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6 Abstract

7 With the explosive use of Internet, contemporary web servers are susceptible to overloads during which their services

8 deteriorate drastically and often lead to denial of services. Overloads are of more serious concerns for QoS-aware

9 servers. Evaluation of performance of QoS-aware servers in terms of the number of request completion is not very

10 meaningful. A better measure would be the number of completed sessions. In this paper, we proposed two methods to

11 prevent and control overloads in web servers by utilizing session-based relationship among HTTP requests. We first

12 exploited the dependence among session-based requests by analyzing and predicting the reference patterns. Using the

13 dependency relationships, we have derived traffic conformation functions that can be used for capacity planning and

14 overload prevention in web servers. Second, we have proposed a dynamic weighted fair sharing (DWFS) scheduling

15 algorithm to control overloads in web servers. DWFS is distinguished from other scheduling algorithms in the sense

16 that it aims to avoid processing of requests that belong to sessions that are likely to be aborted in the near future. The

17 experimental results demonstrate that DWFS can improve server responsiveness by as high as 50% while providing QoS

18 support through service differentiation for a class of application environment.

19 � 2002 Published by Elsevier Science B.V.
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22 1. Introduction

23 As the widespread usage of web service grows,
24 the number of accesses to many popular web sites

25 is ever increasing and occasionally reaches the

26 limit of their capacity and consequently causes the

27servers to be overloaded. As a result, end users

28either receive busy signal or nothing at all before

29the browser indicates a time-out error or the user
30aborts (stops) the request. Subsequently, the server

31may get choked or crash causing denial of services.

32Such abnormality is often regarded as the servers�
33poor quality and compromises their long term

34survivability. In e-commerce applications, such

35server behavior could translate to sizable revenue

36losses.

37Research on overload prevention and control
38has been limited compared to the other perfor-

39mance improvement issues such as web caching,

40and load balancing in web servers. These perfor-
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41 mance enhancement techniques, however, are in-

42 adequate in ensuring a busy web server from being

43 overloaded due to the fact that the web traffic is

44 highly unpredictable and bursty [10,15]. Proper

45 capacity planning and forecasting methods can

46 prevent servers from being overloaded under
47 controlled traffic conditions.

48 In many web sites, especially in e-commerce,

49 online brokers, and supply chain sites, majority of

50 the requests in the web traffic are session-based. A

51 session contains temporally and logically related

52 request sequences from the same client. Sessions

53 can be identified either by HTTP/1.1 persistent

54 connections [12] or from the state information
55 within the presence of cookies [14]. Sessions ex-

56 hibit distinguishable features from individual re-

57 quests. For example, session integrity requires that

58 once admitted for processing, all the following

59 requests within a session should be honored.

60 Similarly, session affinity would require that re-

61 quests belonging to the same session are handled

62 by the same front-end server for security and lo-
63 cality reasons. These features may complicate or

64 contradict the research conclusions of the perfor-

65 mance studies on web servers where the number of

66 request completions have been considered as the

67 primary performance measure. For example, ad-

68 mission control on a per request basis may lead to

69 a large number of broken or incomplete sessions

70 when the system is overloaded. Incomplete ses-
71 sions may be equivalent to a rejected session from

72 the users viewpoint or for most e-commerce serv-

73 ers. Thus, performance measure based on the

74 number of request completions may not be a good

75 indication of users satisfaction (the basic purpose

76 of web service). Especially during overloads, the

77 disparity between the two types of performance

78 measures (proportion of request completion and
79 proportion of session completion) is more en-

80 hanced. Capacity planning schemes based on in-

81 dividual requests also have the same deficiency.

82 Session integrity is a critical metric for com-

83 mercial web service. For an online retailer, the

84 more the number of sessions completed, the more

85 the amount of revenue that is likely to be gener-

86 ated. The same statement cannot be made about
87 the individual request completions. Sessions that

88 are broken or delayed at some critical stages, like

89checkout and shipping, could mean loss of revenue

90to the web site. From the end users� perspective,
91this means poor service availability. Therefore, it is

92more useful to use session integrity to evaluate the

93service availability of servers, especially during

94high-load periods.
95In this paper, we explore the session character-

96istics and their potential in overload control and

97prevention. A workload characterization study is

98done first to gain an insight to the load patterns in

99web servers. The workload characterization study

100was based on the server log from a popular online

101retailer. We found that, despite the seemingly

102complication of session sequences, some statistical
103results can used in simplifying the session-based

104traffic model. Based on these results, the session

105logic can be utilized for capacity planning and re-

106quest scheduling of QoS-aware servers, which im-

107proves server�s productivity. Server productivity

108quantifies the amount of useful work done by the

109server. Based on the session-level traffic model, we

110have proposed a dynamic weighted fair scheduling
111(DWFS) scheme that assign service weight to dif-

112ferent requests of a session in a dynamic manner.

113We have done an experimental performance anal-

114ysis by modifying the scheduling scheme of the

115Apache web server. The proposed DWFS scheme

116provides a performance improvement of about 50%

117in terms of response delay and significantly reduces

118the session abortion rate for the workload and
119system configuration used in the experimentation.

120The rest of the paper is organized in the fol-

121lowing manner. Section 2 characterizes session-

122based HTTP requests. Section 3 provides capacity

123planning tools to prevent server overload. Section

1244 proposes a request scheduling algorithm to

125control server overload and improve server per-

126formance followed by experimental results in
127Section 5, which proves the feasibility and quan-

128tifies the performance of the proposed algorithm.

129The related works are discussed in Section 5, fol-

130lowed by the concluding remarks in Section 7.

1312. Session-based web traffic characterization

132A session in web accesses can be defined as a

133sequence of requests that form one complete
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134 transaction. A session during web accesses can be

135 represented as a finite state machine with each
136 state representing a stage that a request is under-

137 going. Fig. 1 depicts an example of such a repre-

138 sentation. The directed arc (A,B) represents a

139 transition from state A to state B with a proba-

140 bility P ðA;BÞ. The four states A, B, C, and D

141 could be representing states corresponding to main

142 menu, checkout, browsing and search in an e-

143 commerce site.
144 In web services, a stage can be a single URL or a

145 group of URL�s that have the same reference

146 pattern and resource claim profile. A session can

147 be mandatory or voluntary. A mandatory session

148 refers to the situation in which the descendant re-

149 quests are generated by the browsers instead of

150 clients. The requests for embedded image files

151 within an HTML page is an example of this case.
152 We call the page that has embedded files as the

153 main page. In voluntary sessions, the descendant

154 requests are generated by the clients explicitly. For

155 example, the client clicks a link within the current

156 main page to browse another page. In current web

157 server architecture, most of the image files are

158 served by edge servers [2] or dedicated image

159 servers which are physically separated from those
160 serving the main pages. Therefore, the perfor-

161 mance of these servers is largely affected by the

162 service of main pages. Thus, the following discus-

163 sion is focused on voluntary sessions.

164 During our research, we obtained the trace of

165 accesses to an e-commerce web server from a

166 popular online retailer. 1 Based on the reference

167traces, we characterized the basic behavior of ses-

168sion-based traffic. The characterizations are de-

169rived from a typical daily traffic trace. Previous

170studies [10] have characterized the web traffic as

171very bursty, which is also observed in our result as

172shown in Fig. 2. From Fig. 2, it is observed that
173the traffic load is highest during the period of

17417:00–23:00 h, which accounts for over 50% of the

175daily traffic. The traffic volume peaked at 20:00–

17621:00, where nearly 10% of overall requests were

177initiated. So the server is presumably more heavily

178loaded during this period (during evening hours),

179which was confirmed from the server side perfor-

180mance data recorded by the MS Performance
181Monitor.

182We further investigate the relationship between

183request queue length (the waiting requests and

184those being served) and the request processing

185time under heavy server load. Since the processing

186time for individual URL�s varies, we adopt the

187measure called stretch factor from [23], which re-

188fers to the quotient between the current processing
189time and the processing time of the same URL

190under normal load. The stretch factor reflects the

191current server load. Fig. 3 depicts the queue length

192and the stretch factor during the 20:00–21:00 pe-

193riod. It is observed that the two curves show

194similar pattern, indicating that the server load is

195proportional to the queue length. While the queue

196length is a good indication of server load, the na-
197ture of the jobs in the queue also has a great im-

198pact on server performance. Servers whose

A   B                        C                         D

P(A,D)

P(A,B) P(B,C)

P(B,A) P(C,A)

P(D,A)

P(B,D)

P(C,D)

Fig. 1. An example of a web session represented as a state

machine.

1 We refrain from mentioning the name of the retailer

honoring a non-disclosure agreement. Without the non-disclo-

sure agreement, we would have been able to obtain the data.
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Fig. 2. Traffic histogram of the server trace for a day.
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199 workload is dominated by static files (like HTML

200 pages, images) generally perform better than the

201 ones with high proportion of dynamic files (like

202 CGI, ASP, etc). Therefore, unless the composition

203 of workload is comparable, using the queue length

204 as an indicator of server load is incorrect.

205 We sorted the requests into different queues ac-

206 cording to their nature (main menu, checkout,
207 search, browsing) and analyzed the composition of

208 workload at each time period. These queues usually

209 have different resource consumption profiles. For

210 main menu queues, the major task is static HTML

211 and image files rendering, and the update fre-

212 quency is relatively low. For checkout queues, the

213 process is SSL-secured and thus the workload is

214 very CPU intensive. For search queues, the back-
215 end database is queried and the server only receives

216 the query results and assembles them in the HTML

217 format. Characteristics of the browsing queue is

218 like main menu queue except that more image files

219 are rendered. Fig. 4 presents the nature of the

220 workload composition during the period 20:00–

221 21:00, which is observed to be relatively stable.

222 It has been realized in prior studies that the re-
223 quests within a session reveal statistically depen-

224 dent relationship [7,17]. Conclusions from these

225 studies show that historic reference patterns can be

226 exploited to predict the subsequent requests. Pre-

227 diction method of subsequent requests within a

228 session are different. In this study, we use the

229 transition probability of the state machine for

230 prediction, which derives the subsequent URL

231from the current one. This method requires no

232sophisticated mathematical modeling and uses less

233computation power in practice. The probability is

234obtained either from offline historic records like

235server logs or from online statistics. The work in

236this paper is based on offline record of server logs,

237however other methods can also be applied in a

238similar way. We will later show that even with this
239simple prediction method, the performance im-

240provement is significant.

241Fig. 5 shows the transition probability (in per-

242centage) matrix among the stage vector compo-

243nents: main menu (MM), checkout (CO), search

244(SR), browsing (BR) from the online retailer�s
245server log. The row vectors show the transition

246from one stage to another. For example, the sec-
247ond row indicates that the transition possibility

248from CO to MM, CO, SR, and BR is 13.5%,

24944.9%, 40.2%, and 1.4%, respectively. The server

250log file format follows W3C extended logging [18].

251Each request entry contains a user ID for the login

252user which facilitates the identification of session

253owners. Session integrity is maintained by the IIS

254server (Microsoft Internet Information Server).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50 60

R
at

io

Time (minute)

Fig. 4. Queue composition for the 1 h duration.

Fig. 5. State transition matrix.
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255 Another issue related to the session behavior is

256 the user thinking time between consecutive re-

257 quests within a session. It is random in nature and

258 varies for different web sites. In our server trace,

259 the thinking time was usually short and less than

260 60 s. Characterization of other traces reveals sim-
261 ilar results. When the traffic is high, which is the

262 case for heavily loaded servers, the long term effect

263 of the thinking time can be ignored.

264 Finally, when evaluating the relationship be-

265 tween the number of outstanding requests and the

266 number of active sessions, we found that the ratio

267 between the two is stable. Though each session can

268 fork several requests simultaneously, the fact that
269 some others do not send any requests offsets it,

270 which makes the overall behavior as stable. Fig. 6

271 shows this ratio for the trace of the period 20:00–

272 21:00. In this figure, the average value is 0.526 with

273 a standard deviation of 0.017, which means that

274 the variation is small and the ratio is stable. This

275 result is useful in estimation of the request arrival

276 rate based on the number of active sessions.
277 Obtaining server traces from e-commerce sites

278 has been difficult due to security and proprietary

279 reasons. We could manage to get the traces from

280 one corporation. Although our analysis and re-

281 sults use only this set of trace, the proposed

282 methodology is applicable for any other server

283 trace. So we have laid emphasis on the method-

284 ology, the trends, and relativeness of the results,
285 rather than the absolute numbers (which are spe-

286 cific for the trace).

2873. Session-based capacity planning

288We have considered QoS-aware web servers for

289our study in which requests are served based on

290their priority levels. The basis of priority assign-
291ment is actively discussed in [11] and is beyond the

292scope of this study. In QoS-aware web servers, an

293important and interesting performance metric is

294the delay bound, which is the maximum response

295delay a request encounters. Besides the processing

296time of each request, there are other latencies as-

297sociated with the service of a request, such as

298queuing delay and network transmission delay. In
299this paper, we only consider the delay at the server

300side. The study of network delay is not within the

301scope of this paper and is being extensively studied

302in the IETF architectures [11]. We assume that the

303service level agreement (SLA) that can be provided

304by a web server would consist of a bounded delay

305for each QoS level if the request arrival rate does

306not exceed an agreed amount. From the web server
307perspective, QoS attributes are defined in terms of

308the maximum rate of request arrival and the la-

309tency bound of each request. An SLA can thus be

310stated in terms of ðk; d; sÞ, where k is the maximum

311rate of arrival, d is the delay bound, and s is the

312proportion of requests that meet the delay bound.

313In a QoS-aware web server, overload is said to

314occur when the SLA is violated for an extended
315period of time. Thus, we formally define overload

316as follows.

317Let the predefined SLA for a specific QoS le-

318vel is ðk; d; sÞ. If for an extended period of

319time T , while the arrival rate is less than k,
320the proportion of requests that meet the delay

321bound stay less than s, the web server is said
322to be overloaded. It is implicit in this defini-

323tion that the SLA negotiation was done con-

324sidering the server capacity and workload

325conditions.

326The following analysis focuses on the worst case

327where requests compete for CPU resources (Table

3281). The QoS rules are defined for each of the
329URL�s or for URL groups. The SLA specifies the

330delay bound of the QoS groups when the request

331arrival rate is below some threshold.
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Fig. 6. Ratio of request arrival rate to session generation rate.
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332 We only consider a steady-state system because
333 a transient model is mathematically intractable

334 and may be of little practical use. In a steady-state

335 system, the number of requests arriving at and

336 departing from the server must be equal. Thus, the

337 arrival rate kp
i is equal to the departure rate lp

i

338 under the steady-state assumption.

339 The turnaround time at each stage is less than

340 the lower limit, which is the sum of the delay
341 bound and the processing time. Thus,

lp
i P

1

Ti þ dp
i
:

343 The input to each stage is the output from the

344 other stages with certain transition probability.

345 Excluding the source and sink stages, we then have

kp
j ¼

X
lp
i � Pi;j ¼ lp � Pj;

347 where lp and Pj are the vector forms of lp
i and Pi;j

348 and the second expression is the dot product.

349 With a pre-emptive priority scheduling disci-
350 pline, the high priority requests are scheduled be-

351 fore the low priority ones. Thus the departure rate

352 of a priority group is less than the service rate of

353 higher priority groups.

1

Ti þ dp
i
6 lp

i 6
kp
iPp

j¼1 kj
i � Ti

: ð1Þ

355 Using the steady-state assumption,

1

Ti þ dp
i
6 kp

i 6
kp
kPp

j¼1 kj
k � Tk

" #
� Pi: ð2Þ

357 Finally, using (2) for all the stages and presenting
358 in a matrix form, we get:

359Eq. (3) reveals the relationship between delay

360and traffic volume of the QoS priority groups. To

361infer

1

Tiþdp
i

� �
m�n

6 ½kp
i �m�n6

kp
kPp

j¼1k
j
k �Tk

" #
m�n

� ½P �n�n;

ð3Þ
where m is the number of priority groups and

n is the number of stages. We call this expres-
sion as the traffic conformation inequation

366the SLA from this function, we can analyze in a

367stepwise manner. It is obvious that for the highest

368priority, the request arrival rate at stage i is con-

369strained by

1

Ti þ d1
i
6 k1

i :

371In practice, the k1
i can be set to its lower bound so

372that they will not cause excessive delay for the

373lower priority groups and maximize system utili-

374zation by allowing more requests into the system.
375Thus the arrival rate of the next immediate priority

376group is bounded by

1

Ti þ d2
i
6 k2

i 6
k2
kP2

j¼1 kj
k � Tk

" #
� Pi:

378Similarly, the arrival rate of other priority

379groups can be obtained.

380After obtaining the request arrival threshold, it

381is easy to define the session generation rate using

382the ratio rrs. As discussed in Section 2, rrs is more
383or less stable when the traffic volume is high. Thus

384the session generation rate of class i is given by

/i ¼ rrs
X

ki
j: ð4Þ

3864. Productive scheduling algorithm

387Among the several causes that are responsible

388for the degradation of server output, scheduling of
389requests is a critical factor. For example, queues

390consisting of time-consuming requests have a good

391chance of getting accumulated. As a result, they

392would dominate in controlling CPU resources in a

Table 1

Notations used for the analysis

Notations Description

Pa;b State transition probability from a to b
ki
a Request arrival rate of session class i to state a

li
a Request departure rate of session class i from

state a
di
a Delay bound of class i at stage a
Ta Processing time at stage a
/i Session generation rate of class i
rrs Ratio between the number of requests and the

number of sessions
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393 round robin scheduling mode. Consequently, more

394 time is spent on these queues and the effective

395 overall output is degraded. Intuitively a conser-

396 vative admission control can prevent the server

397 from being overloaded. But such conservativeness

398 is not easy to realize because of the burstiness of
399 traffic and the likely-hood of leading to under-

400 utilization of the server. We believe a relatively

401 relaxed admission control assisted by an efficient

402 scheduling algorithm is a better alternative. The

403 admission control admits as many sessions as

404 possible so long as the server is not overloaded.

405 Our previous work on admission control based on

406 predictable service time [8] could serve this pur-
407 pose. In addition, the scheduling algorithm takes

408 care of the situation when the admitted sessions

409 are beyond the server�s capacity. It seeks the best

410 scheduling that produces as many completed ses-

411 sions (not necessarily requests) as possible.

412 In the context of sessions, each of the waiting

413 queue represents a particular task of the session

414 sequence and its output serves as input to the other
415 queues. So proper shaping of these queues by

416 means of priority scheduling among different

417 queues can alleviate overload conditions. This is

418 the basic idea of our scheduling algorithm.

419 Another phenomenon that is frequently ob-

420 served in web servers is that during overload, more

421 number of tasks gets aborted. Before abortion,

422 these tasks consume excessive system resources
423 during the crunch period. To resolve this ill-effect

424 we use a scheme in which requests of sessions that

425 have a higher probability of getting completed are

426 scheduled first. Such a scheduling approach helps

427 the server in doing more useful work during

428 overload situations, while avoiding the service of

429 requests whose sessions are likely to get aborted.

430 4.1. Comparison of scheduling algorithms

431 The popular scheduling algorithms that are used

432 in web servers include round robin (RR), earliest

433 deadline first (EDF) and weighted fair sharing

434 (WFS). RR and EDF do not consider the rela-

435 tionship of inter-session request transition thus

436 they cannot help in session-based overload con-
437 trol. WFS provides higher levels of service to the

438 tasks that have higher priority. Thus the queue

439length accumulation at some stages can reach a

440steady-state by lowering the request injection rate

441and raising the service rate. However, this dis-

442crimination increases request accumulations at

443other queues, which in turn would result in request

444drops because of timeout. This domino effect dis-
445rupts the normal request transition flow into other

446queues and eventually leads to lower throughput

447in terms of the number of completed sessions.

448We introduce a measure called server’s produc-

449tivity, which is defined as a function of request

450completion and error rate of requests that belong

451to ongoing sessions for a server, and can be for-

452mally expressed as follows.

453Server�s productivity during time interval T : If
454the number of requests completed within T is

455c, and the number of requests aborted during

456this time is e, then the server’s productivity

457during T is ðc	 eÞ.

458Server productivity is thus a measure of the
459amount of useful work done by a server during a

460given time period. Serving fewer requests while

461more number of requests get aborted leads to a

462negative productivity.

463A request abortion occurs either because of

464some of the internal problems at the server side or

465due to the processing timeout imposed by the

466script languages like ASP and PHP. A request
467could also be aborted by the user because of im-

468patience. Ignoring the internal problems of the

469server, we use request timeout to represent all the

470server processing failures. To illustrate how the

471weight assignment could affect server productivity,

472we simulated a round robin scheduler and col-

473lected the results under different weight assign-

474ments. The simulator has four queues
475corresponding the four states (MM, CO, SR, BR)

476with the same transition probability as was listed

477in Fig. 5. The processing times of the stages are

4780.5, 1, 1.5, and 2, respectively. The timeout dura-

479tion was assumed 20 time units and the simulation

480duration was set to 10,000 time units. The more

481weight a queue is assigned, the more CPU time it

482can use. Table 2 displays the different server pro-
483ductivities. It is observed that proper weight as-

484signment can significantly improve the overall
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485 performance by increasing the number of com-
486 pleted requests and reducing the number of time-

487 outs. In this set of results, the best case

488 performance is nearly eight times better than the

489 worst case. This inference inspires to seek pro-

490 ductivity improvement through appropriate

491 weight assignment.

492 Motivated by the server productivity study, we

493 propose a DWFS scheme based on the temporal
494 relationship in web session in such a manner that

495 the weight distribution is not static all the time.

496 Instead, it depends on the accumulation at the

497 queue and the output rate with the goal to improve

498 the server productivity. Unlike the traditional al-

499 gorithms that seek short term throughput im-

500 provement, DWFS tries to smooth the domino

501 effect of overloads in pursuit of sustained
502 throughput.

503 4.2. Dynamic weighted fair sharing

504 The objective of DWFS is to improve the ser-

505 ver�s productivity through dynamic weight as-

506 signment for scheduling purpose. In an overloaded

507 server, processing at one queue is not productive
508 when it overwhelms other queues. For example, in

509 an e-commerce server, the merchandise browsing

510 and checkout are two queues. If the browsing

511 queue is processed faster than the checkout queue,

512 then the clients proceed to check out only to be

513 jammed, and most of the requests get timed-out.

514 In this case the browsing queue becomes unpro-

515 ductive. On the other hand, if the server distributes
516 more weight on the check out queue such that the

517 requests in the browsing queue will experience

518 longer but tolerable service time, then the input to

519the downstream checkout queue is reduced and

520their probability of receiving service is increased,

521consequently the end user can perceive a faster

522service for the entire session.

523The other aspect of DWFS is that, if a server

524knows a priori that the request it is serving is un-
525productive, it can stop or delay processing the

526current request queue and transfer the weight to

527serve other queues to improve the server�s pro-

528ductivity.

529The modeling tool used for DWFS is a queuing

530network with limited waiting room. A k-waiting
531room queue can accommodate at most k entries

532waiting for service and the new arrivals are simply
533dropped. More specifically, as a measure to allow

534dynamic weighing, k is defined to be the ratio of

535service time and session timeout period. Each

536output from a queue produces a credit if the out-

537put goes to a queue that is not yet full (productive

538queues). The credit reflects the productiveness of

539the service. If service to a queue is known to be

540unproductive, then its weight is transferred to
541handle other queues. This conflicts with philoso-

542phies behind some other scheduling algorithms

543that seek maximal throughput from the server in

544all situations. In DWFS, some jobs may be drop-

545ped or delayed even though they could have been

546served before the deadline if more weight were

547assigned to them. However, in the long run, more

548incoming requests can meet their service expecta-
549tion thus the overall throughput increases. If the

550drop rate is not high to overshadow the through-

551put, the server�s productivity improves.

552Productivity function:

f ðnÞ ¼
Xn

i¼1

Xn

j¼1

Pi;j � 1 Lj �
Tj
wj

�

< Timeout

�
; ð5Þ

where wj is the normalized weight assigned to

queue j and Lj is the queue length. 1ðxÞ ¼ 1 if

x is true, 0 otherwise.

557The productivity function defined in Eq. (5)

558states that if the output from a queue is served

Table 2

Server�s productivity comparison

Weight

assignment

Requests

completed

Requests

timed out

Server�s
productivity

(1,1,1,1) 3077 747 2330

(5,1,1,1) 3930 616 3314

(1,5,1,1) 1585 826 759

(1,1,5,1) 2520 880 1640

(1,1,1,5) 1685 879 806

(5,1,5,1) 3463 477 2986

(1,5,1,5) 1161 767 394
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559 before the deadline, then it is considered produc-

560 tive. The productiveness of the output is deter-

561 mined by the destination it leaves for; if the

562 destination queue is full, then no credit is earned

563 but a penalty is imposed, otherwise a credit is

564 added. The credit can also be inversely propor-
565 tional to the queue length to avoid filling up the

566 queue. Since there are more than one possible

567 destinations for the output, the credit is reflected

568 by multiplying it with the transition probability.

569 The capacity of the waiting room depends on the

570 service weight; the more weight assigned to the

571 queue, the less time a request takes to complete,

572 and more requests can be served before the time-
573 out period expires.

574 Eq. (5) can be rewritten as

f ðnÞ ¼
Xn

j¼1

Qj � 1 Lj �
Tj
wj

�
< Timeout

�
; ð6Þ

576 where Qj ¼
Pn

i¼1 Pi;j. The maximization of f ðnÞ
577 can be achieved through dynamic programming

578 method as illustrated in Algorithm 1, the com-

579 plexity of which is Oðn2Þ. When the number of

580 stages is small, the computational overhead is

581 trivial.

582 Algorithm 1. Pseduocode of productivity function

583 solver

584 • INPUT:

585 L½1::n�;T½1::n�;Q½1::n�; and timeout have

586 the same meaning as in Eq.(5)

587 w:remaining weight

588 j:current queue to calculate

589 • OUTPUT:
590 maximum productivity

591 • ALGORITHM:

592 int max_fn(w,j) {

593 ifðj >¼ nÞ
594 return 0;

595 min w ¼ T½j� � L½j�=timeout;
596 ifðmin w > wÞ
597 return max fnðw;jþ 1Þ;
598 f1 ¼ max fnðw-min w;jþ 1Þ þ Q½j�;
599 f2 ¼ max fnðw;jþ 1Þ;
600 return maxðf1;f2Þ;
601 }

602It is inferred from the productivity function that,

603when other parameters are fixed, the timeout value

604determines how many jobs can be queued in each

605stage. Bigger the timeout value, the more number

606of jobs that can be queued leading to longer mean
607queueing time. We were thus inspired to differen-

608tiate QoS based on timeout values. This impact is

609further explored in Section 5.

6105. Experimental performance evaluation

611From the above discussion, we can see that the
612DWFS�s approach to relieve an overloaded server

613is to add weights on those requests whose de-

614scendant requests within the same session can be

615honored. Those requests whose descendant re-

616quests are predicted to miss their delay bound are

617delayed for later processing. To verify the feasi-

618bility of this scheme, we implemented the algo-

619rithm in an Apache web server and evaluated its
620performance.

6215.1. Experimental setup

622The test-bed contains a web server and several

623clients. The server has an Intel PIII 733MHZ CPU

624and 128 MB RAM, running Apache 1.3.19 for MS

625Windows 2000. Apache [3] is an open source,
626widely used web server. Fig. 7 illustrates the re-

627quest handling process in the Apache server. At

628runtime, the Apache server consists of worker

629processes (or threads in some systems like MS

630Windows) and one listener. The listener listens on

631HTTP port (usually TCP 80) and accepts new

632connections. It adds the connections into a job

633queue by calling add_job( ). At this time, ad-
634d_job( ) does not parse the HTTP request lines.

635Each of the worker processes unlinks a job from

636the job queue by calling remove_job( ). Only then

637the request line is parsed and the priority group

638and stage the job belongs to are known. This

639working mechanism does not fit DWFS in the

640sense that the worker processes have no control

641over the job queues. We have changed the way new
642jobs are added.

643As shown in Fig. 8, instead of connections, in

644our modification, the jobs are HTTP requests and
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645 the parser sorts them into different queues based

646 on their URL�s and records the time-stamp they

647 are added into the queue. Then the priority as-

648 signer assigns different priority to the requests

649 based on their IP addresses. The DWFS module is

650 invoked when the ready queue is empty to exercise

651 the DWFS algorithm to assign jobs to the worker
652 processes and drops the requests that are timed

653 out. Since Apache server itself has no control over

654 the CPU time slot, the weights are assigned as the

655 number of requests from the queues to be dis-

656 patched to the ready queue. At this time, the re-

657 quest that exceed the timeout are dropped. Finally

658 the processor handles the requests within the ready

659 queue.
660 The clients used in the test-bed are several Sun

661 UltraSparc 10 workstations running Solaris 2.8.

662 The benchmarking tools used in the experiment is

663 a modified version of WebStone 2.5 [22]. The re-

664 quest distribution in the original WebStone

665 benchmark is not adequate for our purpose. The

666 way a client picks a URL is randomized and the

667 URL array size is too small in the original
668 benchmark. We modified the source so that each

669 client sequentially picks a URL from the array to

670 simulate a session and all the clients together re-

671 play the request trace of the online retailer that we

672 have characterized earlier.

673 The working mechanism of the experiment is as

674 follows. A master process instructs a configurable

675number of clients to send HTTP requests to a web

676server for a specified time period. During the test,

677the clients choose a URL from an array and keep

678track of the connection time, response time, and

679other parameters. After the test finishes, the clients

680send the statistics to the webmaster process and

681the latter reports the test results after collecting all
682the clients� data. The final results contain infor-

683mation such as server connection rate (the number

684of connections the server accepts; the higher the

685better), average response time (the average time-

686span the client receives the whole response; the

687smaller the better), average throughput (the server�
688throughput during the test time; the higher the

689better). There are other HTTP benchmarking tools
690available like httperf [16], SpecWeb99 [20],

691SURGE [6], etc. But WebStone�s ability to control

692the number of clients and URL array and its ex-

693cellent result reporting tools was appropriate and

694the modified version was adequate for our exper-

695iment.

696We created over 4,000 files in the web server and

697divided them into four queues as stated in the
698previous section. The average processing time of

699URL�s in each queue under normal server load is

7000.5, 20, 10 and 5 s respectively. In the test, the

701WebStone clients were instructed to replay the

702trace of the online retailer�s server collected during

703the period 20:00–21:00.

HTTP
request

Listener

add _ job() remove_job()

processor

HTTP
response

Fig. 7. Apache implementation of request handling

HTTP
request

 parser

stage 1

stage 2

stage 3

stage 4 

priority

assigner
DWFS

ready

queue

processor

HTTP
response

request timeout

Fig. 8. Revised implementation of request handling
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704 5.2. Experimental results

705 From the test, we found that some of the per-

706 formance parameters such as server connection

707 rate, number of completed requests and server
708 throughput (in terms of the number of requests

709 served) were more or less the same, while the av-

710 erage response time varied significantly. For better

711 comparison, we have chosen the response time as

712 the primary performance measure for our analysis.

713 We also analyzed parameters such as request

714 timeout rate due to DWFS, the queueing time, and

715 the processing time of each request from the server
716 log at the web server side. We observed that the

717 web server was overloaded when the number of

718 clients reached 40 and essentially became saturated

719 after being requested by 60 clients, so the following

720 results and discussions are focused on the results

721 with the number of clients as 40, 50, and 60.

722 The experiments were conducted under different

723 DWFS session timeout settings and the results
724 were compared to the original Apache server with

725 the same configurations. In the DWFS tests, the

726 clients were evenly divided into three priority

727 classes. Each priority class has a scheduling time-

728 out, the shorter timeout a request is assigned, the

729 higher is its priority and thus it gets quicker ser-

730 vice. In WebStone, the webmaster process always

731 tries to evenly divide the number of total processes
732 on the client workstations, making the number of

733 processes in each of the priority class approxi-

734 mately equal.

735 Tables 3–5 show the DWFS results with differ-

736 ent timeout values, and Table 6 shows the results

737 from the unmodified Apache server with the same

738 configuration. Fig. 9 depicts the response time

739 comparison of the four configurations. In Tables
740 3–5, the values in Number of Clients is represented
741 as an fraction because the number of processes in

742each priority class varies in each test iteration but

743is approximately one-third of the total number of

744clients. Since the original Apache server does not

745drop requests because of timeout, only the average

746response time is listed in Table 6.

747It is observed from the tables that, DWFS can

748significantly improve server performance by re-

749ducing the response time up to 52%. The smaller

Table 3

DWFS with session timeout period of 10 s

Number

of clients

Average response

time (s)

Request timeout

rate (%)

40/3 6.902 0.16

50/3 7.152 0.28

60/3 6.968 0.44

Table 4

DWFS with session timeout period of 15 s

Number

of clients

Average response

time (s)

Request timeout

rate (%)

40/3 8.537 0.11

50/3 8.357 0.20

60/3 8.772 0.35

Table 5

DWFS with session timeout period of 20 s

Number

of lients

Average response

time (s)

Request timeout

rate (%)

40/3 9.512 0.01

50/3 9.864 0.16

60/3 10.584 0.24

Table 6

Response time behavior of the Apache server

Number of clients Average response time (s)

40 9.623

50 11.885

60 14.267
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Fig. 9. Response time comparison.
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750 the session timeout, the shorter is the response

751 time and thus better is the service. DWFS incurs

752 additional request timeout. The timeout rate rises

753 significantly with respect to the number of clients

754 and the timeout value. But such occurrence is less

755 than 0.5%, the impact of which is insignificant on
756 the service availability provided by an overloaded

757 server. This observation also distinguishes DWFS

758 from the shortest-job-first scheduling in the sense

759 that the shortest-job-first scheduling starves long

760 jobs which may lead to more request timeouts.

761 Finally, the relatively steep slope of the original

762 Apache server curve compared to DWFS curves in

763 Fig. 9 reveals that the server performance using
764 DWFS is more scalable when the number of the

765 clients increases.

766 To investigate the underlying factors of the re-

767 sponse time difference, we further analyzed the

768 anatomy of the response time. We divided the re-

769 sponse time into queueing time and processing

770 time. Queueing time is the period during which a

771 request remains queued and processing time is the
772 interval between when the request was read and

773 the time when the HTTP response sent. In Apache

774 architecture, the queueing time starts when a job is

775 accepted and ends at the point when the request

776 starts getting processed by a worker thread; its

777 processing time starts at that point. For a DWFS

778 enabled Apache server, however, since every re-

779 quest line is read immediately after it has been
780 accepted, the queueing time spans from the time

781 the request is read to the moment when a worker

782 thread begins to process it. Fig. 10 presents the

783 anatomy of the response time under different

784configurations. The x-axis label specifies server

785type/timeout value/number of clients. The timeout

786value is zero for the original Apache server be-

787cause it has no scheduling restraints.

788From Fig. 10, it is observed that the queueing

789time of the original Apache server is dependent on
790the number of the clients. The more the number of

791clients, the longer is the queueing time. We believe

792that this effect is a direct result of its best effort

793scheduling discipline, where requests are queued

794on a first-come-first-serve manner and short re-

795quests have to wait for the completion of long

796requests even if these long requests� turnaround
797time may exceed the delay bound and be aborted
798by the impatient clients. For the DWFS�s case, the
799queueing time also varies for different timeout

800settings but is much shorter than those of the

801original Apache server. Under the same timeout

802setting (thus the same priority class), the queueing

803time remains stable, which in turn means that the

804session level serviceability is maintained. This is

805due to the pre-emptive scheduling and the early
806dropping of those requests whose pre-assigned

807service time cannot be guaranteed for the descen-

808dant requests within the same sessions.

809In Section 4.2, we claimed that by varying the

810timeout value, the number of requests in each

811queue will change. For bigger timeout value, more

812requests reside in the queues, as a result of which

813the mean queueing time increases. This was found
814to be true in the experiment. Figs. 11 and 12 plot

815the queue length under timeout value 10 and 20 s

816with 40 clients. Table 7 lists the average request

817latency at each queue using different timeout val-

818ues. It is observed that queue lengths under time-

819out 20 s are bigger that those in 10 s and queue

820latencies under timeout 20 s are correspondingly

821longer. These results verify that varying timeout
822value can provide service differentiation.

823Finally, we compared the session abortion rate

824under different configurations. We assume that a

825session is aborted if one of the requests within it

826does not receive service before its delay bound. In

827the real world, when this occurs, the end users get

828impatient and abort the session. In DWFS, a ses-

829sion gets aborted when the request has not been
830processed before its timeout value. While there is

831no timeout constraint in Apache, we assume thatFig. 10. Anatomy of the average response time.
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832 every session has a timeout value of 15 s. Fig. 13
833 depicts the comparison. It is observed that for

834 DWFS, the aborted session rate is relatively small

835 and the priority class with longer timeout value

836 usually has lower abortion rate. For Apache ser-

837 ver, the aborted session rate is sensitive to the

838 number of clients which means more and more

839 sessions get aborted as the server load increases.

8406. Related work

841A limited number of work has been reported on

842sessions characterization in web servers. In [4], the

843authors provide parameters based on the World

844Cup 98 server log, which include session length,

845inter-session time, and their implication on server
846performance. Our characterization work provide

847complementary results on workload composition,

848session stage transition, and the ratio of request

849arrival rate to session generation rate. These em-

850pirical results can be exploited to recognize user

851browsing behavior and capacity planning.

852In the context of capacity planning, [13] pro-

853vides a model based on bandwidth demands for
854memory, processors data bus, NIC and I/O buses.

855It is practical for server configuration. Our ca-

856pacity planning model is targeted towards session

857level SLA specification and overload prevention.

858Although a plethora of work on web servers

859have addressed performance issues in web servers,

860the studies on overload control has been limited.

861An approach for overload control by content ad-
862aptation has been proposed in [1]. Under high load

863the servers resorts to low fidelity images that

864consume less system resources, thus reducing the

865load. Content adaptation is applicable mainly to

866static web content. Overload control using oper-

867ating system support has been studied in [5,15,21].

868The server behavior under overload has been an-

869alyzed in [15] and three solutions are proposed to
870help relieve an overloaded server. These solutions
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Table 7

Average latency

Queue Timeout 10 s Timeout 20 s

1 1.6 2.3

2 27.5 27.9

3 14.5 20.9

4 6.0 6.6
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871 include direct control over kernel timeouts and

872 resource limits, resource introspection, and disas-

873 ter management. Three kernel-based mechanism

874 that prevent server from being overloaded by ad-

875 mission control and service differentiation are

876 presented in [21]. Their mechanisms include TCP
877 SYN policing that control the TCP connection

878 rate, prioritized listen queue and HTTP header-

879 based connection control that provides service

880 differentiation. A new kernel facility called re-

881 source container which can effectively audit overall

882 resource usage by each process is presented in [5].

883 This scheme is useful for service differentiation as

884 well as overload control. In [19], the authors have
885 studied web server overload control through three

886 different schemes. The first approach is based on

887 the network interface level request dropping. The

888 second approach refers to a feedback mechanism

889 from the application level to throttle the traffic

890 volume. The third approach is a hybrid of the

891 other two schemes. These schemes significantly

892 improve server throughput under high load. All
893 these solutions have not considered the session

894 integrity and hence have limited applications for

895 session-based web traffic.

896 Most of the prior work on overload control

897 having examined performance on per request ba-

898 sis, which may not be adequate for many appli-

899 cations that require session-based overload

900 control. A session-based admission control scheme
901 has been reported in [9], which prevents overload

902 by efficient admission control. They monitor the

903 server load periodically and estimate the load in

904 near future. If the predicted load is higher than a

905 predefined threshold, no new requests are admit-

906 ted. This situation may lead to denial of services.

907 The proposed DWFS scheme is targeted for effi-

908 cient scheduling of requests and complements the
909 work reported in [9] in maintaining long term

910 server availability.

911 7. Conclusion

912 Overload control ensures service availability in

913 varying workload and is an indispensable part of
914 network server engineering. This paper presents

915 QoS capacity planning and scheduling algorithm

916for overload control based on characterization of a

917commercial web server log. The main idea of the

918proposed scheme is to use session-based overload

919control. Performance measures of web services in

920terms of sessions is more meaningful than the

921measures based on individual requests. We have
922targeted QoS-aware web servers that provide

923guaranteed QoS based on the requirement of ses-

924sions. The traffic conformation function provides

925quantitative solution for SLA specification and

926can be used in commercial servers. We have pro-

927posed and evaluated a new scheduling algorithm

928called DWFS, which discriminates the scheduling

929of requests on the basis of the probability of
930completion of the session that the requests belong

931to. The proposed scheduling algorithm improves

932server productivity under heavy load by more than

93350% in the configuration studied in this paper.

934This work can be used as a framework for further

935development and deployment of session-based

936overload control techniques.
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