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Abstract—Many location-based services require a mobile user
to continuously prove his location. In absence of a secure
mechanism, malicious users may lie about their locations to
get these services. Mobility trace, a sequence of past mobility
points, provides evidence for the user’s locations. In this paper, we
propose a Continuous Location Integrity and Provenance (CLIP)
Scheme to provide authentication for mobility trace, and protect
users’ privacy. CLIP uses low-power inertial accelerometer sensor
with a light-weight entropy-based commitment mechanism and
is able to authenticate the user’s mobility trace without any cost
of trusted hardware. CLIP maintains the user’s privacy, allowing
the user to submit a portion of his mobility trace with which the
commitment can be also verified. Wireless Access Points (APs) or
co-located mobile devices are used to generate the location proofs.
We also propose a light-weight spatial-temporal trust model to
detect fake location proofs from collusion attacks. The prototype
implementation on Android demonstrates that CLIP requires low
computational and storage resources. Our extensive simulations
show that the spatial-temporal trust model can achieve high
(> 0.9) detection accuracy against collusion attacks.

I. INTRODUCTION

Mobile phones have become immensely popular in recent
years. Location based services have attracted users’ interests
with many popular applications running in the mobile phones.
These applications provide access control, authentication, ad-
vertisements and other important functions based on a mo-
bile user’s location. In addition, there is a growing trend of
continuous location awareness in mobile applications, such
as Geo-fencing [1] and location-based rewards. For example,
companies may want to encourage employees to increase
their physical activities by participating in biking, walking
and running. The employees must be able to show their past
trajectories to the companies. This notion is being used to
reward and encourage employees [2] as well as ensue positive
competition among companies [3].

The mentioned applications require mobile users to prove
successive location points that they visited in past. To achieve
this purpose, users will submit a series of location proofs using
the data drawn from smartphone sensors, such as GPS [4],
accelerometer or magnetometer to claim their presences to a
third-party verifier. For convenience, in this work, we define a
sequence of past location points at corresponding time points
as a mobility trace of the user.

Using GPS for continuously recording the mobility trace
will drain the battery of the smartphone quickly. We need
to consider other energy-efficient sensors. A lot of prior

works have studied on indoor [5]–[7] and outdoor [8]–[10]
localization with low power sensors. However, the sensor data
can be easily faked by malicious users. Therefore, a secure
authentication scheme is required to provide the integrity prop-
erty. Previous works have mainly deployed two mechanisms
to authenticate the sensor data drawn from mobile devices.
First, they use co-located wireless infrastructure (i.e., APs) to
sign users’ GPS data for location proofs [11], [12]. However,
this mechanism becomes infeasible in the scenarios lacking
trusted wireless infrastructure. Second, trusted hardware, such
as a Trusted Platform Module (TPM) [13], [14], is introduced
to sign the sensor data to generate location proofs in users’
devices. Besides the extra cost of hardware, this scheme
introduces additional computational and delay overhead for op-
erating in trusted computing environments [15]. Furthermore,
it’s not flexible to provide differential location privacy levels
controlled by the user due to rigid-cryptographic mechanisms
used in TPMs [16], [17].

A digitally signed proof of user’s location at some partic-
ular time is denoted as a Secure Location Proof (SLP). In this
paper, we present the design and evaluation of a scheme, CLIP,
to provide secure, efficient and Continuous Location Integrity
and Provenance. It mostly relies on common low power sensors
like accelerometer, and leverages existing resources, such as
public road maps, available wireless APs or co-located mobile
devices, for continuous location verification. CLIP aims at
providing the integrity of users’ mobility traces. Without using
any special hardware, it constructs a commitment of a user’s
mobility trace with hash chains or chained Merkle Hash Trees
(MHTs) [18], based on the pre-known trajectory or the only
information of the user’s average mobility speed. Moreover,
CLIP protects users’ location privacy. A mobile user is allowed
to submit the tailored sensor data to provide differential
location privacy granularity for verification. No more location
information could be learned by a verifier than the user intends
to reveal. To target more applications, our CLIP is distributed.
Co-located mobile devices or available wireless APs generate
SLPs for the mobility trace. We also propose a spatial-temporal
trust model to resist collusion attacks that fake SLPs are
generated for fake spatial-temporal information.

The main features of CLIP are as follows:

• An entropy-based commitment mechanism is pro-
posed to provide the integrity of the mobility trace
without any cost of trusted hardware. After generating
the commitment, even the mobile user himself cannot
fabricate or modify his mobility trace.



• CLIP mostly relies on energy-efficient sensors such
as accelerometer to record a user’s mobility trace.
Moreover, the entropy-based commitment mechanism
is light-weight as it is built on symmetric cryptogra-
phy, e.g., hash chains.

• CLIP protects users’ location privacy. Mobile users
are given the control over the differential location
granularity level that is shown to the verifier.

• CLIP defends against collusion attacks. A spatial-
temporal trust model is made use of to detect users
generating forged SLPs with co-located mobile de-
vices.

To the best of our knowledge, this is the first work that
provides a secure protocol for continuous location proofs.
Our simulations show that our spatial-temporal trust model
can achieve over 90% detection accuracy even under high
probability of collusion attacks. Our Android implementation
shows that CLIP is an efficient protocol with fairly low
computational and storage cost.

The rest of the paper is organized as follows. Section II
discusses related work. Section III gives the system model
and security model. In Section IV, we describe the details of
our CLIP protocol. Section V provides a security analysis of
CLIP. In Section VI, we present experimental results. Finally,
a discussion is outlined in Section VII.

II. RELATED WORK

Several location verification schemes have been proposed
to prove the presence of a mobile user at a particular place and
time. These works can be mainly divided into two categories
depending on the network architecture considered: central-
ized [11], [12] and distributed [19]–[21].

Saroiu et al. [11] propose a centralized protocol to create
SLPs by trusted wireless APs. However, their scheme does not
consider how to protect users’ privacy while submitting the
SLPs. To provide privacy protection, Luo et al. [12] make use
of hash function and public key cryptography in their location
proof architecture named VeriPlace. VeriPlace can only detect
location spoofing when the two locations claimed in location
proofs are impossible in space-time domain for an individual.

Distributed protocols rely on collocated users and not
only on some trusted centralized infrastructure. Zhu et al.
[19] propose APPLAUS. To protect the location privacy,
mobile users periodically change their pseudonyms. To further
prevent colluding attackers from generating bogus location
proofs, APPLAUS uses betweenness ranking and correlation
clustering-based approaches. However, periodically changing
pseudonyms introduces high storage and management over-
head for Certificate Authority in APPLAUS. Moreover, their
detection approaches perform well only when the probability
of collusion attack is no more than 0.1.

Wang et al. [20] propose STAMP, where users can obtain
SLPs for different levels of location granularity. To defend
against collusion attacks, they propose an entropy-based trust
evaluation approach based on the recorded location proof
transaction between two users. However, as their SLPs are con-
structed for one location point, their scheme cannot be applied
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Fig. 1. An illustration of system architecture.

to continuous location verification. Besides these works, Hasan
et al. [21] generate the secure location provenance with hash
chains or Bloom filters based on the wireless communication
with wireless AP and co-located users. The OTIT protocol [22]
presents a secure model to design order preserving location
chains with formal propositional logical proofs. Both schemes
mainly use cryptography mechanisms to defend against forgery
of location chronology. However, since there are no detection
mechanisms in these schemes, location information could be
forged by malicious users.

None of these works provision for a secure scheme for
continuous location provenance.

III. SYSTEM MODEL AND SECURITY MODEL

It may not be possible to obtain SLPs from wireless APs in
all the scenarios such as walking outdoors. Thus, we consider a
distributed architecture, i.e., mobile users obtaining SLPs from
nearby peers or available AP.

A. System Model

The architecture of CLIP is illustrated in Fig. 1. We have
five types of parties according to their roles:

• Prover: A prover is one mobile user with a mobile
device, who tries to generate a secure mobility trace,
and obtain SLPs of the mobility trace during his
movement.

• Wireless AP: A wireless AP is trusted and used to
initiate CLIP, which can be chosen by the prover. It
will sign the commitment of the mobility trace for the
prover, and may act as a witness.

• Witness: A witness is one nearby mobile user or
stationary wireless AP, who agrees to create a SLP
when he receives the prover’s request.

• Verifier: A verifier is the entity to whom the prover
intends to claim his presences at continuous location
points at specific time points.

• Certificate Authority (CA): The CA is one semi-
trusted server which manages cryptographic creden-
tials and verifies signatures for other entities.

A prover will communicate with available wireless AP by
Wi-Fi, and with co-located mobile devices over Bluetooth or
Wi-Fi. Sensor data and secure location proofs will be sent to
the verifier by Internet from provers. Each mobile user acts as a



prover/witness just relying on his role at the moment. Verifiers
are considered to use Internet to communicate with CA. Prior
work in indoor and outdoor navigation [5]–[10] has lead to
algorithms for translating sensor readings into movements in
physical plane, and it can be incorporated as is, to our work.

B. Security Requirements

In this paper, we want to provide security assurance for
continuous location verification. To achieve this goal, we need
to construct secure provenance with both users’ mobility traces
based on energy-efficient sensors, and SLPs generated by
witnesses. Therefore, we need to ensure important security
properties of mobility traces as well as SLPs.

Security of mobility trace: 1. Authentication: The verifier
must be able to authenticate or verify the truth of set of
locations claimed by the user. Malicious users should not be
allowed to fake or modify the mobility trace.

2. Privacy: The prover should have his own choice to reveal
a coarse location granularity level to the verifier. Moreover, the
prover’s mobility trace should not be disclosed to CA when
CA verifies the prover’s identity.

Security of SLPs: 1. Anonymity: It will put threats to a
mobile user that giving the identity information to an untrusted
entity. A prover’s identity should be able to be hidden from a
witness. As a witness who is willing to generate a SLP is in
proximity with a prover, the witness must be able to hide his
identity from the prover.

2. Non-transferability: This property requires that a prover
cannot occupy legitimate SLPs for another prover.

3. Non-repudiation: It allows a prover to prove to a third
entity that one witness is accountable for generating the SLP.
Without non-repudiation, a malicious witness can claim that
another entity created the SLP.

C. Threat Model

We assume a user’s identity is connected to a pair of
his public and private keys, which are created when the user
registers with CA. Users will never disclose their private keys
to others. A malicious prover may try to create a fake mobility
trace and fake SLPs without physically existing at these
location points. It includes generating forged mobility trace
by himself, tampering with the location or time information
of his proofs, and stealing another user’s SLPs. In addition, a
malicious prover may also seek to acquire a witness’s identity
during the process of SLPs collection.

A malicious witness may attempt to obtain a prover’s
identity and repudiate a SLP generated by him. A verifier
may want to obtain more location information than the prover
wants to reveal. A wireless AP is considered to be secure
to initiate CLIP, and trusted when it is available to act as a
witness. We consider CA to be semi-trusted. It means that it is
trusted in terms of honestly executing its tasks, i.e., credential
management and signature verification. However, we assume
CA intends to compromise users’ location privacy. Wormhole
attacks [23], attacks via communication links (e.g., jamming
attacks), and DoS attacks are out of the scope of this paper.

TABLE I. LIST OF NOTATIONS

H(M) One-way hashing of M
C(IDp, rp) Commitment to identity IDp with rp
M1|M2 Concatenations of message M1 and M2

E(M,K) Symmetric encryption of M with key K
EPKU

(M) Asymmetric encryption of M with the public key of user U
ESKU

(M) Signature of M with the private key of user U
CMT Commitment of the mobility trace

IV. THE CLIP SCHEME

A. Preliminaries

CLIP uses commitments to construct the secure authentica-
tion scheme and ensure the prover’s privacy. In a commitment
scheme, one entity is able to commit to a message while hiding
it to others, and later disclose the committed value.

In CLIP, the prover commits to a mobility trace using either
a hash chain or chained MHTs depending on knowledge of
mobility path. We present the detailed process of commitment
generation in Section IV-C.

We denote a commitment to the prover’s identity IDp

as C(IDp, rp), where rp is a nonce for randomizing the
commitment. The commitment could be verified after both
IDp and rp are disclosed by the prover. There are many
proposed commitment schemes [24], [25], and CLIP works
with all of them. All cryptographic notations we use are listed
in Table I.

B. Protocol Overview

CLIP relies on energy-efficient sensors to collect the lo-
cation data of a mobility trace. To securely verify continuous
location points, CLIP includes four phases, as shown in Fig. 2.
To formulate this problem, we assume that the prover begins
at L0 at time T0. At a high level, each prover in CLIP divides
its timeline into a sequence of time events, and we call them
mobility intervals. A mobility trace will contain n location
points for n mobility intervals, where n ≥ 1.

1) Commitment Generation: At the beginning of location
L0, a prover chooses his destination, and predicts his mobility
trace of next n mobility intervals based on public road maps,
means of transportation (e.g., vehicle or walking) or gives a
probabilistic estimate of locations for next n mobility intervals.
The prover generates a commitment on the predicted mobility
trace, and submits the commitment to a nearby wireless AP,
who will sign it to ensure that no users can fake or modify
the mobility trace any more. Since the prover can choose an
arbitrary begin time, the assumption of presence of a trusted
wireless AP is justified.

2) SLPs Collection: After generating the commitment, the
prover starts to move as estimated. During a mobility interval
or some mobility intervals, the prover collects SLPs from peers
or available APs. Therefore, the prover finally stores m SLPs
of the full mobility trace.

3) Signature Generation: To protect the integrity of the
mobility trace, the prover will generate the signatures of
sensor data for n mobility intervals. During this process, the
prover may want to tailor his sensor data for location privacy
protection, i.e., only revealing a coarse location point. We
discuss how the prover addresses this issue in Section IV-G.
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4) Continuous Location Verification: In this phase, the
prover is ready to choose sensor data which are necessary
for continuous location verification. He then submits the com-
mitment, chosen/tailored sensor data, relevant signatures, and
selected SLPs to the verifier. Upon receiving the verification
message, the verifier first communicates with CA to verify the
identity of AP, prover and witness. It then verifies and evaluates
the location points provided by the prover.

C. Commitment Generation

We begin by assuming that a prover stands at L0, near a
trusted wireless AP. First, we consider a simple case that the
prover knows the clear mobility trajectory for next n intervals
according to public road maps, which could run an application
of navigation in his mobile phone. Next, we consider the case
when prover does not get the information of trajectory, and
just decides his average mobility speed based on the means of
transportation and possible directions.

1) Pre-known Mobility Trace: The prover generates a claim
or commitment to the trajectory (L) L1, ...Ln he plans to take.
As shown in Fig. 3, the prover first generates the hash of
each location point: Fi = H(Li|Ri|Ti), 0 < i ≤ n, where Ri
is a random value, and Ti is the expected time of Li in the
predicted mobility trajectory. Then, the prover generates hash
chains as follows: Sn = H(Fn), and

Si = H(Fi|Si+1), 1 ≤ i ≤ n− 1. (1)

Finally, the prover publishes his commitment for the n
mobility intervals:

CMT = H(S1). (2)

2) Un-known Mobility Trace: When the trajectory is un-
known, we try to create an estimated path with set of proba-
bilities. For example, a user biking at 10 mph will have specific
probabilities of physical movement in a time epoch or mobility
interval. His physical movement is limited to the length of
interval and speed. Thus, it is possible to generate a movement
prediction table (PTi) where each entry presents one possible
movement between the mobility interval i− 1 and i.

To compress the amount of the movement information,
the prover will use a local coordinate to express his future
positions [26]. We set the origin of the local coordinate at the

S1 S2 Sn-1 SnCMT

F1 F2 Fn-1 Fn

L1 L2 Ln-1 Ln

...

...

Si = H (Fi | Si+1)

Fi = H (Li |Ri |Ti)

Ri is the random number

Fig. 3. Commitment generation for a pre-known mobility trace.

beginning position L0. A pair of orthogonal vectors (i.e., ~∆x
and ~∆y) are also chosen, the scalar of which can be defined
based on a desired level of positioning accuracy. For example,
| ~∆x| and | ~∆y| can be decided to 2 meters for accurate
localization in indoor [5] and some outdoor environments
[4], [9], [26]. The prover’s future location Li in the mobility
interval i can be presented as: Li = L0 +ai ~∆x+bi ~∆y, where
ai and bi are rounded to integers. Therefore, every movement
from the interval i− 1 to the interval i is shown as:

Di = Li − Li−1 = (ai − ai−1) ~∆x+ (bi − bi−1) ~∆y, (3)

which can be given by a pair of integers (ai−ai−1, bi− bi−1)
for short. PTi collects all the possible results of Di, which
changes with time, location and mobility speed. By combining
several prediction tables, the prover could model his future
location not only in this mobility interval but also in many
mobility intervals.

With movement prediction tables, the prover generates a
commitment CMT using the structure of chained Merkle Hash
Trees from T0 to Tn. A MHT is a binary tree structure in
which each leaf node is assigned a value and an inner node is
assigned the hash of its two children. As shown in Fig. 4, for
an entry Dik in the movement prediction table, there is a leaf
labeled as hik = H(Dik|Rik|Ti) in the MHT, where Rik is a
random value.

The chained MHTs contain n MHTs linked chronologi-
cally, and the chain’s anchor is the commitment CMT . We
present the resulting tree structure in Fig. 4. The root of a
single MHT is denoted as Si, and its two children as li and
fi. In the chained structure,

Si = H(li|fi|Si+1), 1 ≤ i ≤ n− 1. (4)

Finally, the commitment is computed as:

CMT = H(S1). (5)

After generating the commitment, the prover starts to
encrypt a message MI = {L0|T0|CMT } with a key marked
as r0. Then, the prover sends a message MQ|r0 to a nearby
AP (denoted as AP0):

MQ = C(IDp, rp)|E(MI, r0)|ESKp(H(E(MI, r0))),

where, IDp is the prover’s identity, rp is a random nonce. For
an un-known mobility trace, prover also adds the information
of local coordinates, ~∆x and ~∆y, into MI .

Upon receiving the message MQ, AP0 checks the prover’s
initial location L0 and time T0. The physical proximity of
prover can be verified by wireless AP (or witness in later
sections) with distance bounding protocols [20], [23], [27]. For
brevity, we do not consider it in this paper. If AP0 decides to
accept the prover’s request, it signs MQ with its private key
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, encrypts it with the public key of CA, and sends back

a message MR to the prover:

MR = EPKCA
(IDAP0 |MQ|ESKAP0

(H(MQ))). (6)

D. SLPs Collection

After receiving MR, the prover begins to move from loca-
tion L0 to location Ln. The sensors in his phone will collect the
location parameters, mainly the acceleration readings (denoted
as {Ãp}Tn−T0

).

During the movement, the prover starts the process of SLPs
collection, as shown in Fig. 1. We determine a proof collection
interval based on the battery of a mobile phone, the mobility
speed, or the density of witnesses. In one proof collection
interval, the prover broadcasts a SLP request (denoted as SQ)
to other nearby wireless APs or mobile devices, and waits for
replies. For example, for the jth proof collection interval, the
prover constructs SQj as follows:

SQj = C(IDp, rp)|Tj , 0 < j ≤ m, 0 < m ≤ n,

where Tj is the current time for the collection event.

When a witness receives a SQj , he makes a decision if he
accepts the request. If the witness accepts it, he creates a SLP
response message (denoted as SRj,w), including the encrypted
location proof (denoted as IPj,w):

SRj,w = EPKCA
(IDw|Pj,w|ESKw(H(Pj,w))), (7)

Pj,w = IPj,w|SQj = E(Lj , rj,w)|C(IDp, rp)|Tj , (8)

where IDw is the identity of the witness, Lj is the current
location, rj,w is a random nonce used to encrypt Lj .

A SLP is then created with a SR and a random nonce. For
the jth proof collection interval, we assume that there are w
SLPs collected from w witnesses:

SLPj = (SRj,1|rj,1, · · · , SRj,w|rj,w). (9)

Finally, the prover locally stores all these SLPs of the
mobility trace: {SLP1, SLP2, · · · , SLPm}.

E. Signature Generation

The verifier may request prover for continuous loca-
tion verification over a sequence of locations, such as
Ld−t, Ld−t+1, · · · , Ld from time Td−t to Td, 0 ≤ d − t ≤
d ≤ n. After receiving the request, the prover prepares sensor
data {Ãp}Td−T0 with corresponding mobility interval d, and
generates their signatures to guarantee authenticity.

1) Pre-known Mobility Trace: For mobility interval d,
being at location Ld at time Td, the prover publishes random
values {Rc}0<c≤d generated for each location point during
commitment generation, and the hash value Sd+1 as signatures
of sensor data collected from T0 to Td. Let Sn+1 = 0, and we
format the signatures as:

Υ0,d = {R1|R2| · · · |Rd|Sd+1}. (10)

2) Un-known Mobility Trace: For mobility interval d,
based on raw sensor data, the prover first locates the leaf node
corresponding to the entry of PTc in chained MHTs, where
0 < c ≤ d . The prover then gets the random value and off-
path nodes of this leaf as signatures. We define off-path nodes
as the sibling nodes on the path from this leaf node to the root
of the MHT.

For example, in Fig. 4, if the prover moves to L1 = L0 +
D12, associated with the entry D12 of PT1 at time T1, the off-
path nodes include h11 and f1. For L1, the prover publishes
the random nonce R12 along with the off-path nodes as the
signature: ξ1 = {R12|h11|f1}.

Similarly, the signatures of sensor data recording the mo-
bility trace from T0 to Td should include {ξc}0<c≤d, and the
hash value Sd+1. Let Sn+1 = 0, and we format the signatures
as:

Υ0,d = {ξ1|ξ2| · · · |ξd|Sd+1} (11)

F. Continuous Location Verification

1) mCLP Verification: Prover: Based on recorded sensor
data (e.g., {Ãp}Td−T0 ), the prover generates the signatures
(e.g., Υ0,d) in the last step. To further provide credibility for
the verified location points, he needs to find the collected SLPs
in or near the mobility interval d. In our setting, the prover
decides to choose the SLPs generated by witnesses in zth proof
collection interval if Tz ∈ [Td−t − δ, Td], where δ is the time
parameter set by the prover.

Therefore, to verify his location points, the prover includes
the sensor data, MR, signatures and SLPs in a message of
continuous location proofs for verification (denoted as mCLP )
as follows:

mCLP = EP |SLPz|IDp|rp|r0|Np|Ld−t|...|Ld|MR|Υ0,d,

where EP = EPKCA
(IDp|Pp|ESKp

(H(Pp))) and Pp =

E({Ãp}Td−T0 , Np). In Pp, sensor data are encrypted by the
prover with a random nonce Np.

Verifier: When the verifier receives mCLP , it first needs
to authenticate the identity of AP, the prover and the witness
with the assistance of CA. The verifier then constructs an
identity verification request (denoted as IDReq) to CA:

IDReq = EP |SRz,1| · · · |SRz,w|IDp|rp|MR, (12)



where SRz,1, · · · , SRz,w are contained in SLPz .

CA: Upon receiving IDReq, CA decrypts these messages
and then performs the verification. It is responsible for check-
ing the signatures of the prover, witness and wireless AP with
their public keys, and checking that C(IDp, rp) could be de-
committed with rp and IDp.

If IDReq fails the verification, CA replies to the verifier
with an identity verification response (denoted as IDRes)
using a one-bit notification. Otherwise, CA extracts encrypted
commitment from MR, sensor data from EP , location proofs
from SRz,1, · · · , SRz,w, and sends IDRes back to the verifier
along with its signature:

IDRes = E(MI, r0)|Pp|IPz,1| · · · |IPz,w|Tz, (13)

where IPz,1, · · · , IPz,w are extracted from
SRz,1, · · · , SRz,w, respectively. Moreover, if there is an
IP generated by a wireless AP, CA notices the verifier with
one more bit.

Verifier: After receiving IDRes, the verifier decrypts MI ,
and get CMT , L0 and T0. The verifier now performs the
following operations:

• Movement Recovery: By decrypting Pp with Np,
the verifier gets raw sensor data {Ãp}Td−T0

, and thus
recovers a sequence of movements {Dv}0<v≤d.

• Signature Verification: According to the movements
{Dv}0<v≤d and CMT , the verifier starts to verify the
signatures Υ0,d. For a pre-known mobility trace, the
verifier reconstructs the location Lv at the mobility
interval v, with L0 and the movements {Dκ}0<κ≤v
recovered from the raw sensor data. Sv is then com-
puted for Lv , based on Sv+1 and Rv obtained from
Υ0,d. Given the root CMT of hash chains, the verifier
checks whether Equation (1) holds by repeatedly using
the hash function. For an un-known mobility trace,
similarly, the verifier checks the signature of the move-
ment Dv according to ξv and Sv+1 for the mobility
interval v. Given the root CMT of the chained MHTs,
it checks whether Equation (4) holds by repeatedly
using the hash function.

• IP Opening: If the sensor data have passed the
verification, the verifier opens IPz,1| · · · |IPz,w from
IDRes. It now decrypts them with rz,1| · · · |rz,w
contained in SLPz of mCLP , and obtains the lo-
cation information of Lz at Tz . An inconsistent Lz
invalidates the corresponding IP .

2) Collusion Detection: Based on the collected IPs, the
verifier starts a trust evaluation and obtains a collusion detec-
tion result of location Ld−t, · · · , Ld. The intuition is that, with
the commitment of the mobility trace, if the prover stood at
Lz seen by one trusted witness or a number of witnesses at
time Tz , the prover has a high probability at Ld−t, · · · , Ld
near Lz at time Td−t, · · · , Td during this movement. Thus, we
consider three factors that affect the trust value. First, an IP
is generated by a wireless AP or mobile device. We define a
weighting parameter (denoted as λ) for the witness. Second,
we measure the distance between Lz and Ld−t, · · · , Ld. At
last, time is regarded as one critical factor, since location proofs
collected at expected time are usually the most accurate.

Mobility 
Trace

L0

Timeline

T0 Td

...
Tu

...

Ld(3) Ld(1)Ld(2)
Ld(g)

Fig. 5. Differential location granularity level for privacy protection.

We define the trust ΓL based on the collected IPs:

ΓL = λ · e−|Ld−Lz|·α · e−δ·β , (14)

where α is defined as the location parameter that controls the
distance factor’s weight in the system, and β is defined as the
time parameter that controls the time factor’s weight. Finally,
the verifier makes a decision by comparing ΓL with a trust
threshold, which is denoted as Θ.

These IP s may contain other factors that affect the trust
of the verified locations. In this paper, only a general solution
is given based on the model that we propose. For a specific
application, it is also possible to consider one or more of the
factors. System designer could easily modify our trust model
according to applications’ needs.

G. Privacy Discussion

To protect location privacy, the prover may only want to
submit tailored sensor data to reveal the verifier a coarser
location granularity level. Now, we discuss how to address
this privacy issue.

For each location, we consider there are g location granu-
larity levels. We denote them as Ld(1), Ld(2), ..., Ld(g) for
location Ld at time Td. Ld(1) indicates the finest location
granularity level, such as an exact geographic coordinate.
Ld(g) indicates the coarsest location granularity, such as a
city.

To show differential location granularity level, the prover
tailors the raw sensor data after he receives the location
verification request. It is observed that the sensor data farther
away the time Td is harder to estimate the exact location of Ld.
If the prover tailors the sensor data around Td, a fine location
granularity level of Ld is shown.

As illustrated in Fig. 5, to only disclose a coarse location
granularity level Ld(3), the prover extracts his sensor data as
{Ãp}Tu−T0

, where 0 < u < d. To generate the signature of
Ld(3), the prover performs the phase of signature generation
with the mobility interval u instead of d, to authenticate
{Ãp}Tu−T0

. The process of continuous location verification
performed by the verifier is the same as before.

To protect the privacy of mobility trace, the prover may
also want to hide portion of his trajectory (e.g., from L0 to Lu)
from the verifier. In our CLIP, when there are SLPs generated
by wireless APs during the prover’s movement, we find that
the prover could securely tailor his mobility trace arbitrarily if
the submitted trajectory starts or ends with a trusted location,
which is in proximity with an AP. We will have a detailed
discussion of this issue in our future work.



V. SECURITY ANALYSIS

In this section, we analyze and prove that CLIP can achieve
the mentioned security properties.

Proposition 1 Assuming that hash chains are secure, an at-
tacker or even a prover cannot forge legitimately authenticated
data after generating the commitment of the mobility trace.
Let us assume that an attacker tries to create a new location
point L′η instead of true location Lη such that L′η 6= Lη but
C ′MT = CMT . We will show that this is possible only when
there is a collision in hash function. For a pre-known mobility
trace, the attacker uses a structure similar to Fig. 3 to construct
hash chains for C ′MT . Let F ′η = H(L′η|Rη|Tη). If Fη = F ′η ,
there is a collision of hash function.

Else, let S′η = H(F ′η|Sη+1). If Sη = S′η , then F ′η|Sη+1 and
Fη|Sη+1 form another collision of hash function H; otherwise,
we have Sη 6= S′η . Similarly, we can discuss for η − 1, η −
2, · · · , 1. The last assertion would be S1 6= S′1. Since C ′MT =
CMT , a collision of hash function must exist at some step.
The proof for an un-known mobility trace is similar to the
pre-known mobility trace, and it is skipped for the sake of
brevity.

Proposition 2 The location granularity level that a verifier
obtains from a prover is the granularity level that he wants to
disclose to the verifier.
To show one coarse location of Td, the prover sends the
verifier his tailored sensor data {Ãp}Tu−T0

with signatures
Υ0,u, where 0 < u < d. The signatures only include the hash
values of location points from Tu to Td in Su+1. Due to the
one-way property of hash function, the verifier cannot learn
any more location information from Lu to Ld.

Proposition 3 No location information can be obtained by CA
from IDReq.
Without knowing Np, r0 and rz,1| · · · |rz,w, CA cannot decrypt
any location information from an IDReq. It can authenticate
the identity of prover, witness and wireless AP, but learn
no location of the prover and the witness with the IDReq.
Thus, CA has no access to the mobility trace but only to the
encrypted location values.

Proposition 4 A prover/witness cannot learn about the iden-
tity of a witness/prover.
During the phase of SLPs collection, the identity of the prover
IDp is committed as C(IDp, rp). As the witness does not
know rp, he cannot obtain IDp. In a SR, the identity of the
witness IDw is encrypted with PKCA. Since CA’s private
key is not owned by the prover, he cannot decrypt the SR and
acquire IDw.

Proposition 5 For different events of SLPs collection, a wit-
ness cannot link SQs generated by the same prover.
For different mobility traces, a prover may use different rp.
Even a number of SQs from the same prover are received by
a witness at different time points, the witness cannot obtain
any more information by linking these SQs.

Proposition 6 For different events of SLPs collection, a prover
cannot link SLPs sent by the same witness.
A witness may choose different rj,w for different SRj,w.
Moreover, a SR created by the witness is encrypted with

TABLE II. SIMULATION PARAMETERS

Parameter Value Parameter Value

Location parameter α 0.002 Time parameter β 0.002
Trust threshold Θ 0.6 Maximum time gap δ 10
Proportion of attackers patt 2% Prob. collusion attacks pcol 0.2
Max. distance (φw) 10 Mean (mobile devices) (µm) 5
S.d. (mobile devices) (σm) 2 Mean (APs) (µa) 1
S.d. (APs) (σa) 0.2

PKCA. Even a number of SLPs from the same witness have
been received by a prover at different time points, the prover
cannot get any more information by linking them.

Proposition 7 A SLP generated for a prover cannot be used
by another prover.
If a prover gives a verifier his own IDp and another prover’s
SLP, CA is able to detect that IDp in the IDReq from the
verifier does not match C(ID′p, r

′
p) in the SR.

Proposition 8 The location or time information cannot be
modified in a SLP.
The spatial-temporal information is included in each P and
signed by a witness’s private key, shown as ESKw(H(P )).
As others do not own the witness’s private key, they cannot
change the location or time information in the SLP.

Proposition 9 A SLP created by a witness cannot be repudi-
ated.
According to the assumption that a user will never disclose
his private key, his signature will guarantee the property of
non-repudiation of a SLP.

VI. EXPERIMENTS AND RESULTS

A. Simulation

1) Simulation Setup: We implement the spatial-temporal
trust model with C simulation. In our simulation, we test
the number of 1000 users, who are moving with a random
mobility model. The proportion of attackers among the users
is changed from 1% to 10%. We randomly select a prover
among all users, who collects SLPs from nearby witnesses. We
assume the distribution of mobile devices follows a Gaussian
distribution with mean value of µm and standard deviation
of σm, and the distribution of APs with mean value of µa
and standard deviation of σa. The distance between a witness
and the prover is modeled by a uniform distribution U(0, φw).
Whenever a prover needs to make a fake SLP, he will try
to communicate with colluding witnesses through a possible
hidden channel. We also assume the prover will intelligently
choose SLPs when there are colluders as his witnesses.

The default parameters used in CLIP are listed in Table II.
We use accuracy as the performance metric, which is defined
as the mean of true positive (TP) and true negative (TN) for
classification algorithms. Each data point is a result based on
10000 SLPs collection events.

2) Simulation Results: First, we conduct extensive tests
to check the accuracy with different choices of trust model
parameters, maximum time gap δ and trust threshold Θ. The
results are shown in Fig. 6. As the location parameter α
and time parameter β work similarly, we change α and β
together and see the impacts. With a large value of δ, accuracy
decreases since it implies that attackers may take more time
for successful collusion, and the malicious user for forging
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Fig. 6. Simulation results for the trust model: (left) shows the accuracy under different parameters; (middle) shows the accuracy under different witnesses;
(right) shows the accuracy under different attack probability.

possible mobility trace. With a different choice of δ, we have
to set a different Θ to achieve a high accuracy rate. From
these simulations, we choose Θ = 0.6 and δ = 10 because
this couple produces the best result.

Second, we study how the number of witnesses affects
the detection accuracy. We change the values of µa, µm and
σm. The results show that the accuracy level improves when
we have more mobile devices as witnesses involved in the
events of SLPs collection. It is worthy noting that the detection
accuracy is further enhanced when more SLPs are generated
by wireless APs.

Finally, we investigate our trust model’s performance un-
der different proportion of attackers patt and probability of
collusion attacks pcol. It is evident that our trust model is
resistant to collusion attacks and has a very high accuracy.
For patt = 5% and pcol = 0.4, the model has accuracy above
0.9. The accuracy is high (> 0.9) even for pcol > 0.8, when
patt < 2%.

B. Prototype Implementation

1) Implementation Setup: A prototype application is im-
plemented on the Android platform with Java. We perform the
experiments based on two Samsung Exhibit II devices, which
are equipped with 1GHz chipset, 1GB ROM, 512MB RAM,
accelerometer, GPS, compass, Bluetooth, Wi-Fi, and running
Android. We use Bluetooth for communication between two
mobile devices. SHA1 is used as the one-way hash function
and AES with a 128-bit key as symmetric key encryption
algorithm. We use RSA as the public key encryption algorithm,
and deploy DSA for authentication.

CLIP senses the user’s movement conditions by using low
power sensors, such as accelerometer and compass. Mean-
while, the raw sensor data are stored on the user’s mobile
phones for offline data analysis, and then used to recover
the mobility trace. We study the computational time as the
indicator of energy consumption, and storage resources that
are required for CLIP implementation. As the verifier and CA
that do mCLP verification are servers with high computa-
tional capacity, we concentrate on the phases of commitment
generation, SLPs collection, and signature generation that are
run on mobile devices. Each of the results is obtained on 10
runs of test. During the test, background processes were not
allowed to run in parallel.

2) Implementation Results: To generate the commitment of
the predicted mobility trace, we should consider the accuracy
of localization according to these low power sensors. This is

because more noise would be added in a finer location repre-
sentation than useful information. In our implementation, we
set the scalar of each vector to be 2 meters. We experimented
with both the pre-known and un-known mobility trace. For
the un-known mobility trace, three kinds of average mobility
speed are chosen to represent driving, cycling and walking: 80
mph, 15 mph and 4 mph, respectively. We first evaluate the
computational time and storage cost with different layers of
MHTs. The duration of these traces is 15 minutes. The time is
less than 10 seconds in terms of cycling and walking activities
on a smartphone. With 5-Layer MHTs, Fig. 7 also shows the
overhead for commitment generation under different duration
of mobility trace. If the trajectory is clear, a commitment
can be instantly created. For an un-known mobility trace,
we confirm CLIP reduces the computation complexity from
O(2QLn) to O(n · 2QL), where QL is the layer of MHTs and
n is the duration of the mobility trace.

In the process of SLPs collection, we use the commitment
scheme proposed in [24] for identity commitment. We examine
the impact of communication distance and key size on the
application’s performance. As we use both DSA and RSA
in the implementation, three key size pairs are tested. We
find that the user spends less than 0.5 second to generate
a SLP with 3072-bit RSA key and 1024-bit DSA key (See
Fig. 8 for other key size). We also investigate the overhead
of signature generation for the mobility trace of 15 minutes.
Fig. 9 shows that the user can fast generate the signatures,
and take almost the same computational cost under different
verification requests.

VII. DISCUSSION

In this paper, we design CLIP with the goal of providing
both security and privacy assurance for verification of contin-
uous location points visited by a mobile user. To achieve this
purpose, CLIP constructs secure provenance with both users’
mobility traces based on energy-efficient sensors in mobile
phones, and SLPs generated by co-located wireless APs or
mobile devices. To secure the mobility trace, CLIP constructs a
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Fig. 8. Computational time for SLPs
collection.
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Fig. 9. Computational time for sig-
nature generation.
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Fig. 7. Commitment generation under different layer of MHTs and different duration of mobility trace. The default value for MHTs is 5-Layer, and the duration
of mobility trace is 15 minutes.

commitment with light-weight hash chains or chained MHTs.
Moreover, CLIP provides the properties of anonymity, non-
repudiation and non-transferability of a special location point
with SLPs. To simultaneously protect users’ location privacy,
CLIP enables mobile users to disclose differential location
granularity level. A spatial-temporal trust model is used to
detect the collusion attacks.

Our analysis and simulation results indicate that CLIP
is be able to achieve the pre-defined security and privacy
requirements, and resilient to collusion attacks. The implemen-
tation on Android shows that low computational and storage
overhead is required for CLIP.

In this work, we construct MHTs using average mobility
speed of user. It is possible to improve the construction of
MHTs based on many factors, such as user’s current location,
user’s past trajectory, time-of-day and traffic. In the event of
SLPs collection, collection of more SLPs leads to a more
accurate results. Continuously sensing for P2P connections
for full mobility trace may be a time costly operation. This
can be reduced by triggering sensing operation based on the
discharging state of the mobile phone.

In the future, we will design SLPs with differential location
granularity levels in witness endorsements, to enable more
variety of applications. In CLIP, APs are not mandatorily
required after the prover starts to move, although our trust
model could be further improved with the presences of APs.
In future, we will consider how the distribution of wireless
infrastructure affects the trust values.

ACKNOWLEDGMENT

This paper was supported by China Scholarship Council
(No. 201306230026). We would like to thank the anonymous
reviewers for their helpful comments.

REFERENCES

[1] A. LaMarca and E. De Lara, “Location systems: An introduction to the
technology behind location awareness,” Synthesis Lectures on Mobile
and Pervasive Computing, vol. 3, no. 1, pp. 1–122, 2008.

[2] http://statenews.com/article/2014/11/msumovesu.
[3] http://www.bizjournals.com/louisville/news/2014/11/25/local-startup-

challenges-your-company-to-get.html.
[4] B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins, “Global posi-

tioning system. theory and practice.” Global Positioning System: Theory
and Practice, Springer Verlag, 1997.

[5] F. Li, C. Zhao, G. Ding, J. Gong, C. Liu, and F. Zhao, “A reliable
and accurate indoor localization method using phone inertial sensors,” in
Proceedings of ACM UbiComp, pp. 421–430, 2012.

[6] H. Wang, S. Sen, A. Elgohary, M. Farid, M. Youssef, and R. R.
Choudhury, “No need to war-drive: unsupervised indoor localization,”
in Proceedings of MobiSys, pp. 197-210, 2012.

[7] N. Roy, H. Wang, and R. R. Choudhury, “I am a smartphone and i can
tell my users walking direction,” in Proceedings of ACM MobiSys, 2014.

[8] H. Han, J. Yu, H. Zhu, Y. Chen, J. Yang, Y. Zhu, G. Xue, and M. Li,
“Senspeed: Sensing driving conditions to estimate vehicle speed in urban
environments,” in Proceedings of IEEE INFOCOM, 2014.

[9] H. Wang, Z. Wang, G. Shen, F. Li, S. Han, and F. Zhao, “Wheelloc:
Enabling continuous location service on mobile phone for outdoor
scenarios,” in Proceedings of IEEE INFOCOM, pp. 2733–2741, 2013.

[10] J. Han, E. Owusu, L. T. Nguyen, A. Perrig, and J. Zhang, “Accomplice:
Location inference using accelerometers on smartphones,” in Proceedings
of IEEE COMSNETS, 2012.

[11] S. Saroiu and A. Wolman, “Enabling new mobile applications with
location proofs,” in Proceedings of ACM HotMobile, 2009.

[12] W. Luo and U. Hengartner, “Veriplace: a privacy-aware location proof
architecture,” in Proceedings of ACM GIS, pp. 23–32, 2010.

[13] A. Dua, N. Bulusu, W.-C. Feng, and W. Hu, “Towards trustworthy
participatory sensing,” in Proceedings of HotSec’09, 2009.

[14] P. Gilbert, L. P. Cox, J. Jung, and D. Wetherall, “Toward trustworthy
mobile sensing,” in Proceedings of ACM HotMobile, pp. 31–36, 2010.

[15] H. Liu, S. Saroiu, A. Wolman, and H. Raj, “Software abstractions for
trusted sensors,” in Proceedings of ACM MobiSys, pp. 365–378, 2012.

[16] P. Gilbert, J. Jung, K. Lee, H. Qin, D. Sharkey, A. Sheth, and L. P. Cox,
“Youprove: authenticity and fidelity in mobile sensing,” in Proceedings
of ACM SenSys, pp. 176–189, 2011.

[17] S. Saroiu and A. Wolman, “I am a sensor, and i approve this message,”
in Proceedings of ACM HotMobile, pp. 37–42, 2010.

[18] R. C. Merkle, “Secrecy, authentication, and public key systems,” PhD
dissertation, Stanford Univ., 1979.

[19] Z. Zhu and G. Cao, “Toward privacy preserving and collusion resistance
in a location proof updating system,” IEEE Transactions on Mobile
Computing, vol. 12, no. 1, pp. 51–64, Jan. 2013.

[20] X. Wang, J. Zhu, A. Pande, A. Raghuramu, P. Mohapatra, T. F. Ab-
delzaher, and R. K. Ganti, “Stamp: Ad hoc spatial-temporal provenance
assurance for mobile users.” in Proceedings of IEEE ICNP, 2013.

[21] R. Hasan and R. Burns, “Where have you been? secure location
provenance for mobile devices,” CoRR, 2011.

[22] R. Khan, S. Zawoad, M. M. Haque, and R. Hasan, “Otit: towards
secure provenance modeling for location proofs,” in Proceedings of ACM
ASIACCS, pp. 87–98,2014.

[23] Y.-C. Hu, A. Perrig, and D. B. Johnson, “Wormhole attacks in wireless
networks,” IEEE Journal on Selected Areas in Communications, vol. 24,
no. 2, pp. 370–380, Feb. 2006.

[24] S. Halevi and S. Micali, “Practical and provably-secure commitment
schemes from collision-free hashing,” in CRYPTO, pp. 201–215, 1996.
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