busy channel only refers to the
channel occupied by secondary users.

During any period of time, new secondary users may join
the network (idle channels get occupied); existing secondary
users may quit (busy channels become idle); they can also
switch to a new channel and continue communicating (due to
appearance of primary signals, change of channel quality, or
requirement of certain network protocol). These changes are, if
not impossible, very difficult to predict (see discussion in Sec-
tion Ⅶ).

The goal of our work is to capture as many interesting
packets from these busy channels as possible.

Interesting packets are the packets that a network forensics
system wants to capture and record for future analysis. Whether
a packet is interesting or not depends largely on the purpose of
the forensics system. Different systems (applications) may have
very different interest. For example, a forensics system which
monitors video streaming traffic may find I-frames more inter-
esting than P-frames and B-frames, because I-frames can be
decoded independently, and usually contain more fundamental
information of the video. Another forensics system for network
anomalies detection may want to capture ICMP packets instead
of normal IP packets, since ICMP packets tend to relate to ma-
licious or suspicious network activities [9]. To define and de-
cide interesting packets is out of the scope of this paper. We
assume networks forensics systems know what types of packets
they need to capture.

In order to reduce the requirement of the number of moni-
tors (or in other words, to capture more interesting packets with
a limited number of monitors), we propose to switch monitors

177

between channels by predicting the arrival time of interesting
packets in each busy channel. We assume our monitors have
the same ability (radio-wise) as the nodes in the cognitive radio
network, and all the monitors are connected by dedicated chan-
nels.

The key idea of our method is to reuse monitors in the time
domain. The main challenges are listed as follows.

1) Online prediction. Our method requires that the predic-
tion of interesting packets should be performed on the fly,
which calls for a very fast prediction algorithm. The sequence
of packet inter-arrival time is not inherently a linear process,
which makes traditional moving average models not qualified.
On the other hand, machine learning based methods usually
take too much time for training, hence are not efficient enough
for online prediction.

2) Overall optimization. The optimization problem of our
method is not as straightforward as it seems. Conservative
strategies tend to stay in a channel for longer time, while ag-
gressive strategies tend to switch more often. The tradeoff is
tricky because failing to capture interesting packets not only
means the loss of forensics data, but also hurts the accuracy of
future packet predictions.

3) Data capture and channel scan. Our monitors have dual
duties. In addition to capturing packets, they are also
responsible for scanning the channels in order to find busy
ones. How to schedule monitors for both tasks is also
challenging.

We will provide solutions to these challenges in Section Ⅳ
and Ⅴ.

IV. PACKET ARRIVAL TIME PREDICTION

In this section, we introduce our method for arrival time
prediction of interesting packets. We present the support vector
regression in the first subsection and then, in the second sub-
section, we improve its performance for online prediction.

A. Support Vector Regression for Packet Arrival Prediction

We propose to switch monitors between channels in order
to capture more interesting packets. Ideally, we want a monitor
to stay in the channel when there is an interesting packet, and
switch to other channels when there is not. Good switching
strategy requires a good prediction algorithm to tell us when an
interesting packet is likely to arrive.

Now we introduce our packet arrival time prediction
method using support vector regression. As mentioned previ-
ously, traditional methods, such as autoregressive moving av-
erage and Kalman filter, are only applicable to linear processes.
Among machine learning based methods, support vector ma-
chine / regression is often reported to have superior perform-
ance [7] [18].

The input of our algorithm is (a0, a1, a2, …, an), which are
the arrival time of n successive interesting packets in a certain
channel. The output is an+1, the estimated arrival time of the
next interesting packet in this channel.

In a nutshell, support vector machine is a classification tool.
In the training phase, it tries to divide different groups of sam-
ples apart by a hyperplane (or a set of hyperplanes), which is
carefully constructed and lies in the “middle” of the margin

between groups. Support vector regression works similarly.
The difference is that the hyperplane is built to approximate all
the samples. An error is allowed in approximation. That is,
the distance from any sample to the hyperplane is less than .

Formally, the hyperplane (i.e. regression function) can be
expressed as:

()f X W X b (1)

Where W and X are both n-dimensional vectors, b is a real
number. X is the attributes of samples. In our case, X = (x1, x2,
x3, …, xn), where xi = ai – ai-1 (the intervals between consecu-
tive interesting packets). The dot between W and X is inner
product. W determines the slope of the hyperplane.

As mentioned, all the samples should be within a distance
to the hyperplane f(X). Apparently, there can be many hyper-
planes satisfying this requirement. Support vector regression
looks for the one in the “middle” of the region where the sam-
ples spread (referred to as flatness). This requirement equals to
minimizing ǁWǁ.

Formally, the problem can be described as minimiz-
ing ǁWǁ2/2, subject to:

j j

j j

y W X b

W X b y

where Xj is the attributes of the jth training sample, and yi is
an+1 of this sample. Minimizing ǁWǁ2/2 is equivalent to mini-
mizing ǁWǁ. We use the former for mathematical convenience.

Up to now, we assume such hyperplane f(X) exists. How-
ever, sometimes it may not be the case due to small and dis-
persed distribution of training samples. To ensure the existence
of f(X), we allow some samples to have larger errors than
which is comparable to the soft margin in support vector
machine. The problem can be formalized as:

minimize 2

1

1
|| || ()

2

l

j j
j

w C

subject to j j

j j

y W X b

W X b y

where and ’ are nonnegative values accounting for extra
errors (as shown in Figure 1, they introduce a penalty while
does not), and C is a positive constant, which decides the trade-
off between the flatness of the hyperplane and the amount of
extra errors. l is the number of training samples.

Figure 1. Error function

178

The above objective function and constrains is equal to
minimizing L, which is called Lagrange function:

2

1 1

1
|| || () ()

2

l l

j j j j j j
j j

L W C

1

()
l

j j j j
j

y W X b

1

()
l

j j j j
j

y W X b

where ,’, and ’ are Lagrange multipliers and they are

all positive. Minimizing a Lagrangian can be converted to a
solvable dual optimization problem. Due to the space limitation,
we do not present the detailed derivation here. Finally, the hy-
perplane can be expressed as:

1

() ()
l

j j j
j

f X X

 X b (2)

Here X is the input (to be predicted) and Xj is the attributes
of training sample j. In this equation, b can be calculated by
exploiting Karush–Kuhn–Tucker conditions. Details can be
referred to [10].

In the above discussions, hyperplanes are used to approxi-
mate samples. Since packet arrival time is not a linear process,
using hypersurface could increase the performance. Therefore,
we introduce the kernel tricks. It can be proven that the prop-
erty of support vector regression still holds if we substitute the
inner product in Equation 2 with kernel functions. In practice,
we employ Gaussian radial basis function, which is one of the
most commonly used kernel functions. It is defined as:

2(,) exp(|| ||)i j i jk

where is a positive parameter. We use 1/22 for. The
updated regression function is:

2
2

1

1
() ()exp(|| ||)

2

l

j j j
j

f X

 X X b (3)

In the training phase, assuming we have recorded the arrival
time of m (m > n+1) interesting packets: a0, a1, a2, …, am-1, we
first calculate the time interval between them, noted as x1, x2,
x3, …, xm-1. In the training phase, these m-1 items are organized
into m-n-1 samples, i.e. (x1, x2, …, xn+1), (x2, x3, …, xn+2), …,
(xm-n-1, xm-n, …, xm-1). For each sample, first n elements are at-
tributes and the last element is the label (yj). After training, we
determine the parameters of the regression function f.

In the prediction phase, n historical time intervals between
interesting packets are used as input to predict the future ones.
If we want to predict the arrival time of the kth (k > m-1) inter-
esting packet (ak), then let X = (xk-n, xk-n-1, …, xk-1), we have xk =
f(X), and ak = ak-1 + xk.

In Section Ⅵ, we will evaluate the accuracy of this algo-
rithm with different training dataset size (l) and different num-
ber of attributes (n). We will also show that in a single channel,
if interesting packets can be divided into categories, it is better
to predict them separately.

B. Expediting Learning Process

For support vector regression based algorithms, prediction
is fairly fast while training phase usually takes more time.

In this subsection, we propose several approaches in order

to reduce the training time, which is especially important to our
method that performs online prediction.

First, we employ incremental learning for the training of
support vector regression, which enables us to dynamically add
or remove a sample from the training dataset without learning
from scratch [11] [12]. The mathematics explanation of incre-
mental learning is complex; the main idea is described as fol-
lows.

It can be derived that for most samples, j = ’j in Equation
2. That is, the regression function only depends on a small
number of samples, which lie in the “fringe” of the sample
space. These samples are called support vectors. In the incre-
mental learning, when a new sample comes, it checks if it is a
support vector. If not, the training result remains unchanged.
Otherwise, it is added into the support vector set and the pa-
rameters in the regression function are re-tweaked. It works
similarly when removing a sample.

Although the regression function can be used to predict re-
peatedly once it is trained, the prediction will become less and
less accurate as time passes, because the training data gets ob-
solete and the traffic pattern changes. Traditionally, without
incremental learning, training frequently is not affordable for
online predictions due to its high computational overhead.
However, with incremental learning, we are now able to update
our regression function in a timely fashion.

Second, we use dual regression functions to reduce retrain-
ing. As introduced in Section ⅣA, in order to predict the kth
interesting packet (ak), we need the arrival time of n+1 inter-
esting packets just before it (ak-n-1, …, ak-1). If we fail to capture
an interesting packet (say, k-1th packet), n packets after it can-
not be predicted (from kth to k+n-1th), because the input needed
by the regression function is incomplete. In this case, we have
to stay in this channel to capture these n packets, giving up the
opportunities of capturing packets in other channels. This is a
non-negligible performance loss. Moreover, we probably have
to retrain the regression function, because without the predic-
tion results, we cannot compare them with the ground truth,
and tell whether the regression function is obsolete or not.

In order to alleviate this situation, we introduce dual regres-
sion functions (f and f’). The former predicts the arrival time of
the next packet and the latter predicts the one after next.

1 2 1(, ,...,) f
n nx x x x

1 2 1 2(, ,...,) f
n n nx x x x x

f’ is defined similarly as f, and uses the same model we pre-
sented in Section ⅣA. The only difference is that f’ predicts
two packets ahead. Of course, the training data of f’ are in the
form of (x1, x2, …, xn, xn+1+ xn+2), in which the first n items are
attributes and the last is the label.

We maintain f and f’ simultaneously. If an interesting
packet is missed (say, k-1th, caused by mis-prediction of f or
monitor unavailability), we utilize f’ to predict the kth interest-
ing packet. If it is a match, the process goes on as normal. No
retraining is needed and ak-1 (predicted value) is used as the
ground truth for the next few predictions. On the other hand, if
the prediction of f’ still does not match, the monitor will keep
staying at this channel for at least n interesting packets’ dura-
tion and then perform an incremental retraining.

179

In this updated version of method, two consecutive
mis-predictions (k-1th and kth) suggest the obsoleteness of the
regression function f (as well as f’). In contrast, the old method
has to stick on a channel for quite a while upon a single miss,
which may occur frequently and does not necessarily imply the
invalidation of the regression function. Therefore, the updated
method reduces a large amount of retraining and the time stuck
in a single channel. Of course, maintaining f’ itself introduces
overhead. However, the overhead is not high with incremental
learning, and it is worthwhile because being stuck on a channel
may cause loss of packets in other channels and thus a vicious
cycle.

An alternative method for dual regression functions is to
treat the sequence of interesting packets arrival time as discrete
time series. We can still use the model presented in Section Ⅳ
A to perform prediction. However, in this case, the training
samples are in the form of (j, aj), where j is the single attribute
(sequence number) and aj is the label (arrival time of the jth
interesting packet). The advantage of this method is that it is
able to predict multiple future packets with a single regression
function. However, compared with the regression function we
use, it requires much more training samples to achieve decent
accuracy. We will compare their performance in Section Ⅵ.

Besides two modifications discussed above, we also apply
some tricks to further expedite our method. We store the values
of the kernel (Gaussian radial basis function) in a matrix, thus
avoid computing every time during training. Besides, the re-
gression function is traditionally trained using various and ,
and then the one with the best accuracy is adopted. However,
this process is very time-consuming. We fix the values of and
 at /40 and /20 respectively (is the average inter-arrival
time of the recent interesting packets), which largely reduces
the computing time without obvious decrease of prediction
accuracy. We will show the results in Section Ⅵ.

V. MONITOR MUTIPLE CHANNELS WITH A SMALL NUMBER

OF MONITORS

In the previous section, we present our method for packet
arrival time prediction. Multiple efforts are launched to accel-
erate the algorithm and make it qualified for online use. In this
section, we first introduce the monitor scheduling method
based on the prediction results, and then present the complete
protocol for data capturing in cognitive radio networks.

A. Monitor Scheduling

Packet arrival prediction is independent for each channel.
Based on these predictions, a limited number of monitors are
scheduled to cover a large number of channels. In this subsec-
tion, we assume that we already have the prediction results.

Figure 2 shows an example of three channels. Each square
is an interesting packet, and we assume there are two monitors,
originally residing at channel A and C.

In order to capture all the interesting packets, a valid sched-
uling is that the first monitor catches A1, B1, A2, A3, A4 and
B4, while the second captures C1, C2, B2, B3, C3 and C4. Of
course, there are many possible scheduling schemes. Among
them, the one with minimum channel switches is preferred; the
reason is as follows.

First, channel switching has overhead. Although switching
under the monitor mode is faster than other modes, it still needs
some time. Taking 802.11bg wireless cards for example, chan-
nel switching takes 3-20ms [13]. The more a monitor switches,
the less time it can spend on data capturing.

Second, continuously staying in a channel for longer time
helps verify the prediction algorithm. Prediction results are
compared with the ground truth to decide whether retraining is
necessary. Frequent channel switching impedes the gathering
of the ground truth.

Figure 2. Monitor Scheduling

In the example of Figure 2, the solution mentioned above is
the optimum in this sense, which only has 5 switches (shown as
arrows in Figure 2). However, in the general case, assuming the
arrival time of all the interesting packets are known, finding a
scheduling scheme that minimizes the number of monitor
switches is an NP-hard problem (when the number of monitors
is less than the number of channels). In addition, the prediction
algorithm cannot forecast very far ahead, and prediction errors
are inevitable. Therefore, it is not feasible to establish an algo-
rithm that always gives the optimal solution.

Instead, we propose a greedy method to schedule the moni-
tors with relatively few channel switches. If an interesting
packet will arrive within v ms by prediction and no monitor is
now in this channel, a scheduling activity is triggered. Among
all the available monitors, the one that currently has the longest
“free interval” is selected and switched to capture this packet.
The monitor will stay in this channel until being scheduled and
switched again. The algorithm is shown as follows.
__

An upcoming packet in channel i triggers scheduling
 latestNext = 0; monitorSel = -1;
 for any monitor j∈AM
 if (aN

ch(j) > latestNext)
 lastestNext = aN

ch(j);
 monitorSel = j;
 if (monitorSel != -1)

switch monitor monitorSel to channel i
delete monitorSel from AM

 else return false
__
Algorithm 1. Monitor scheduling

Here, AM is the set of available monitors, ch(j) is the cur-
rent channel that monitor j residents, and aN

ch(j) is the predicted
arrival time of the next interesting packet on channel ch(j).
Available monitors are defined as follows.

180

Two types of monitors are busy. First, if an interesting
packet will arrive within w ms by prediction, the monitor cur-
rently on this channel is set to busy until this packet is captured
or timeout. The other type is the monitors being occupied in a
retrain process triggered by two successive mis-predictions
(refer to Section ⅣB). Besides, a few monitors are dedicated
for scanning (see Section ⅤB). All other monitors are avail-
able.

This algorithm is linear and fast enough for online schedul-
ing. The greedy strategy it uses is a good approximation of
minimizing switches in practice. For the example shown in
Figure 2, the scheduling performed by this algorithm is the
same as the optimum. w and v mentioned above will be defined
in the next subsection.

B. Protocol for Data Capture in Cognitve Radio Networks

We have discussed the packet prediction and monitor
scheduling algorithm in the above sections. In this subsection,
we first present our method for channel scan, which detects
channels for secondary signals, and then present the complete
version of the data capturing method in cognitive radio net-
works.

In Section ⅤA, we introduced our algorithm that switches
monitors between channels. We assumed these channels are all
busy. However, in a cognitive radio network, only some of the
channels are occupied by secondary users (referred to as active
channels; we do not capture primary users’ traffic, because they
transmit analogue signal, see Section Ⅲ). The rest of them are
used by primary users, experiencing low channel quality or
simply idle (referred to as inactive channels). Leaving monitors
staying in inactive channels is a big waste. We should find out
active channels before applying packet prediction and monitor
scheduling algorithms.

Before going into the details, we define and recall some
notations. The cognitive radio network has N channels and we
have M monitors. Algorithm 1 is executed v ms before a packet
arrives, and a monitor is set as busy w ms ahead of packet arri-
val (see Section ⅤA). tr is the time relax of packet arrival pre-
diction. That is, for any predicted arrival time a, we schedule
the time slot [a-tr, a+tr] for packet capture. If an interesting
packet is captured in this time slot, it is called a match. Other-
wise, a mis-prediction is assumed. ts stands for the time over-
head for channel switching. l is the number of samples needed
for the first-time training in a new channel. AM is the set of the
current available monitors.

We use S monitors dedicatedly for scanning (we choose S =
┌M/6┐ in our method). It is a tradeoff between the number of
monitors consumed and the delay of the secondary user detec-
tion. All the inactive channels are averagely assigned to these
monitors. They sequentially scan their assignments repeatedly
and report the emergence of secondary users.

In addition, for any other monitor, if it successfully captures
an interesting packet in the first half of the scheduled slot ([a-tr,
a]), it quickly switches to one of the inactive channels to detect
for secondary signals. This operation is transparent to the
monitor scheduling algorithm. The reason for doing this is that
we want to make full use of the scheduled slot, and help those
dedicated monitors to accelerate the discovery of new secon-

dary users.
In case of the disappearance of secondary signals, detection

is easier. After two mis-predictions, a monitor will be sched-
uled to stay in this channel and perform retraining. Absence of
the secondary signal will be found. No extra efforts are needed.

Now we briefly describe the protocol of our method for
data capturing in cognitive radio networks.

1) Monitors scan the inactive channels in the manner as
above. Once a new secondary signal is detected, this channel
is marked as active. At the same time, an available monitor is
switched to this channel to perform training, and removed
from AM.

2) After collecting l interesting packets, the initial training
is completed. The monitor is set back to available state unless
the next interesting packet arrives within w ms.

3) After training, future interesting packets are predicted
by f and f’in each active channel. v ms before the next packet
arrival, Algorithm 1 is executed to pick a monitor from AM to
capture it if no monitor is currently in the channel. Otherwise,
the monitor in this channel is set to busy w ms before the
arrival unitl the packet is captured.

4) If two consecutive mis-predictions occurs in an active
channel, an available monitor is assigned to this channel and
perform incremental retraining. This monitor is removed from
AM until retraining is done.

5) Once Algorithm 1 returns false (no more available
monitors), our method enters saturated mode and stops
marking a channel as active even if a secondary signal is found.
Saturated mode ends when an existing secondary user quits
from an active channel.

6) Under the saturated mode, if Algorithm 1 returns
false with the ratio higher than a threshold, an active channel
is marked as inactive, which means we give up data capturing
in this channel temporarily. By default, remarking process
starts from the active channel with minimum number of
interesitng packets per unit time.

In our method, as mentioned in Section Ⅲ, all the monitors
are connected by dedicated channels and their clocks are syn-
chronized. This assumption is reasonable, since monitor array
products are widely available in the market (but the number of
monitors in the array is limited). Communications between
monitors (and the controller) are fast and knowledge is shared.

In the above protocol, one or more channels are temporarily
relinquished when monitor shortage occurs. We use this con-
servative strategy because recklessly covering more channels
will cause more retraining, less available monitors, and thus a
vicious circle.

Some parameters in the protocol have certain constrains. v
should be larger than (ts + tr), as well as w. The reason for the
former is straightforward. For the latter, if the monitor in the
current channel is marked as available and switched to another
channel, the remaining time should be long enough for other
monitors to switch to this channel and catch the next packet.
Besides, tr is larger than ts, which helps maintain the transpar-
ency when ordinary monitors are opportunistically used for
channel scan. Concrete value of the parameters will be assigned
in the next section.

181

VI. EVALUATIONS

We conduct comprehensive experiments and simulations to
evaluate our method for data capturing in cognitive radio net-
works. We first test the accuracy of the packet arrival predic-
tion method under various traffics, and then evaluate the per-
formance of monitor scheduling algorithm. After that, the ef-
fectiveness and overall performance of the complete method
are evaluated.

A. Performance of Packet Arrival Time Prediction

In this subsection, we evaluate the performance of our
method for packet arrival time prediction. As discussed in Sec-
tion Ⅳ, a support vector regression based model is built upon
training. The arrival time of n+1 latest packets are used to pre-
dict the arrival time of the next packet.

We first test the influence of different types of traffics on
our prediction method. Three types of trace data (FTP, VoIP,
and web browsing traffic) are collected from real-world sce-
narios. In the FTP and VoIP traces, we assume all packets are
interesting. For web browsing, we test two cases: all packets
are interesting and only ICMP packets in the trace are interest-
ing.

The results are shown in Figure 3. The y-axis is the relative
estimation error of predicted arrival time, which is defined as
|real – estimated| / , where is average inter-arrival time of
interesting packets. The errors of 120 predictions are averaged
for each point. If there are averagely 50 interesting packets per
second, relative estimation error is 10% means that the predic-
tion error is 2ms in average. The x-axis shows the number of
attributes (n) used as input of the regression function. In this
experiment, all regression functions are trained by 100 recent
interesting packets.

Figure 3. Accuracy of packet arrival time prediction

From the result we can see that our prediction method has
higher accuracy on FTP and VoIP traffic than web browsing
and ICMP. This is reasonable because FTP and VoIP traffic
tend to be more regular and have less randomness. Even the
case of ICMP performs better than the web browsing traffic
from which the former is extracted. This result suggests that it
is better to categorize packets before prediction for hybrid traf-
fics. We will soon further investigate it.

When n gets larger, the prediction becomes more accurate.

But large n also has drawbacks, in that a monitor has to stay in
the channel waiting for (n+1) interesting packets if two con-
secutive mis-predictions occur. The larger n, the longer it waits.
For our method, we choose n = 6, since the performance gain
quickly shrinks when n > 5. All the following experiments use
this value unless otherwise specified.

In the following experiment, we compare our prediction
method with two other strategies. Strategy A tests various and
, and then chooses the best for the regression function. The
rest of its settings are the same as our method. Strategy B treats
the packet sequence as discrete time series, which can predict
far ahead with current knowledge (please refer to Section ⅣB).
We use web browsing traffic for this test, and only ICMP pack-
ets are interesting. The results are plotted in Figure 4.

Figure 4. Comparison of three strategies

The y-axis is the relative estimation errors, while the x-axis
stands for the number of samples used for training. Theoreti-
cally, strategy A should perform better than ours, yet the result
shows that their accuracies are close, which may stem from the
over-fitting effect of the former. Since strategy A is far more
time-consuming than ours, we do not choose it. For strategy B,
it is more sensitive to the size of the training dataset. It cannot
achieve comparable performance as ours with less training data.
Considering the result of this test, we use l = 35 for our method
to balance between training time and performance. All the fol-
lowing experiments use this value unless otherwise specified.

In the next experiment, we test the scenario of interleaved
interesting packets, where VoIP traffic and web browsing traf-
fic are transmitted in the same channel. That is, a user is mak-
ing an IP phone call and browsing web pages at the same time.
Similarly, we assume VoIP packets and ICMP packets are in-
teresting.

We run our prediction algorithm twice. In the first round,
VoIP traffic and ICMP packets are treated as a single sequence.
In the second round, we separate them, and train two different
regression functions to predict the next VoIP packet and the
next ICMP packet separately. VoIP packets are also IP packets.
We distinguish them for the IP packets in web browsing traffic
by identifying source and destination IP addresses. The result is
shown in Figure 5.

From Figure 5, we can see that separate prediction has
much better performance than mixing them together. Therefore,

182

if a network forensics system wants to capture multiple types of
packets in a channel, we should categorize the traffic first, and
then apply our prediction method to each category separately.

Figure 5. Interleaved interesting packets

B. Data Capture Performance of Small Number of Channels

Figure 6. Experiment settings

We have presented the evaluation results of our prediction
algorithm above. Now we further incorporate the monitor
scheduling algorithm (Algorithm 1) to test the overall per-
formance of our data capturing method. In this subsection,
real-world tests are performed in a simplified scenario, where
we do not consider dynamic join and leave of secondary users,
and monitors dedicated for scanning are not used.

We use HP nc6000 and Dell E5400 laptops equipped with
802.11bg wireless cards (Atheros or Intel chipset) for our test.
Three pairs of laptops (or AP-laptop pair) are working at chan-
nel 1, 6, and 11, respectively. It simulates a cognitive radio
network with three channels and one monitor.

In the first experiment, channel A is web browsing in which
ICMP packets are interesting. Channel B is occupied by VoIP
streaming, which has a data rate of approximately 6Kbps and
all the packets are interesting. Channel C is not used. We only
have one monitor (also a laptop with 802.11bg wireless card, in
monitor mode) to capture the traffic on channel A and B using
our method. ts (channel switch time) of the monitor is about
5ms. w and v are both set to (tr + ts), where tr is the time relax
for packet arrival prediction (see Section ⅤB).

We vary tr from 2 to 18ms and the packet capture rate (i.e.
captured interesting packets / total interesting packets) is
shown in Figure 7. From the experiment result we can see that
when tr is around 8ms, we are able to achieve the packet cap-
ture rate as high as 82%. When tr is small the capture rate de-
creases because even small prediction errors cannot be toler-
ated. When tr gets larger, w also gets larger, thus the monitor
may not have enough time to switch to other channels. We
choose tr = 8ms for our method. The rest of experiments use
this value unless otherwise specified.

Figure 7. Influence of tr on packet capture rate

In the next experiment, we test the influence of traffic loads
on our method, and compare its performance to the baseline
(random capture). Channel A and B are the same as above,
while channel C is used for FTP downloading (assume all
download packets are interesting). We vary the download
speed of channel C and use one and two monitors respectively
to capture the traffic of all three channels. The result is shown
in Figure 8.

Figure 8. Influence of traffic load on packet capture rate

In the one monitor case, we can see the packet capture rate
of our method decreases quickly when the data rate of channel
C goes higher than 280Kbps. This is because with higher data
rate, the time intervals between packets in channel C become
shorter, which is not enough for a single monitor to switch to
the other two channels. In the case of two monitors, such per-

183

formance deterioration is not found. Even if one monitor is
stuck in the busiest channel, the other still can switch between
the other two channels freely.

For the random scheme, monitor(s) switch between chan-
nels randomly. The experiment results demonstrate that for
both one or two monitor cases, our method significantly out-
perform the random method. This experiment also implies that
our data capturing method is able to achieve high chan-
nel-over-monitor rate if the distribution of interesting packets is
sparse.

C. Data Capture Performance of Large Number of Channels

Now we move on to the performance of the complete ver-
sion of our method. In this subsection, we increase the number
of channels; consider dynamic join and leave of secondary us-
ers; in addition, secondary users will change their current
communication channel upon the appearance of primary users.
802.11bg networks only have three non-overlapping channels;
this part of evaluation is conducted by simulation.

In our settings, there are 60 channels (N = 60) in total, and
about 20 (18-22, due to dynamic join and leave) of them are
occupied by secondary users at any given time. When newly
coming or changing a channel, a secondary user randomly
chooses one of the currently available channels. Real traces are
used to simulate the packet communication. Among active
channels, 10 are web browsing traffic where in half of them,
ICMP packets are interesting; and for another half, all packets
are interesting. 5 channels are VoIP traffic, and another 5 are
video streaming. For the former, all packets are interesting
while for the latter, only I-frames are interesting. Primary users
are simulated by placing special packets in the channel.

We use 11 monitors (M = 11), and one or two of them are
dedicated for scanning secondary signal. The rest of parameters
are the same as experiments above. The result is shown in Fig-
ure 9. The x-axis is the average time a secondary user stay in a
channel before it quits the network or jumps to another chan-
nel.

Figure 9. Overall performance of data capturing in CRN

Our method significantly outperforms the random scheme.
Without channel scan and packet arrival prediction, 11 moni-
tors had a difficult time dealing with 60 channels. The packet

capture rate of the random scheme is less than 20%. On the
contrary, our method is able to achieve a packet capture rate of
70%-75% most of the time (when secondary users stay in a
channel longer than 8 seconds averagely). With two scanning
monitors, the capture rate is higher when secondary users have
more dynamics. That is because a single scanning monitor has
higher delay to find newly coming signals. When there is less
dynamics, the configuration of single scanning monitor has
better performance, for it in turn leaves more monitors for
packet capture. In the protocol, we make a tradeoff and ┌M/6┐
monitors are assigned dedicatedly for scanning.

In the next simulation, we vary the numbers of monitors,
the number of total channels, and the number of busy channels,
to test the scalability of our method. The average time a secon-
dary user staying in a channel is set to 10 seconds and ┌M/6┐
monitors are dedicated for scanning. The traffic types are the
same as above. The number of traces for each type is adjusted
proportionally.

Figure 10. Scalability of our method

In Figure 10, “20/60” means in total 60 channels 20 are
busy, and so forth. “R” means the random scheme, while with-
out “R” refers to our method. We can observe from the results
that our method has good scalability. When the number of
monitors is relatively small, the capture rate almost increases
linearly. When the number of busy channels is significantly
larger than the number of monitors, our method still provides
best-effort service without sharp performance deterioration.
Under the various conditions, it always performs much better
than the random scheme.

VII. DISCUSSION

A. Dynamics of Secondary Users

As mentioned, in cognitive radio networks, secondary users
opportunistically access the spectrum. They dynamically join
and leave the network, and also change their channels to avoid
primary users. An optional operation mode in IEEE 802.22
even requires channel hopping on a regular basis [14].

In order to catch up with such dynamics, we employ scan-
ning monitors in our method to scan inactive channels repeat-
edly, as well as opportunistically utilize the free time intervals
of other monitors (see Section ⅤB).

184

An alternative might be probabilistically predicting the ap-
pearance of secondary signals. Some research work has been
done to predict channel availability in cognitive radio networks
[15] [16]. It seems that we can utilize them to predict unavail-
able channels (secondary signals) and save scanning monitors.
However, these studies assume that secondary users’ behavior
is consistent over time or follow certain probabilistic distribu-
tions. These assumptions may not be true in practice.

First, secondary users’ behavior usually has a lot of ran-
domness. Secondary users of a network in a period of time may
largely different from the users of the same network in another
period of time. It is difficult to assume they have similar be-
havior. Second, the channel choice of secondary users is a
function of the scanning algorithm and the channel measure-
ment. Different users may use different scanning algorithms,
such as sequential scan, optimal stopping, random access, etc
[17]. On the other hand, a user’s location, environment and
hardware accuracy can greatly affect the measurements of
channel state and channel quality. Therefore, the channel
choice of a secondary user is very difficult to predict. Affected
by these factors, probabilistically predicting the appearance
channel of a secondary user can hardly achieve high accuracy
in practice.

B. Geographical Coverage Issues

In the previous sections, we did not discuss the geographic
issues for data capturing. In a wireless network, especially a
network with large coverage, monitor(s) in a single place may
not be able to hear all the links. However, for cognitive radio
networks, addressing this problem is relatively easy. As the
mainstream standard for cognitive radio network, IEEE 802.22
has a star topology; all the secondary users communicate to the
base station. In order to capture the packets in such a network,
we can simply put all the monitors close to the base station.

If such placement is not convenient or not available for
network forensics systems, or cognitive radio devices work in
ad-hoc mode, we may need extra monitors. In this case, the
locations of monitors should be carefully designed, considering
both geographical coverage and workload balance.

C. Application Dependent Packet Prediction

As discussed, we predict the packet arrival time using sup-
port vector regression, which is a general method applied to all
traffics. In some cases, if the type of application is known, the
prediction accuracy can be further improved. For example, FTP
download traffic has a regular pattern that the intervals between
the packets are almost identical. VoIP and video streaming also
has very predictable behavior.

Of course, identifying application type by packets or traffic
characteristics is a challenging problem, especially the payload
of wireless packets are typically encrypted. However, for some
easy cases, information in the header, such as well-known port
numbers and source/destination IP address can be used to iden-
tify the application and helps improve the accuracy of predic-
tion.

VIII. CONCLUSION

In this paper, we introduced a systematic method for data

capturing in cognitive radio networks. Given a large number of
channels, our method is able to achieve high packet capture
rate with a small number of monitors.

In order to reuse the monitors in the time domain, we pro-
posed a packet arrival prediction method based on incremental
support vector regression. A monitor scheduling algorithm and
a comprehensive protocol are provided to coordinate monitors
among channels. We conducted both real-world experiments
and simulations to evaluate our method. The results show that
our method significantly outperforms the random scheme and
has good scalability.

REFERENCES
[1] S. Garfinkel, “Network forensics: tapping the Internet,” http://www.ore

illynet.com/pub/a/network/2002/04/26/nettap.html.

[2] G. Iannaccone, C. Diot, I. Graham, N. McKeown, “Monitoring very high
speed links,” ACM Sigcomm Internet Measurement Workshop, Nov.
2001.

[3] L. Deri, “Improving passive packet capture: beyond device polling,” Proc.
System Administration and Network Engineering (SANE), 2004.

[4] R. Siles, “Wireless forensics: tapping the air,” http://www.symantec.com/
connect/articles/wireless-forensics-tapping-air-part-one.

[5] D.J. Geiger, G. Scheets, K.A. Teague, J. Pitts, “Multi-channel packet
capture in 802.11b/g wireless networks,” 42nd Asilomar Conference on
Signal, System and Computers, 2008..

[6] L. Choong, “Multi-channel IEEE 802.15.4 packet capture using software
defined radio,” M.S. Thesis, UCLA, 2009.

[7] N.I. Sapankevych, R. Sankar, “Time series prediction using support vec-
tor machines: a survey,” IEEE Computational Intelligence Magazine, pp.
24-38, May 2009.

[8] T. Phit, K. Abe, “Packet inter-arrival time estimation using neural net-
work models,” Internet Conference, Tokyo, 2006.

[9] S. Northcutt, J. Novak, “Network intrusion detection,” 3rd Edition, New
Riders Publishing, 2003.

[10] A.J. Smola, B. Scholkopf, “A tutorial on Support Vector Regression,”
Statistics and Computing, Springer, 2004.

[11] G. Cauwenberghs, T. Poggio, “Incremental and decremental support
vector machine learning,” in T.K. Leen, T.G. Dietterich, V. Tresp, editors,
Advances in Neural Information Processing Systems, volume 13, pages
409–415. MIT Press, 2001.

[12] J. Ma, T. James, and P. Simon, “Accurate online support vector regres-
sion,” Neural Computation, 2003.

[13] D. Murray, M. Dixon, T. Koziniec, “Scanning delays in 802.11 net-
works,” 2007 International Conference on Next Generation Mobile Ap-
plications, Services and Technologies, 2007.

[14] W. Hu, D. Willkomm, G. Vlantis, M. Gerla, A. Wolisz, “Dynamic fre-
quency hopping communities for efficient IEEE 802.22 operation,” IEEE
Communications Magazine, pp. 80 – 87, May 2007.

[15] A. Anandkumar, N. Michael, and A.K. Tang, “Opportunistic spectrum
access with multiple players: learning under competition,” IEEE Infocom
2010.

[16] K. Liu, Q. Zhao, and B. Krishnamachari, “Distributed learning under
imperfect sensing in cognitive radio networks,” Asilomar Conference on
Signal, System, and Computers, 2010.

[17] H. Jiang, L. Lai, R. Fan, H.V. Poor, “Optimal selection of channel sensing
order in cognitive radio,” IEEE Transactions on Wireless Communication,
8(1) :297-307, 2009

[18] C. Burges, “A Tutorial on Support Vector Machines for Pattern Recogni-
tion,” Data Mining and Knowledge Discovery, 2(2): 121 - 167, 1998.

[19] A. Chhetri, H. Nguyen, G. Scalosub, R. Zheng, “On quality of monitoring
for multi-channel wireless infrastructure networks,” 11th ACM Interna-
tional Symposium on Mobile Ad Hoc Networking and Computing (Mo-
biHoc), pp. 111-120, 2010.

[20] P. Arora, C. Szepesvari, R. Zheng, “Sequential learning for optimal moni-
toring of multichannel wireless networks,” IEEE Infocom 2011.

185

