
Efficient Data Capturing for Network Forensics in
Cognitive Radio Networks

Shaxun Chen
†
, Kai Zeng

‡
, Prasant Mohapatra

†

†
Department of Computer Science, University of California, Davis, CA 95616

‡
Department of Computer and Information Science, University of Michigan - Dearborn, Dearborn, MI 48128

sxch@ucdavis.edu, kzeng@umich.edu, pmohapatra@ucdavis.edu

Abstract— Network forensics is an emerging interdiscipline used

to track down cyber crimes and detect network anomalies for a

multitude of applications. Efficient capture of data is the basis of

network forensics. Compared to traditional networks, data cap-

ture faces significant challenges in cognitive radio networks. In

traditional wireless networks, usually one monitor is assigned to

one channel for traffic capture. This approach will incur very

high cost in cognitive radio networks because it typically has a

large number of channels. Furthermore, due to the uncertainty of

the primary user’s behavior, cognitive radio devices change their

operating channels dynamically, which makes data capturing

more difficult. In this paper, we propose a systematic method to

capture data in cognitive radio networks with a small number of

monitors. We utilize incremental support vector regression to

predict packet arrival time and intelligently switch monitors be-

tween channels. We also propose a protocol which schedules mul-

tiple monitors to perform channel scanning and packet capturing

in an efficient manner. Monitors are reused in the time domain

and geographic coverage is taken into account. The real-world

experiments and simulations show that our method is able to

achieve the packet capture rate above 70% using a small number

of monitors, which outperforms the random scheme by 200%-

300%.

Keywords— Network forensics, cognitive radio network, efficient

data capture

I. INTRODUCTION

Network forensics is a discipline that monitors and ana-

lyzes network traffic, aiming at detecting malicious network

activities and preserving network data as evidences. It is

widely used in preventing attacks, tracing down criminals,

diagnosing the network, etc. Although it is a newly emerged

research area, network forensics attracts a great attention from

both network researchers and law enforcement practitioners.

Network forensics is composed of two steps: data capture

and data analysis. Data capture is the basis of network foren-

sics, on which the quality of data analysis largely depends.

However, data capture is not as easy as it seems, especially in

wireless networks. Channel fading, signal coverage and inter-

ference, mobility of transceivers and ever-increasing data rate

make data capture a non-trivial task.

Existing work on network forensics as well as data capture

is studied in the context of traditional networks. As an emerg-

ing type of network, cognitive radio network is a promising

technology to mitigate the scarcity of wireless spectrum.

However, in cognitive radio networks, data capture faces addi-

tional challenges.

First, according to the Federal Communications Commis-

sion (FCC)’s regulation, unlicensed users should evacuate

immediately when an incumbent user appears, which means

unlicensed users may frequently change their working chan-

nels. Second, cognitive radio networks have a much wider

spectrum than other wireless networks. For example, the white

space is from 50MHz to 700MHz approximately. Assuming a

channel width of 6MHz (the same as the TV channel-width in

U.S.), there can be about one hundred available channels. If

we capture the traffic of cognitive radio networks in the tradi-

tional way, one monitor should be tuned to listen to one chan-

nel. That is, we will need one hundred monitors, making the

cost prohibitively high.

In this paper, we propose a novel method, which intelli-

gently switches monitors between different channels to capture

the network data spread over a large number of channels with

a small number of monitors. Our method is based on two ob-

servations. First, although a cognitive radio network may have

a large number of channels, not all of them are busy at the

same time. Second, for a single channel, there are always in-

tervals between packets. Furthermore, a network forensics

system usually does not require all the packets on the channel;

instead, they capture a certain subset of the packets based on

their specific needs.

Based on these observations, we propose to predict the ar-

rival time of the next packet of interest (PoI) by using incre-

mental support vector regression, and then switch monitors

between different channels according to our prediction ap-

proach. To the best of our knowledge, this is the first work

investigating data capture for network forensics in cognitive

radio networks, and also the first effort to monitor multiple

channels with fewer monitors by exploiting the prediction of

packet arrival time.

We conduct extensive experiments and simulations. The

results demonstrate that given a large number of channels, we

can achieve a high packet capture rate with a small number of

monitors. Our method outperforms the random scheme by

200%-300%.

The rest of this paper is organized as follows. Section II

discusses related work. Section III states the problem, and

Section IV introduces our method for packet arrival time pre-

diction. In Section V, we present the protocol for efficient data

capture in cognitive radio networks. Section VI evaluates our

work. Section VII discuses several related technical issues and

Section VIII concludes the paper.

II. RELATED WORK

Data capture techniques for network forensics can be cat-

egorized into two types: catch-it-as-you-can and stop-and-

listen [1]. The former tries to capture everything on the chan-

nel and requires larger amounts of storage; the latter selec-

tively captures packets and puts higher pressure on the CPU

performance. Wireshark, WinPcap, TCPdump, etc. are the

tools commonly used for data capture. These tool fall into the

first category, but they are also capable of capturing certain

packets based on predefined filters.

Efforts have been made to effectively capture packets in

high speed networks [2] [3]. Siles studied the performance

related issues and encryption-overcoming of data capturing in

wireless networks [4]. Geiger et al. [5] pointed out that a mon-

itor can capture the packets from adjacent channels in WLAN

when the data rate is low.

In almost all the existing studies, including the work men-

tioned above, one monitor is used for capturing data on one

channel (or link). Choong proposed to use a single software

defined radio device to sample multiple channels in ZigBee

networks [6]. This feasibility is based on the fact that the

maximum channel width of the software defined radio can

cover multiple ZigBee channels. However, their approach only

works when the modulation rate of the channels being sampled

is very low (250kbps). It is acceptable for ZigBee networks,

but far from practical for general data capturing. When the

modulation rate goes higher, the sampling and computation

overhead quickly exceeds the hardware processing ability.

Besides, the channel width of ZigBee is only 2MHz. For other

types of wireless networks, even a software defined radio de-

vice cannot cover many channels at the same time. In contrast,

our method reuses monitors in the time domain, therefore is

not constrained by the modulation rate or the bandwidth of the

channel being watched.

Chhetri et al. proposed to schedule sniffers among multiple

channels [19], but the goal is to monitor the appearance of

wireless users, which is much easier compared to traffic cap-

turing. Moreover, in their work, a pre-known transmission

probability is assumed for each user; the sniffers are scheduled

without considering the real time user behavior.

Arora et al. employed multi-armed bandit to formalize the

multi-channel monitoring problem [20]. Similar as [19], this

method is only good for transient activities and cannot be used

to capture packets. Specifically, a slot system is assumed in

[20], but they do not care the length of the slot. It is possible

that during a slot there come multiple packets or a packet lasts

across multiple slots. Besides, the channel switching overhead

is not considered in this work.

Time series prediction has been well studied for decades.

Autoregressive moving average models and Kalman filter are

most widely used, but they both require that the process being

predicted is linear and stationary. Machine learning techniques,

such as support vector machine and neural network, do not

have such restrictions [7], but they are usually not fast enough

for online prediction. Besides, these works are dedicated to

predict continuous values; they may experience large errors

when predicting a binary variable (in our case, appearance or

disappearance of packets of interest).

Phit et al. proposed to predict packet arrival time using

neural networks [8]. Historical data of packet inter-arrival time

are used as the input. However, this method is only suitable for

offline analysis, because the training phase takes considerably

long time.

A preliminary version of this work is reported in [21]. In

this paper, we further consider the geographic coverage of

wireless signals, so that our method can be easily applied to

practical scenarios. The channels being watched are not re-

quired to be co-located, and monitors are scheduled according

to their workload as well as their locations and listening range.

III. PROBLEM DEFINITION

A. Background

In June 2009, the FCC released the analogue TV broad-

casting channels (54MHz - 698MHz, often referred to as white

space). Unlicensed (secondary) users are allowed to access the

spectrum opportunistically, but they must evacuate immedi-

ately upon incumbent (primary) users’ presence.

Most important primary users in white space are TV tow-

ers and wireless microphones. They typically transmit ana-

logue signals. In practice, network forensics systems are inter-

ested in capturing data packets (of secondary users) instead of

analogue signals from primary users.

IEEE 802.22 and 802.11af proposed by FCC are intro-

duced as “super WiFi” which operates as secondary users in

white space; individual users are allowed to access white space

freely as long as their devices meet certain interference re-

quirements. Monitoring and capturing data in such a network

faces new challenges because of the large number of channels

in white space and very dynamic accessing behaviors of white

space users.

An alternative to capturing packets wirelessly is to physi-

cally connect to the base station or wired infrastructure of

cognitive radio networks. However, in some wireless commu-

nication systems, such infrastructure may not exist; even if it

exists, forensics systems may not have the access. In addition,

information like channel quality and signal strength, which can

be used to infer users’ location and mobility pattern, will be

lost if data are only captured in the wired side. Wireless foren-

sics is different from wired forensics in both methods and ap-

plicable scenarios. In this paper, we focus on wireless data

capture in cognitive radio networks.

B. Problem Definition

Monitor 1

Monitor 2

Monitor 3

Primary User

Secondary User

TV Tower

Wireless

Microphone

1
2
3

N

...

N Channels

W
h

it
e

Sp
ac

e
5

4
~8

0
6

M
H

z

Figure 1. Overview of data capture in a cognitive radio network.

Assume that there are N channels in a cognitive radio net-

work. We have only M monitors (M<<N). Among N channels,

L are busy (M<L<N). Here busy channel only refers to the

channel occupied by secondary users. Since secondary users in

a cognitive radio network may not be located very closely, it is

not required that every monitor can hear all the secondary us-

ers. Instead, we only assume that any secondary user who

transmits packet of interest (which will be explained later) is

within the listening range of at least one monitor. Figure 1

shows a cognitive radio network with primary users, second-

ary users, and three monitors.

During any period of time, new secondary users may join

the network (idle channels get occupied); existing secondary

users may quit (busy channels become idle); they can also

switch to a new channel and continue communicating (due to

appearance of primary signals, change of channel quality, or

requirement of certain network protocol). These changes are,

if not impossible, very difficult to predict (see discussion in

Section VII).

The goal of our work is to capture as many packets of in-

terest as possible from these busy channels.

Packets of interest (PoIs) are the packets that a network

forensics system wants to capture for future analysis. Whether

a packet is of interest or not depends largely on the purpose of

the forensics system. Different systems (applications) may

have very different interest. For example, a forensics system

which monitors video streaming traffic may find I-frames

more of interest than P-frames and B-frames, because I-frames

can be decoded independently, and usually contain more fun-

damental information of the video. Another forensics system

for network anomalies detection may want to capture ICMP

packets instead of normal IP packets, since ICMP packets tend

to relate to malicious or suspicious network activities [9]. To

define and decide PoI is out of the scope of this paper. We

assume networks forensics systems know what types of pack-

ets they need to capture.

In order to reduce the requirement of the number of moni-

tors (or in other words, to capture more PoIs with a limited

number of monitors), we propose to switch monitors between

channels by predicting the arrival time of PoIs in each busy

channel. We assume our monitors have the same ability (ra-

dio-wise) as the transceivers in the cognitive radio networks,

and all the monitors are connected by dedicated channels.

The key idea of our method is to reuse monitors in the time

domain. The main challenges are listed as follows.

1) Online prediction. Our method requires that the predic-

tion of PoI should be performed on the fly, which calls for a

very fast prediction algorithm. The sequence of packet in-

ter-arrival time is not inherently a linear process, which makes

traditional moving average models not appropriate. On the

other hand, machine learning based methods usually take too

much time for training, hence are not efficient enough for

online prediction.

2) Overall optimization. The optimization problem of our

method is not as straightforward as it seems. Conservative

strategies tend to stay in a channel for longer time, while ag-

gressive strategies tend to switch more often. The tradeoff is

tricky because failing to capture a PoI not only means the loss

of forensics data, but also hurts the accuracy of future packet

predictions.

3) Data capture and channel scan. Our monitors have dual

duties. In addition to packet capture, they are also responsible

for scanning the channels in order to find busy ones. How to

schedule the monitors to perform both tasks is also challeng-

ing.

We will provide solutions to these challenges in Section IV

and V.

IV. PACKET ARRIVAL TIME PREDICTION

In this section, we introduce our method for arrival time

prediction of PoIs. We present the support vector regression in

the first subsection and then, in the second subsection, we im-

prove its performance for the online prediction.

A. Support Vector Regression for Packet Arrival Prediction

We propose to switch monitors between channels in order

to capture more PoIs. Ideally, we want a monitor to stay in the

channel when there is a PoI, and switch to other channels

when there is not. Good switching strategy requires a good

prediction algorithm to tell us when a PoI is likely to arrive.

Now we introduce our packet arrival time prediction meth-

od using support vector regression. As mentioned previously,

traditional methods, such as autoregressive moving average

and Kalman filter, are only applicable to linear processes.

Among machine learning based methods, support vector ma-

chine / regression is often reported to have superior perfor-

mance [7] [18].

The input of our algorithm is (a0, a1, a2, …, an), which are

the arrival time of n successive PoIs in a given channel. The

output is an+1, the estimated arrival time of the next PoI in this

channel.

In a nutshell, support vector machine is a classification tool.

In the training phase, it tries to divide different groups of sam-

ples apart by a hyperplane (or a set of hyperplanes), which is

carefully constructed and lies in the “middle” of the margin

between groups. Support vector regression works similarly.

The difference lies in that the hyperplane is built to approxi-

mate all the samples. An error is allowed in the approxima-

tion. That is, the distance from any sample to the hyperplane is

less than .
Formally, the hyperplane (i.e. regression function) can be

expressed as:

()f X W X b (1)

Where W and X are both n-dimensional vectors, b is a real

number. X is the attributes of samples. In our case, X = (x1, x2,

x3, …, xn), where xi = ai – ai-1 (the time intervals between con-

secutive PoIs). The dot between W and X is inner product. W

determines the slope of the hyperplane.

As mentioned, all the samples should be within a distance

 to the hyperplane f(X). Apparently, there can be many hy-

perplanes satisfying this requirement. Support vector regres-

sion looks for the one lying in the “middle” of the region

where the samples spread (referred to as flatness). This re-

quirement is equivalent to minimizing ||W||.

Formally, the problem can be described as minimizing

||W||
2
/2, subject to:

j j

j j

y W X b

W X b y

where Xj is the attributes of the j
th

 training sample, and yi is

an+1 of this sample. Minimizing ||W||
2
/2 equals minimizing ||W||.

We use the former for mathematical convenience.

Up to now, we assume such hyperplane f(X) exists. How-

ever, sometimes it may not be true due to small and dis-

persed distribution of the training samples. To ensure the ex-

istence of f(X), we allow some samples to have larger errors

than which is comparable to the soft margin in support vec-

tor machine. The problem can be formalized as:

minimize 2

1

1
|| || ()

2

l

j j

j

W C

subject to j j

j j

y W X b

W X b y

where and ’ are nonnegative values accounting for extra

errors (as shown in Figure 2, they introduce a penalty while
does not), and C is a positive constant, which decides the

tradeoff between the flatness of the hyperplane and the amount

of extra errors. l is the number of training samples.

Error committed

E
rr

o
r

co
n

si
d

er
ed

Figure 2. Error function.

The above objective function and constrains is equal to mi-

nimizing L, which is called Lagrange function:

2

1 1

1
|| || () ()

2

l l

j j j j j j

j j

L W C

1

()
l

j j j j

j

y W X b

1

()
l

j j j j

j

y W X b

where ,’, and ’ are Lagrange multipliers and they

are all positive. Minimizing a Lagrangian can be converted to

a solvable dual optimization problem. Due to the space limita-

tion, we do not present the detailed derivation here. Finally,

the hyperplane can be expressed as:

1

() ()
l

j j j

j

f X X X b

 (2)

Here Xj is the attributes of training sample j. In the above

equation, b can be calculated by exploiting Karush-Kuhn-

Tucker conditions. Details can be referred to [10]. Now we get

the hyperplane f(X).

In the above discussions, hyperplanes are used to approxi-

mate samples. Since packet arrival time is not a linear process,

using hypersurface could increase the performance. Therefore,

we introduce the kernel tricks. It can be proven that the prop-

erty of support vector regression still holds if we substitute the

inner product in Equation 2 with kernel functions. In practice,

we employ Gaussian radial basis function, which is one of the

most commonly used kernel functions. It is defined as:
2(,) exp(|| ||)i j i jk

where is a positive parameter. We use 1/22
 for. The

updated regression function is:

2

2
1

1
() () exp(|| ||)

2

l

j j j

j

f X X X b

 (3)

In the training phase, assuming we have recorded the arri-

val time of m (m > n+1) PoIs: a0, a1, a2, …, am-1, we first cal-

culate the time interval between them, noted as x1, x2, x3, …,

xm-1. In the training phase, these m-1 items are organized into

m-n-1 samples, i.e. (x1, x2, …, xn+1), (x2, x3, …, xn+2), …, (xm-n-1,

xm-n, …, xm-1). For each sample, first n elements are attributes

and the last element is the label (yj). After training, we deter-

mine the parameters of the regression function f.

In the prediction phase, n most recent intervals between ar-

rived PoIs are used as input to predict the next one. If we want

to predict the arrival time of the k
th

 (k > m-1) PoI (ak), then let

X = (xk-n, xk-n-1, …, xk-1), we have xk = f(X), and ak = ak-1 + xk.

In Section VI, we will evaluate the accuracy of this algo-

rithm with different training dataset size (l) and different

number of attributes (n). We will also show that in a single

channel, if PoIs can be divided into multiple categories, it is

better to predict them separately.

B. Expediting Learning Process

For support vector regression based algorithms, prediction

is fairly fast while training phase usually takes more time.

In this subsection, we propose several approaches to re-

duce the training time, which is especially important to our

method that performs online prediction.

First, we employ incremental learning for the training of

support vector regression, which enables us to dynamically

add or remove a sample from the training dataset without

learning from scratch [11] [12]. The mathematica explanation

of incremental learning is complex; the main idea is described

as follows.

It can be derived that for most samples, j = ’j in Equa-

tion 2. That is, the regression function only depends on a small

number of samples, which lie in the “fringe” of the sample

space. These samples are called support vectors. In the incre-

mental learning, when a new sample comes, it checks if it is a

support vector. If not, the training result remains unchanged.

Otherwise, it is added into the support vector set and the pa-

rameters in the regression function are re-tweaked. It works

similarly when a sample is removed.

Although the regression function can be used to predict

repeatedly once it is trained, the prediction will become less

and less accurate as time passes, because the training data gets

obsolete and the traffic pattern changes over time. Tradition-

ally, without incremental learning, training frequently is not

affordable for online predictions due to its high computational

overhead. However, with incremental learning, we are now

able to update our regression function in a timely fashion.

Second, we use dual regression functions to reduce re-

training. As introduced in Section IVA, in order to predict the

k
th

 PoI (ak), we need the arrival time of n+1 PoIs just before it

(ak-n-1, …, ak-1). If we fail to capture a PoI (say, k-1
th

 packet), n

following packets cannot be predicted (from k
th

 to k+n-1
th

),

because the input needed by the regression function is incom-

plete. In this case, we have to stay in this channel to capture

these n packets, giving up the opportunities of capturing pack-

ets in other channels, which is a non-negligible performance

loss. Moreover, we probably have to retrain the regression

function, because without the prediction results, we cannot

compare them with the ground truth, and tell whether the re-

gression function is obsolete or not.

In order to alleviate such performance degradation, we in-

troduce dual regression functions (f and f’). The former pre-

dicts the arrival time of the next packet and the latter predicts

the one after next.

1 2 1(, ,...,) f

n nx x x x

1 2 1 2(, ,...,) f

n n nx x x x x

f’ is defined similarly as f, and uses the same model we

presented in Section IVA. The only difference is that f’ pre-

dicts two packets ahead. Of course, the training data of f’ are

in the form of (x1, x2, …, xn, xn+1+ xn+2), in which the first n

items are attributes and the last is the label.

We maintain f and f’ simultaneously. If a PoI is missed

(say, k-1
th

, caused by mis-prediction of f or monitor shortage),

we utilize f’ to predict the k
th

 PoI. If it is a match, the process

goes on as normal. No retraining is needed and ak-1 (predicted

value) is used as the ground truth for the next few predictions.

On the other hand, if the prediction of f’ still does not match,

the monitor will keep staying at this channel for at least n

PoIs’ duration and then perform an incremental retraining.

In this updated version of method, two consecutive mis-

predictions (k-1
th

 and k
th

) suggest the obsoleteness of the re-

gression function f (as well as f’). In contrast, the old method

has to stick on a channel for quite a while upon a single miss,

which may occur frequently and does not necessarily imply

the invalidation of the regression function. Therefore, the up-

dated method reduces a large amount of retraining and the

time stuck in a single channel. Of course, maintaining f’ itself

introduces overhead. However, this overhead is not high with

incremental learning, and it is worthwhile because being stuck

on a channel may cause loss of packets in other channels and

thus a vicious cycle.

An alternative method for dual regression functions is to

treat the sequence of PoI arrival time as discrete time series.

We can still use the model presented in Section IVA to per-

form prediction. However, in this case, the training samples

are in the form of (j, aj), where j is the single attribute (se-

quence number) and aj is the label (arrival time of the j
th

 PoI).

The advantage of this method is that it is able to predict multi-

ple future packets with a single regression function. However,

compared with the regression function we use, it requires

much more training samples to achieve decent accuracy. We

will compare their performance in Section VI.

Besides two modifications discussed above, we also apply

some tricks to further expedite our method. We store the val-

ues of the kernel (Gaussian radial basis function) in a matrix,

thus avoid computing every time during the training. Besides,

the regression function is traditionally trained using various
and , and then the value with the best accuracy is adopted.

However, this process is very time-consuming. We fix the

values of and at /40 and /20 respectively (is the average

inter-arrival time of the recent PoIs), which largely reduces the

computation time without obvious decreasing of prediction

accuracy. We will show the results in Section VI.

V. MONITOR MUTIPLE CHANNELS WITH A SMALL NUMBER

OF MONITORS

In the previous section, we present our method for packet

arrival time prediction. Multiple efforts are made to accelerate

the algorithm and make it qualified for online use. In this sec-

tion, we first introduce the monitor scheduling method based

on the prediction results, and then present the complete proto-

col for data capturing in cognitive radio networks.

A. Monitor Scheduling

Packet arrival prediction is independent for each channel.

Based on these predictions, a limited number of monitors are

scheduled to cover a large number of channels. In this subsec-

tion, we assume that we already have the prediction results.

Figure 3 shows an example of three channels. Each square

is a PoI, and we assume there are two monitors, originally

residing at channel A and C.

In order to capture all the PoIs, a valid scheduling is that

the first monitor catches A1, B1, A2, A3, A4 and B4, while

the second captures C1, C2, B2, B3, C3 and C4. Of course,

there is more than one valid scheduling scheme. Among them,

the one with minimum channel switches is preferred. The rea-

son is as follows.

First, channel switching has overhead. Although switching

under the monitor mode is faster than other modes, it still

needs some time. Taking 802.11bg wireless cards for example,

channel switching takes 3-20ms [13]. The more a monitor

switches, the less time it can spend on data capturing.

Second, continuously staying in a channel for longer time

helps verify the prediction algorithm. Prediction results are

compared with the ground truth to decide whether retraining is

necessary. Frequent channel switching impedes the gathering

of the ground truth.

For the example in Figure 3, the solution mentioned above

is the optimum in this sense, which only has 5 switches

(shown as arrows in Figure 3). However, in a general case,

finding a scheduling scheme that minimizes the number of

monitor switches is not easy (when the number of monitors is

less than the number of channels). The arrival time of the fu-

ture PoIs is not deterministic. The prediction algorithm cannot

forecast very far ahead, and prediction errors are inevitable.

Therefore, it is not feasible to establish an algorithm that al-

ways gives the optimal solution.

A

B

C

1 2 3 4

1 2 3 4

1 2 3 4

Figure 3. Monitor Scheduling.

Instead, we propose a greedy method to schedule the mon-

itors with relatively few channel switches. We choose a greedy

algorithm because the packet arrival prediction can only fore-

cast the near future, which has a myopic nature. The method

we use is explained as follows. If a PoI will arrive within v ms

by prediction and no monitor is now in this channel, a sched-

uling activity is triggered. Among all the available monitors,

the one that currently has the longest “free interval” is selected

and switched to capture this packet. The monitor will stay in

this channel until being scheduled and switched again. The

algorithm is shown as follows.

__

An upcoming packet in channel i triggers scheduling

 latestNext = 0; monitorSel = -1;

 for any monitor j∈AMi

 if (aN
ch(j)

 > latestNext)

 lastestNext = aN
ch(j)

;

 monitorSel = j;

 if (monitorSel != -1)

switch monitor monitorSel to channel i

delete monitorSel from AMi

 else return false

__
Algorithm 1. Monitor scheduling

Here, AMi is the set of available monitors, ch(j) is the cur-

rent channel that monitor j residents, and aN
ch(j)

is the predicted

arrival time of the next PoI on channel ch(j). Available moni-

tors are defined as follows.

Three types of monitors are busy. First, if a PoI will arrive

within w ms by prediction, the monitor currently on this chan-

nel is set to busy until this packet is captured or timeout. The

second type is the monitors being occupied in a retrain process

triggered by two successive mis-predictions (please refer to

Section IVB). Third, a few monitors are used for channel

scanning (will be discussed in Section VB). All other monitors

are available.

The above description is correct if we do not consider sig-

nal’s geographic coverage. In reality, the signal sources being

watched are not necessarily co-located. That is, at a given time,

one monitor may only hear a subset of channels. Therefore,

strictly speaking, AMi is the set of monitors which are able to

hear channel i at that moment, excluding the three types of

busy monitors mentioned above. It is easy to see that the larger

the AM is, the more flexibility the algorithm gets, and the bet-

ter performance we can expect. This suggests, if possible, we

should make the monitors cover the channels (secondary users)

evenly. Let Ui = |AMi| (the number of monitors in AMi) and u =

min Ui for all i where channel i are busy (busy channels are

defined in Section IIIB); we can use u to indicate the coverage

evenness. Since AMi changes over time (different secondary

users access channel i) and so does u, an optimum monitor

placement may not achievable (if monitors are not mobile).

However, a decent placement is good enough for our method.

Algorithm 1 is linear and fast enough for online scheduling.

The greedy strategy it uses is a good approximation of mini-

mizing switches in practice. For the example shown in Figure

3, the scheduling performed by this algorithm is the same as

the optimum. w and v mentioned above will be defined in the

next subsection.

B. Protocol for Data Capture in Cognitve Radio Networks

We have discussed the packet arrival prediction and moni-

tor scheduling algorithm in the above sections. In this subsec-

tion, we first present our method for channel scan, which de-

tects channels for secondary signals, and then present the

complete version of the data capturing method in cognitive

radio networks.

In Section VA, we introduced our algorithm that switches

monitors between channels. We assumed these channels are all

busy. However, in a cognitive radio network, only some of the

channels are occupied by secondary users (referred to as active

channels; we do not capture primary users’ traffic, because

they transmit analogue signal; see Section III). The rest of

them are used by primary users, experiencing low channel

quality or simply idle (referred to as inactive channels). Leav-

ing monitors staying in inactive channels is a big waste. We

should find out active channels before applying packet predic-

tion and monitor scheduling algorithms.

Before going into the details, we define and recall some

notations. The cognitive radio network has N channels and we

have M monitors. The number of monitors that can hear chan-

nel i is Ui. Algorithm 1 is executed v ms before a packet ar-

rives, and a monitor is set as busy w ms ahead of packet arrival

(see Section VA). tr is the time relax of packet arrival predic-

tion. That is, for any predicted arrival time a, we schedule the

time slot [a-tr, a+tr] for packet capture. If a PoI is captured in

this time slot, it is called a match. Otherwise, a mis-prediction

is assumed. ts stands for the time overhead for channel switch-

ing. l is the number of samples needed for the first-time train-

ing in a new channel.

At any given time, S monitors are used for channel scan-

ning (we choose S =
┌

M/6
┐

in our method, which is deter-

mined by experiments; see Section VIC). It is a tradeoff be-

tween the number of monitors wasted (in terms of data cap-

turing) and the detection delay of secondary users. The scan-

ning monitors are chosen carefully considering their listening

coverage. In Figure 1, for example, assuming there are 8 mon-

itors in total, we will employ
┌

8/6
┐

= 2 monitors dedicatedly

for scanning; choosing monitor 1 and 3 is better than using 1

and 2 because the latter is less likely to cover the range of all

secondary users (If
┌

M/6
┐
 monitors cannot cover the range

by any means, we will increase the number of scanning moni-

tors by 1 until all covered; it is reasonable that a sparse net-

work needs more monitors). Each scanning monitor iterates all

the inactive channels sequentially and repeatedly. They report

the emergence of secondary users.

In addition, for any other monitor, if it successfully cap-

tures a PoI in the first half of the scheduled slot ([a-tr, a]), it

quickly switches to an inactive channel to search for secondary

signals. The channel that has not been scanned for the longest

time will be chosen. This operation is transparent to the moni-

tor scheduling algorithm. The reason for doing this is that we

want to make full use of the scheduled slot, and help those

dedicated monitors to accelerate the discovery of new second-

ary users.

In case of the disappearance of secondary signals, detec-

tion is easier. After two mis-predictions, a monitor will be

scheduled to stay in this channel and perform retraining. Ab-

sence of the secondary signal will then be found. No extra

efforts are needed.

Now we briefly describe the protocol of our method for

data capturing in cognitive radio networks.

1) Monitors scan the inactive channels in the manner as

above. Once a new secondary signal is detected, this channel

is marked as active. At the same time, an available monitor is

switched to this channel to perform training, and removed

from AM.

2) After collecting l PoIs, the initial training is completed.

The monitor is set back to available state unless the next PoI

will arrive within w ms.

3) After training, future PoIs are predicted by f and f’in

each active channel. v ms before the next packet arrival,

Algorithm 1 is executed to pick a monitor from AM to capture

it if no monitor is currently in the channel. Otherwise, the

monitor in this channel is set to busy w ms before the arrival

unitl the packet is captured.

4) If two consecutive mis-predictions occurs in an active

channel, an available monitor is assigned to this channel and

perform incremental retraining. This monitor is removed from

AM until retraining is done.

5) Once Algorithm 1 returns false (no more available

monitors), our method enters saturated mode and stops

marking a channel as active even if a secondary signal is found.

Saturated mode ends when an existing secondary user quits

from an active channel.

6) Under the saturated mode, if Algorithm 1 returns

false with the ratio higher than a threshold, an active channel

is marked as inactive, which means we give up data capturing

in this channel temporarily. By default, remarking process

starts from the active channel with minimum number of PoIs

per unit time.

In our method, as mentioned in Section III, all the monitors

are connected by dedicated channels and their clocks are syn-

chronized. This assumption is reasonable, since monitor array

products are widely available in the market (but the number of

monitors in the array is limited). Communications between

monitors (and the controller) are fast and knowledge is shared.

In the above protocol, one or more channels are temporar-

ily relinquished when monitor shortage occurs. We use this

conservative strategy because recklessly covering more chan-

nels will cause more retraining, less available monitors, and

thus a vicious circle. In fact, if some channels are given up in

step 6), it suggests that, even using our method, the total num-

ber of monitors is still too small to effectively capture the traf-

fic in the current network.

When the network is very sparse, our method could expe-

rience low efficiency. First, the AM set will be relatively small.

Second, if secondary users are very unevenly distributed, the

entering and quitting of the saturated mode may not reflect the

global situation of the network (step 5)). However, a sparse

network is not the typical application scenario of our method.

An extreme case is that within one monitor’s listening range,

there is only one link, where the time domain reuse is not ap-

plicable and there is no better way to save monitors in such

cases.

Some parameters in the protocol have certain constrains. v

should be larger than (ts + tr), as well as w. The reason for the

former is straightforward. For the latter, if the monitor in the

current channel is marked as available and switched to another

channel, the remaining time should be long enough for other

monitors to switch to this channel and catch the next packet.

Besides, tr is larger than ts, which helps maintain the transpar-

ency when ordinary monitors are opportunistically used for

channel scan. Concrete value of the parameters will be as-

signed in the next section.

VI. EVALUATIONS

We conduct comprehensive experiments and simulations

to evaluate our method for data capturing in cognitive radio

networks. We first test the accuracy of the packet arrival pre-

diction method under various traffics, and then evaluate the

performance of monitor scheduling algorithm. After that, the

effectiveness and overall performance of the complete method

are evaluated.

A. Performance of Packet Arrival Time Prediction

In this subsection, we evaluate the performance of our

method for packet arrival time prediction. As discussed in

Section IV, a support vector regression based model is built

upon training. The arrival time of n+1 latest packets are used

to predict the arrival time of the next packet.

We first test the influence of different types of traffics on

our prediction method. Three types of trace data (FTP, VoIP,

and web browsing traffic) are collected from real-world sce-

narios. In the FTP and VoIP traces, we assume all packets are

of interest. For web browsing, we test two cases: all packets

are of interest and only ICMP packets in the trace are of inter-

est.

The results are shown in Figure 4. The y-axis is the relative

estimation error of predicted arrival time, which is defined as

|real – estimated| / , where is average inter-arrival time of

PoIs. The errors of 120 predictions are averaged for each point.

If there are averagely 50 PoIs per second, relative estimation

error is 10% means that the prediction error is 2ms in average.

The x-axis shows the number of attributes (n) used as input of

the regression function. In this experiment, all regression func-

tions are trained by 100 recent PoIs.

10%

20%

30%

40%

50%

60%

70%

1 2 53 4 876 9

Number of Attributes (n)

R
el

at
iv

e
E

st
im

at
io

n
 E

rr
o

rs

80%

FTP traffic

VoIP traffic

ICMP packets

Web browsing traffic

Figure 4. Accuracy of packet arrival time prediction.

From the result we can see that our prediction method has

higher accuracy on FTP and VoIP traffic than web browsing

and ICMP. This is reasonable because FTP and VoIP traffic

tend to be more regular and have less randomness. Even the

case of ICMP performs better than the web browsing traffic

from which the former is extracted. This result suggests that it

is better to categorize packets before prediction for hybrid

traffics. We will further investigate it soon.

When n gets larger, the prediction becomes more accurate.

But large n also has drawbacks, in that a monitor has to stay in

the channel waiting for (n+1) PoIs if two consecutive mis-

predictions occur. The larger n, the longer it waits. For our

method, we choose n = 6, since the performance gain quickly

shrinks when n > 5. All the following experiments use this

value unless otherwise specified.

In the following experiment, we compare our prediction

method with two other strategies. Strategy A tests various
and , and then chooses the best for the regression function.

The rest of its settings are the same as our method. Strategy B

treats the packet sequence as discrete time series, which can

predict far ahead with current knowledge (please refer to Sec-

tion IVB). We use web browsing traffic for this test, and only

ICMP packets are of interest. The results are plotted in Figure

5.

10%

20%

30%

40%

50%

60%

70%

20 30 6040 50 908070 100

Number of Training Samples (l)

R
el

at
iv

e
E

st
im

at
io

n
 E

rr
o

rs

80%

Strategy B

Our Method

Strategy A

Figure 5. Comparison of three arrival time prediction strategies.

The y-axis is the relative estimation errors, while the x-axis

stands for the number of samples used for training. Theoreti-

cally, strategy A should perform better than ours, yet the result

shows that their accuracies are close, which may stem from the

over-fitting effect of the former. Since strategy A is far more

time-consuming than ours, we do not choose it. For strategy B,

it is more sensitive to the size of the training dataset. It cannot

achieve comparable performance as ours with less training

data. Considering the result of this test, we use l = 35 for our

method to balance between the training time and performance.

All the following experiments use this value unless otherwise

specified.

In the next experiment, we test the scenario of interleaved

PoIs, where VoIP traffic and web browsing traffic are trans-

mitted in the same channel. That is, a user is making an IP

phone call and browsing web pages at the same time. Similarly,

we assume VoIP packets and ICMP packets are of interest.

We run our prediction algorithm twice. In the first round,

VoIP traffic and ICMP packets are treated as a single sequence.

In the second round, we separate them, and train two different

regression functions to predict the next VoIP packet and the

next ICMP packet separately. VoIP packets are also IP packets.

We distinguish them from the IP packets in web browsing

traffic by identifying source and destination IP addresses. The

result is shown in Figure 6.

10%

20%

30%

40%

50%

60%

70%

ICMP

R
el

at
iv

e
E

st
im

at
io

n
 E

rr
o

rs

VoIP

(One Way)

VoIP

(Two Way)
Mixed

Figure 6. Categorized PoIs vs. interleaved PoIs.

From Figure 6, we can see that separate prediction has

much better performance than mixing them together. There-

fore, if a network forensics system wants to capture multiple

types of packets in one channel, we should categorize the traf-

fic first, and then apply our prediction method to each category

separately.

B. Data Capture Performance of Small Number of Channels

We have presented the evaluation results of our prediction

algorithm above. Now we further incorporate the monitor

scheduling algorithm (Algorithm 1) to test the overall perfor-

mance of our data capturing method. In this subsection, re-

al-world tests are performed in a simplified scenario, where

we do not consider dynamic join and leave of secondary users,

and monitors dedicated for scanning are not used. We also

assume the monitor can hear all the secondary users (i.e. do

not consider the geographic coverage issue) in this experiment.

We use HP nc6000 and Dell E5400 laptops equipped with

802.11bg wireless cards (Atheros or Intel chipset) for our test.

Three pairs of laptops (or AP-laptop pair) are working at

channel 1, 6, and 11, respectively. It simulates a cognitive ra-

dio network with three channels and one monitor.

Channel A

Channel B

Channel C

Monitor

Figure 7. Experiment settings.

In the first experiment, channel A is web browsing in

which ICMP packets are of interest. Channel B is occupied by

VoIP streaming, which has a data rate of approximately 6Kbps

and all the packets are of interest. Channel C is not used. We

only have one monitor (a laptop with 802.11bg wireless card,

in monitor mode) to capture the traffic on channel A and B

using our method. ts (channel switch time) of the monitor is

about 5ms. w and v are both set to (tr + ts), where tr is the time

relax for packet arrival prediction (see Section VB).

20%

30%

40%

50%

60%

70%

2 4 106 8 161412 18

Time Relax for Packet Arrival Prediction (tr)

P
ac

k
et

 C
ap

tu
re

 R
at

e

80%

ms

Figure 8. Influence of tr on packet capture rate.

We vary tr from 2 to 18ms and the packet capture rate (i.e.

the number of captured PoIs divided by the number of total

PoIs) is shown in Figure 8. From the experiment result we can

see that when tr is around 8ms, we are able to achieve the

packet capture rate as high as 82%. When tr is small the cap-

ture rate decreases because even small prediction errors cannot

be tolerated. When tr gets larger, w also gets larger, thus the

monitor may not have enough time to switch to other channels.

We choose tr = 8ms for our method. The rest of experiments

use this value unless otherwise specified.

In the next experiment, we test the influence of traffic

loads on our method, and compare its performance to the

baseline (random capture). Channel A and B are the same as

above, while channel C is used for FTP downloading (assume

all download packets are of interest). We vary the download

speed of channel C and use one and two monitors respectively

to capture the traffic of all three channels. The result is shown

in Figure 9.

30%

40%

50%

60%

70%

80%

40 80 200120 160 320280240 360

Traffic Load of Channel C

P
ac

k
et

 C
ap

tu
re

 R
at

e

90%

kbps

20%

10%

Single monitor (Algorithm 1)

Two monitors (Algorithm 1)

Single monitor (Random)

Two monitors (Random)

Figure 9. Influence of traffic load on packet capture rate.

In the one monitor case, we can see the packet capture rate

of our method decreases quickly when the data rate of channel

C goes higher than 280Kbps. This is because with higher data

rate, the time intervals between packets in channel C become

shorter, which is not enough for a single monitor to switch to

the other two channels. In the case of two monitors, such per-

formance deterioration is not found. Even if one monitor is

stuck in the busiest channel, the other still can switch between

the other two channels freely.

For the random scheme, monitor(s) switch between chan-

nels randomly. The experiment results demonstrate that for

both one or two monitor cases, our method significantly out-

perform the random method. This experiment also implies that

our data capturing method is able to achieve high channel-

over-monitor rate if the distribution of PoI is sparse.

C. Data Capture Performance of Large Number of Channels

Now we move on to the performance of the complete ver-

sion of our method. In this subsection, we increase the number

of channels; consider dynamic join and leave of secondary

users; in addition, secondary users will change their current

communication channel upon the appearance of primary users.

802.11bg networks only have three non-overlapping channels;

this part of evaluation is conducted by simulation.

In our settings, there are 60 channels (N = 60) in total, and

about 20 (18-22, due to dynamic join and leave) of them are

occupied by secondary users at any given time. When newly

coming or changing a channel, a secondary user randomly

chooses one of the currently available channels. Real traces

are used to simulate the packet communication. Among active

channels, 10 are web browsing traffic where in half of them,

ICMP packets are of interest; and for another half, all packets

are of interest. 5 channels are occupied by VoIP traffic, and

another 5 are streaming videos. For the former, all packets are

of interest while for the latter, only I-frames are of interest.

Primary users are simulated by placing special packets in the

channel.

30%

40%

50%

60%

70%

80%

2 4 106 8 161412

Average Time Staying in a Channel

P
ac

k
et

 C
ap

tu
re

 R
at

e

90%

second

20%

10%

Our method with 2 scanning monitors

Our method with 1 scanning monitors

Random scheme

Our method with 3 scanning monitors

Our method with 4 scanning monitors

Figure 10. Overall performance of data capturing in CRN.

We use 11 monitors (M = 11), and 1 to 4 of them are dedi-

cated for secondary signal scanning. The rest of parameters are

the same as the experiments above. Secondary users are rela-

tively close to each other; every monitor can hear all the

communications. The result is shown in Figure 10. The x-axis

is the average time a secondary user stay in a channel before it

quits the network or jumps to another channel.

30%

40%

50%

60%

70%

80%

2 4 106 8 161412

Average Time Staying in a Channel

P
ac

k
et

 C
ap

tu
re

 R
at

e

90%

second

20%

10%

Our method

Random scheme

Figure 11. Overall performance considering geographic coverage.

Our method significantly outperforms the random scheme.

Without channel scan and packet arrival prediction, 11 moni-

tors had a difficult time dealing with 60 channels. The packet

capture rate of the random scheme is less than 20%. On the

contrary, with a proper number of scanning monitors, our

method is able to achieve a packet capture rate of 70%-75%

most of the time (when secondary users stay in a channel av-

eragely longer than 8 seconds). Compared to the one-scan-

ning-monitor case, the capture rate using more scanning mon-

itors is higher if secondary users have high dynamics (stay at

one channel for only a short time). It is because a single scan-

ning monitor has larger delay to find newly coming signals.

When there is less dynamics, the configuration of single scan-

ning monitor has better performance, for it in turn leaves more

monitors for packet capture. We can see that using two scan-

ning monitors has relatively the best overall performance in

this experiment. For our protocol, we assign
┌

M/6
┐
 monitors

dedicatedly for channel scanning to achieve a balance between

the number of monitors used for data capture and the detection

delay of secondary signals.

In the next experiment, we take geographic coverage into

account. All the secondary users are distributed within the area

whose radius is twice of a node’s transmission range (as well

as a monitor’s listening range). We have 60 channels and 18

monitors. Monitors are randomly placed (but same for our

method and the random scheme).
┌

18/6
┐
 = 3 of them are

used dedicatedly for scanning. They are selected based on the

criterion whether they can cover all the secondary users. If all

the three-monitor-combination cannot meet this criterion, the

number of scanning monitors is increased by one (see Section

VB) until satisfying. The rest of settings are the same as above.

We change the locations of secondary users and monitors for

each run; the results of ten runs are averaged and plotted in

Figure 11, which shows our method still largely outperforms

the random scheme.

30%

40%

50%

60%

70%

80%

6 8 1410 12 201816

Number of Monitors

P
ac

k
et

 C
ap

tu
re

 R
at

e

90%

20%

10%

20/60

20/60, R
30/60, R

30/60
30/90

30/90, R

45/90

45/90, R

Figure 12. Scalability of our method.

Now, we vary the numbers of monitors, the number of to-

tal channels, and the number of busy channels, testing the

scalability of our method. The average time a secondary user

staying in a channel is set to 10. The traffic types are the same

as above. The number of traces for each type is adjusted pro-

portionally. Figure 12 shows the results without considering

geographic coverage, while in Figure 13, we take geographic

coverage into account and further vary the radius of secondary

users’ distribution area.

In Figure 12, “20/60” means in total 60 channels 20 are

busy, and so forth. “R” stands for the random scheme, while

without “R” refers to our method. We can observe from the

results that our method has good scalability. When the number

of monitors is relatively small, the capture rate almost in-

creases linearly. When the number of busy channels is signifi-

cantly larger than the number of monitors, our method still

provides best-effort service without sharp performance deteri-

oration. Under the various conditions, it always performs

much better than the random scheme.

30%

40%

50%

60%

70%

80%

12 2016 24

Number of Monitors

P
ac

k
et

 C
ap

tu
re

 R
at

e

90%

20%

10%

b= 1, R

b = 1

28

b = 2

b= 2, R

Figure 13. Influence of secondary user’s distribution.

In Figure 13, b is the ratio of the secondary users’ span-

ning radius to the monitors’ listening range. For example, b =

2 means the radius of secondary users’ distribution region is

twice of a monitor’s listening distance (so the area is four

times as large). The number of channels and busy channels are

fixed at 60 and 30, respectively. From the plot, we can see that

as the network become sparser, the performance degradation

of our method is much smaller than the random scheme

(curves marked with “R”). However, it is reasonable to em-

ploy more monitors to achieve similar performance when the

secondary users are spanning over a larger area.

VII. DISCUSSION

A. Dynamics of Secondary Users

As mentioned, in cognitive radio networks, secondary us-

ers opportunistically access the spectrum. They dynamically

join and leave the network, and also change their channels to

avoid primary users. An optional operation mode in IEEE

802.22 even requires channel hopping on a regular basis [14].

In order to catch up with such dynamics, we employ scan-

ning monitors in our method to scan inactive channels repeat-

edly, as well as opportunistically utilize the free time intervals

of other monitors (see Section VB).

An alternative might be probabilistically predicting the

appearance of secondary signals. Some research work has

been done to predict channel availability in cognitive radio

networks [15] [16]. It seems that we can utilize them to predict

unavailable channels (secondary signals) and save scanning

monitors. However, these studies assume that secondary users’

behavior is consistent over time or follow certain probabilistic

distributions. These assumptions may not be true in practice.

First, secondary users’ behavior usually has a lot of ran-

domness. Secondary users of a network in a period of time

may largely different from the users of the same network in

another period of time. It is difficult to assume they have sim-

ilar behavior. Second, the channel choice of secondary users is

a function of the scanning algorithm and the channel meas-

urement. Different users may use different scanning algo-

rithms, such as sequential scan, optimal stopping, random ac-

cess, etc [17]. On the other hand, a user’s location, environ-

ment and hardware accuracy can greatly affect the measure-

ments of channel state and channel quality. Therefore, the

channel choice of a secondary user is very difficult to predict.

Affected by these factors, probabilistically predicting the ap-

pearance channel of a secondary user can hardly achieve high

accuracy in practice.

B. Geographical Coverage

Compared with the preliminary version [21], in this paper,

we do not require that one monitor can hear all the secondary

users. Each monitor may listen to part of the network and they

cooperate together to capture all the traffic of interest. This

improvement brings more flexibility and makes our method

widely applicable to real world scenarios.

On the other hand, with the same number of channels and

same amount of traffic of interest, it is obvious that more mon-

itors are needed to achieve the similar performance if the sec-

ondary users are sparsely distributed. In our experiments (Sec-

tion VI), we assume the monitors are randomly located for the

fairness of the performance comparison (with the random

scheme). However, if we place the monitors carefully, we can

achieve better performance (capture rate) with the same num-

ber of monitors, or the same performance with fewer monitors.

A general rule is to put more monitors at the place where the

secondary users (traffic of interest) are denser. As a cognitive

radio network standard, IEEE 802.22 introduces a star topolo-

gy. In this case, more monitors should be located near the base

station.

In this paper, we assume that the capture range of a moni-

tor is the same as the transmission range of the secondary us-

ers (they are physically identical devices). In practice, if sec-

ondary users are sparse, we can also use monitors with more

powerful antenna (thus larger listening range) to reduce the

number of monitors required.

C. Application Dependent Packet Prediction

As discussed, we predict packet arrival time using support

vector regression. This method is not traffic type specific. In

some cases, if the type of application is known, the prediction

accuracy can be further improved. For example, FTP down-

load traffic has a regular pattern that the intervals between the

packets are almost identical. VoIP and video streaming also

has very predictable behavior.

Of course, identifying application type by packets or traffic

characteristics is a challenging problem, especially the payload

of wireless packets are typically encrypted. Research on this

area is orthogonal to our work [22] [23]. However, for some

easy cases, information in the header, such as well-known port

numbers and source / destination IP address can be used to

identify the application and helps improve the accuracy of

prediction.

 If we do not have the information of the application type,

but know that in a given channel only one single application is

transmitting (and only one type of packets are of interest), the

performance of our method can also be improved. Instead of a

fixed tr (see Section V), we introduce a dynamic tr that is pro-

portional to the recent (average packet inter-arrival time of

PoIs). With this modification, we observe an average capture

rate increase of 2%-5% in our experiment for the single appli-

cation (per channel) case.

D. Encrypted Traffic

In wireless networks, some traffic flows are encrypted to

ensure security and privacy. On the other hand, for the purpose

of wireless forensics, a number of techniques have been de-

veloped to deal with encrypted traffics, which can be divided

into three categories.

Clear part analysis. Even if the traffic is encrypted, packet

headers are still in plain text. Besides, management packets

and control packets also travel in the clear (e.g. in 802.11 net-

works). Such information can be utilized by forensic systems.

Fingerprint analysis. The sequences of client-server ex-

changes, payload sizes, transmission intervals, involved proto-

cols, etc. are exploited to extract signatures of certain software

or certain user behavior. fl0p [24] is an example of this catego-

ry.

Traffic statistics analysis. It is similar to fingerprint analy-

sis, but it focuses more on the statistical data (e.g. average

packet size, average data rate, etc.) on a larger traffic dataset

and usually cares less about the sequence of events. Forensic

systems make use of it to detect session types and network

anomalies.

We can see that for encrypted traffic, packets (or headers)

still need to be captured before further analyses in wireless

forensics. Therefore, our data capture method is orthogonal to

the above techniques and can still be applied in encrypted

network scenarios.

VIII. CONCLUSION

In this paper, we introduced a systematic method for data

capturing in cognitive radio networks. Given a large number

of channels, our method is able to achieve high packet capture

rate with a small number of monitors.

In order to reuse the monitors in the time domain, we pro-

posed a packet arrival prediction method based on incremental

support vector regression. A monitor scheduling algorithm and

a comprehensive protocol are provided to coordinate monitors

among channels. We also take geographic coverage of wire-

less signals into account. Monitors are scheduled not only ac-

cording to their workload but also their locations and listening

ranges. We conducted both real-world experiments and simu-

lations to evaluate our method. The results demonstrate that

our method significantly outperforms the random scheme un-

der various conditions. We also evaluate the scalability of our

method in sense of network scale, traffic load and secondary

user density, which shows promising results.

REFERENCES

[1] S. Garfinkel, “Network forensics: tapping the Internet,” http://www.ore
illynet.com/pub/a/network/2002/04/26/nettap.html.

[2] G. Iannaccone, C. Diot, I. Graham, N. McKeown, “Monitoring very high
speed links,” ACM Sigcomm Internet Measurement Workshop, San
Francisco, USA, Nov. 2001.

[3] L. Deri, “Improving passive packet capture: beyond device polling,” Proc.
System Administration and Network Engineering (SANE), 2004.

[4] R. Siles, “Wireless forensics: tapping the air,” http://www.symantec.com/
connect/articles/wireless-forensics-tapping-air-part-one.

[5] D.J. Geiger, G. Scheets, K.A. Teague, J. Pitts, “Multi-channel packet
capture in 802.11b/g wireless networks,” 42nd Asilomar Conference on
Signal, System and Computers, California, USA, 2008.

[6] L. Choong, “Multi-channel IEEE 802.15.4 packet capture using software
defined radio,” M.S. Thesis, UCLA, 2009.

[7] N.I. Sapankevych, R. Sankar, “Time series prediction using support vec-
tor machines: a survey,” IEEE Computational Intelligence Magazine, pp.
24 - 38, May 2009.

[8] T. Phit, K. Abe, “Packet inter-arrival time estimation using neural net-
work models,” Internet Conference, Tokyo, Japan, 2006.

[9] S. Northcutt, J. Novak, “Network intrusion detection,” 3rd Edition, New
Riders Publishing, 2003.

[10] A.J. Smola, B. Scholkopf, “A tutorial on support vector regression,”
Statistics and Computing, Springer, 2004.

[11] G. Cauwenberghs, T. Poggio, “Incremental and decremental support
vector machine learning,” in T.K. Leen, T.G. Dietterich, V. Tresp, editors,
Advances in Neural Information Processing Systems, volume 13, pp. 409
- 415. MIT Press, 2001.

[12] J. Ma, T. James, P. Simon, “Accurate online support vector regression,”
Neural Computation, 15(11): 2683 - 2703, 2003.

[13] D. Murray, M. Dixon, T. Koziniec, “Scanning delays in 802.11 net-
works,” 2007 International Conference on Next Generation Mobile Ap-
plications, Services and Technologies, Wales, UK, 2007.

[14] W. Hu, D. Willkomm, G. Vlantis, M. Gerla, A. Wolisz, “Dynamic fre-
quency hopping communities for efficient IEEE 802.22 operation,” IEEE
Communications Magazine, pp. 80 - 87, May 2007.

[15] A. Anandkumar, N. Michael, A.K. Tang, “Opportunistic spectrum
access with multiple players: learning under competition,” 29th IEEE
Conference on Computer Communications (Infocom), San Diego, USA,
2010.

[16] K. Liu, Q. Zhao, B. Krishnamachari, “Distributed learning under imper-
fect sensing in cognitive radio networks,” 44th Asilomar Conference on
Signal, System, and Computers, California, USA, 2010.

[17] H. Jiang, L. Lai, R. Fan, H.V. Poor, “Optimal selection of channel sensing
order in cognitive radio,” IEEE Transactions on Wireless Communication,
8(1): 297 - 307, 2009.

[18] C. Burges, “A Tutorial on Support Vector Machines for Pattern Recogni-
tion,” Data Mining and Knowledge Discovery, 2(2): 121 - 167, 1998.

[19] A. Chhetri, H. Nguyen, G. Scalosub, R. Zheng, “On quality of monitoring
for multi-channel wireless infrastructure networks,” 11th ACM Interna-
tional Symposium on Mobile Ad Hoc Networking and Computing (Mo-
biHoc), pp. 111 - 120, Chicago, USA, 2010.

[20] P. Arora, C. Szepesvari, R. Zheng, “Sequential learning for optimal mon-
itoring of multichannel wireless networks,” 30th IEEE Conference on
Computer Communications (Infocom), Shanghai, China, 2011.

[21] S. Chen, K. Zeng, P. Mohapatra, “Efficient data capturing for network
forensics in cognitive radio networks,” 19th IEEE International Confer-
ence on Network Protocols (ICNP), Vancouver, Canada, 2011.

[22] S. Zander, T. Nguyen, G. Armitage, “Automated traffic classification and
application identification using machine learning,” 30th IEEE Conference
on Local Computer Networks, Sydney, Australia, 2005.

[23] T. Nguyen, G. Armitage, “A survey of techniques for Internet traffic
classification using machine learning,” IEEE Communications Surveys
and Tutorials, 10(4): 56 - 76, 2008.

[24] http://permalink.gmane.org/gmane.comp.security.honeypots/3639

Shaxun Chen is currently a Ph.D. student in the
Department of Computer Science at University of

California, Davis. He received his B.Sc and M.Sc

degrees in Computer Science from Nanjing Uni-
versity, China, in 2005 and 2008, respectively.

He was a visiting researcher in Institute for Info-

comm Research (I2R), Singapore, in 2007. He has
published over 20 papers in international confer-

ences and journals, such as ICNP, INFOCOM,

IEEE Transactions on Mobile Computing, and Data & Knowledge Engineer-
ing. His current research interests include wireless security, network forensics,

and video forensics.

Kai Zeng received his Ph.D. degree in Electrical

and Computer Engineering at Worcester Poly-
technic Institute (WPI) in 2008. He obtained MS

in Communication and Information Systems and

BS in Communication Engineering both from
Huazhong University of Science and Technology,

China in 2004 and 2001, respectively. He was a

postdoctoral scholar in the Department of Com-
puter Science at University of California, Davis

(UCD) from 2008 to 2011. He joined the Depart-

ment of Computer and Information Science at
University of Michigan - Dearborn as an assistant

professor in 2011. He is a recipient of the U.S. National Science Foundation

Faculty Early Career Development (CAREER) award in 2012. He won Excel-
lence in Postdoctoral Research Award at UCD in 2011 and Sigma Xi Out-

standing Ph.D. Dissertation Award at WPI in 2008. His current research inter-

ests are in wireless network security, physical layer security, cognitive radio
networks, energy efficiency, and cyber-physical systems.

Prasant Mohapatra is currently a professor in

the Department of Computer Science at Univer-

sity of California, Davis. He is the former Tim
Bucher Family Endowed Chair Professor and the

former chairman of the department. In the past,

he has been on the faculty at Iowa State Uni-
versity and Michigan State University. He has

also held Visiting Scientist positions at Intel

Corporation, Panasonic Technologies, Institute of
Infocomm Research (I2R), Singapore, and Na-

tional ICT Australia (NICTA). He has been a

Visiting Professor at the University of Padova,
Italy, Korea Advanced Institute of Science and Technology (KAIST), and

Yonsei University, South Korea. He has served on the editorial boards of the

IEEE Transactions on Computers, IEEE Transactions on Mobile Computing,

IEEE Transaction on Parallel and Distributed Systems, ACM WINET, and Ad

Hoc Networks. He has been on the program/organizational committees of sev-

eral international conferences. He is the Editor-in-Chief of the IEEE Transa-
ctions on Mobile Computing.

Dr. Mohapatra received his doctoral degree from Penn State University in
1993, and received an Outstanding Engineering Alumni Award in 2008. He

also received an Outstanding Research Faculty Award from the College of

Engineering at the University of California, Davis. He is a recipient of the HP
Labs Innovation Research Award. He is a Fellow of the IEEE and AAAS.

Dr. Mohapatra's research interests are in the areas of wireless networks,

mobile communications, sensor networks, Internet protocols, and QoS. He has
published more than 250 papers in reputed conferences and journals on these

topics. Dr. Mohapatra's research has been funded through grants from the

National Science Foundation, Department of Defense, Intel Corporation, Sie-
mens, Panasonic Technologies, Hewlett Packard, Raytheon, Huawei Technol-

ogies, and EMC Corporation.

