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Abstract

Nagaraj et al.[1, 2] present a skewed-non-linear Generalized Luroth Series (s-nGLS) framework.
S-nGLS uses non-linear maps for GLS to introduce a security parametera which is used to build
a keyspace for image or data encryption. The map introduces non-linearity to the system to add
an “encryption key parameter”. The skew is added to achieve optimal compression efficiency.
s-nGLS used as such for joint encryption and compression is aweak candidate, as explained in
this communication. First, we show how the framework is vulnerable to known plaintext based
attacks and that a key of size 256 bits can be broken within 1000 trials. Next, we demonstrate that
the proposed non-linearity exponentially increases the hardware complexity of design. We also
discover that s-nGlS can’t be implemented as such for large bitstreams. Finally, we demonstrate
how correlation of key parameter with compression performance leads to further key vulnerabil-
ities.
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1. Introduction

Multimedia communication with efficient compression and security has become an increas-
ing concern for wide applications in commercial and defenseapplications. The pervasive use
of multimedia communications in entertainment (HDTV, mobile, Internet video [3]), public do-
main (surveillance [4], tele-medicine) and defense applications (Unmanned air vehicles [5]) has
increased concern for efficient multimedia encryption. The challenge of enabling both com-
pression and security by a single operation is gaining importance given the ubiquitous nature of
compressed media files, challenging demands of video compression systems and huge popularity
of mobile videos (v.i.z. mobile phones, ipods, notebooks, HDTV etc). In 2011, more than 50%
of data traffic in cellular networks was videos and this trend is going to increase.

Arithmetic Coding (AC) is widely used for the entropy codingof text and multimedia data.
The range [0,1) is iteratively partitioned into sub-intervals according to the relative probabilities
of occurrence of the input symbols (can be binary or multiplesymbols). However, as conven-
tionally implemented, it is not particularly secure.
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In order to perform source coding (data compression), Nagaraj et al. [1, 2] present a new
scheme called as Generalized Luroth Seroies (GLS). GLS treats messages as coming from in-
dependent and identically distributed (i.i.d.) sources. They are represented as imprecise mea-
surements (symbolic sequence) of a chaotic system which is ergodic, preserves the Lebesgue-
measure and is a nonlinear-dynamical system. GLS achieves Shannon’s entropy bound and turns
out to be a generalization of arithmetic coding, the popularsource coding algorithm used in in-
ternational compression standards such as JPEG2000 and H.264. The authors use a skew version
of non-linear GLS coding (s-nGLS coding) for data encryption.

GLS is an ergodic and Lebesgue measure-preserving discretedynamical system. Skewed
non-linear GLS exhibits Robust Chaos, has positive Lyapunov exponents and preserves the
Lebesgue measure and has high key sensitivity. However, thesecurity of the scheme has not
been proven. In our study, we found several vulnerabilitiesof the proposed scheme, as enumer-
ated below.

Weakness of s-nGLS coding

1. Known Plaintext Attack: An adversary may make a wrong guess in value of the skew
parametera. However, this may lead to imperfect reconstruction and notnecessarily to
completely random output, which can be exploited for vulnerabilities. A closely related
value of a can lead to perfect reconstruction of first few symbols of a binary string even
when it is not exactly the same as a.Therefore,it is possible for an adversary to launch a
known plaintext attack and thus successfully iterate to guess the value of a.As the guess
of a gets closer to the actual value, more and more symbols will bereconstructed properly.

2. Small bitstreams: Traditionally Arithmetic coding based schemes can’t be used to encode
large strings because of ‘big-number’ arithmetic involvedin sub-division of interval. How-
ever, re-normalization allows efficient implementation of arithmetic coding in software and
hardware. GLS can’t be re-normalized, hence unsuitable forlarge bitstreams.

3. Computational Complexity: Arithmetic coding is computationally expensive, as com-
pared to other variable length coding schemes and thus less popular in baseline profiles
of video encoders.The skew proposed in [2] further increases the complexity ofcoder
exponentially by adding a squaring and square root operation.

4. Compression-based attack: The authors introduce a loss in compression efficiency to
introduce what they call as “scrambling” the length of compressed data. However, this
overhead is directly proportional to magnitude of key parametera. This discrepancy can
be exploited to leak the key.

In this paper, we briefly discuss these weaknesses with experimental results and observations.
The paper is organized as follows: Section 2 gives a brief overview of s-nGLS scheme followed
by discussion of weaknesses and experimental setup in subsequent sections.

2. Skewed-nGLS framework

GLS or Generalized-Luroth-Coding is a framework for joint source coding and encryption.
The properties of a good encryption such as mixing and sensitivity to the key parameter are
provided by a chaotic ergodic map [6]. GLS-coding is Shannonoptimal and thus presented as an
ideal candidate for joint source coding and encryption.

A measure preserving non-linear skew extension of GLS (known as s-nGLS) exhibits Robust
Chaos [7] and can improve the key efficiency. The skew is obtained by approximating the straight
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lines in GLS with parabolic trajectories. The skew is proportional to the probability of input
symbol while non-linearity is proportional to key parameter.

s-n GLS coding exhibits robust chaos, which refers to the absence of attracting periodic orbits
in the neighborhood of the parameter space. This feature makes Robust Chaos very desirable
for cryptographic purposes. The piecewise non-linear generalization of GLS is given by the
following equation:

s− nGLS(a, p, x) =
(a− p) +

√

(p− a)2 + 4ax

2a
, 0 ≤ x < p. (1)

=
(1+ a− p) +

√

(p− a− 1)2 + 4a(1− x)

2a
, p ≤ x < 1 (2)

where 0≤ x ≤ 1 and 0< a ≤ min{p, 1− p}. Herep stands forp(A) (for i.i.d binary source)
anda is the private-key. Notice that in the limit asa → 0, s-nGLS reduces to GLS (Skewed-
Tent map). S-nGLS is a 2D map which exhibits Robust Chaos in both a and p dimensions.In
a typical joint source coding and encryption application, for a given source (p is given),a acts
as the private key (the key space is (0, k), wherek = min{p, 1 − p}). Encoding and decoding
are exactly the same as we did with GLS. Owing to Robust Chaos,two different keysa1 anda2

which are very near to each other would produce uncorrelatedsymbolic sequences after a few
iterations. Thus, it can been seen that the same message (symbolic sequence) would get widely
different initial conditions for different parties (differenta). There is a slight loss of compression
optimality since it is important to ensure that the length ofthe compressed and encrypted data
are not predictable.

The inverse iteration over the map, is used for encoding symbols ‘0’ and ‘1’ on the chaotic
map. We begin with initial interval [0,1) and iterate it overinverse map to get the final interval.
The smallest codeword is chosen from the final interval and transmitted as compressed bitstream.
The inverse map is given by:

s− nGLS−1(a, p, y) = ay2 − y(a− p), when encoding ‘0’ (3)

= 1− ay2 − y(1+ a− p), when encoding ‘1’ (4)

s-n GLS is readily generalizable to non-binary alphabets. GLS can also be used for adaptive
coding by appropriately changing the skew of the GLS to account for the changing source symbol
probabilities at every iteration. GLS and its non-linear extensions (s-nGLS) exhibit properties
of ergodicity (mixing), chaos (sensitive dependence on initial conditions), and strong pseudo-
randomness (due to Robust Chaos). All these are desirable for joint source coding and encryption
application. Unlike GLS, s-n GLS has higher computational complexity.

This work has inspired further works in the community. In [8], authors build a chaotic convo-
lution coder using chaotic maps to alternate connection matrices. Cryptanalysis of these papers
is presented in [9, 10]. [11] presents a modified scheme basedon Nagaraj’s work where they use
M-ary codes (using piece-wise chaotic maps) and use a simplemechanism to data encryption.

3. Related works in joint compression and encryption

A Randomized Arithmetic Coding (RAC) scheme was presented by Grangetto et al. [12] in
2006. It achieves encryption by inserting some randomization in the arithmetic coding procedure
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at no expense in terms of coding efficiency. RAC needs a key of length 1-bit per encoded symbol.
The applications targeted by Grangetto et al. [12] was specifically an JPEG2000-encoder. Thus,
a potential adversary will not have access to the original image or blocks of image coder nor be
in a position to provide a particular image to be encoded. Thus, robustness to plaintext attacks
was not a goal in original design of RAC. The RAC encoder, by itself, without the scrambling,
confusion and diffusion offered by the image coder, willbe very vulnerable. The number of trials
needed to determine an N-bit shuffling sequence would be on the order ofN , since the output
pairs corresponding to inputs that differ in exactly one symbol can be compared to get the result.

Wen et al. [13] presented Secure Arithmetic Coding (SAC) in 2007 where a arithmetic-
coding based encoder is combined with a pre and post scrambling operation for improved se-
curity. The SAC based encoder is constructed over a Key-Splitting Arithmetic Coding (KSAC)
presented by the same authors in 2006 [14]. IN KSAC, a key is used to split the intervals of an
arithmetic coder based on choice of a key.

However, SAC introduces loss in coding efficiency particularly for small sized inputs, which
are later restricted to a small value by putting some constraints on the keyspace. The SAC
encoder may introduce multiple sub-intervals (which can berestricted by the algorithm) which
significantly increasing the computational cost of encoder. Many papers have been published
demonstrating successful attacks against SAC scheme [15, 16, 17, 18]. These works consider
plaintext based attacks on these schemes.

4. Known-plaintext attack

Let us assume a case where the encoder uses M bits key (M can assume any value such as 32,
64, 128 or 256). If we split the interval [0, p) (p ≤ 0.5) into 2M intervals, one key value represent
one unique interval. We setup a simple experiment where we encode a symbolPT of lengthN
and encode it using key value‘a’.

CT = GLS-encode(PT, a)

An attacker has access to the encryption oracle, but no knowledge of the key. He sets up a trial
experiment wherein he guesses the input keys. Let us call theguess key asag.

CTg = GLS-encode(PT, ag)

A metric S igWtwas defined to indicate the correlation between the coded output with random
trials and the coded output with chosen value of ‘a’. S igWtis obtained by assigning a binary
number to string obtained on XORing the trial output with coded output. Thus, the initial bits of
SigWt (corresponding to initial bits of key) are given higher weight.

S igWt=
len
∑

i=1

(CT(i) ⊕CTg(i)) × 2len−i

wherelen is given by larger of the length ofCT andCTg. We vary the valueag by varying it
across the interval [0, p) in N + 1 uniform steps. Thus, the step size is1

N . For GLS coding, the
larger the differenceag − a, the larger will be the value ofS igWt. After, one iteration, we can
reduce the interval to [an −

1
N , an +

1
N ) by finding an corresponding to the minimum value of

4



0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

N

# 
T

ria
ls

 

 

M=32

M=64

M=128

M=256

Figure 1: Known plaintext attack: Plot showing the number oftrials required for worst case scenario as a function of N.

S igWt in previous iteration. The number of iterationsα required to find the exact key can be
obtained by solving the following inequality:

(
2
N

)α ≤ 2−M

which can be simplified to:
(α + M) log 2− α logN ≤ 0

The number of guesses is approximated byN×α = 2α(K.2M)1/α =
N log(k2M)
log(N/2) , which is a function

with minimum at origin. The approximation was made by equating the inequality and consid-
ering fractional values. The exact value was found through numerical simulations where N was
varied from 3 to 50 and the least value ofα was found satisfying the inequality. The curve was
plotted for different values of N (splits of interval) and M (length of key) (see Figure 1). The
figure shows a dip for N=5 (not 3) as the exact solution for different scenarios. We also observe
that a key of length 1000 can also be broken by around 1000 trials.

In the above discussion, we assumed the result thatS igWtmetric shows a gradual dip across
different values ofa. For an ideal cipher this should actually be a straight line with a slight dip
exactly at correct ‘a’ value, and all other values should give almost same values (zero correlation).
To validate our assumption, we carried some simulations andthe results are plotted in Figure 4.
Figure 4(a-b) show the result for the case when original key valuea is 0.3101 and the source
probability valuep is 0.6. Figure 4(c-d) show the result for the case when original key valuea is
0.111101 and the source probability valuep is 0.8. The metricS igWtshows a gradual dip near
the correct key value, which can be exploited to launch attacks on the system. Thus, GLS coding
is prone to known plaintext attacks.

The authors propose to append some random data to the beginning of the message in order
to ensure that nothing is revealed by observing a few iterations [2]. However, appending of some
random data is found to have significant degradation in compression performance of the coding
algorithm. We obtain a performance degradation of up to 80% for extreme symbol probabilities
(p > 0.85 or p < 0.15) when XORing random bits to the beginning of message. The losses
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Figure 2: Compression losses with XORing random bits in beginning of message.

will be much higher in appending instead of XORing. Therefore, it is not reasonable to loose
compression inefficiency at the cost of increased security strength. More details are given in
Figure 2. Obviously, if we use large string size - say N=1000 or 10000, appending a few bits in
the beginning will have negligible effect in compression efficiency.

However, we found that GLS scheme has limitations that it can’t be, as such applied to large
strings because of absence of renormalization proceedure.It is detailed in next section.

5. Small string restrictions

In practise, arithmetic coders operate at a fixed limit of precision. They know the approximate
precision the decoder will be able to match and the calculations of fractions is approximated at
both ends to same precision [19, 20, 21, 22]. As such, it is notpossible to operate a simple
arithmetic coder with strings larger than the precision offered by the decoder.

The process called as renormalization comes to rescue. It keeps the finite precision from
becoming a bottleneck on the total number of symbols that canbe encoded. Whenever the
range is reduced to the point where all values in the range share certain beginning digits, those
digits are sent to the output. As stated in [23]: ”One of the major bottlenecks in any arithmetic
encoding and decoding process is given by the renormalization procedure. Renormalization in
the M coder is required whenever the new interval range R after interval subdivision does no
longer stay within its legal range. Each time a renormalization operation must be carried out one
or more bits can be output at the encoder or, equivalently, have to be read by the decoder. This
process, as it is currently specified in the standard, is performed bit-by-bit, and it is controlled
by some conditional branches to check each time if further renormalization loops are required.
Both conditional branching and bitwise processing, however, constitute considerable obstacles to
a sufficiently high throughput.” Many schemes have been proposed for re-normalization [23, 24]

This ‘renormalization’step is required not just to accelerate the arithmetic coding on standard
software and hardware platforms but also to make it feasibleon these architectures. The reason
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being as follows: Arithmetic coding (or GLS coding) techniques require splitting of intervals
at every stage. In GLS coding this split is interpreted as back-iteration over chaotic maps and
iterative shrinking of interval (initially [0,1)). The shrinking of these intervals is so fast that we
can’t actually compute GLS coding values for large strings such as 1000 or 10000 bits on fixed
point arithmetic. We conducted experiments to find out the maximum length of strings which
can be encoded using GLS coding (or arithmetic coding without renormalization). The results
are presented in Figure 3 where we show the mean and standard deviations of runs over 32 and
64 bit IEEE single and double precision arithmetic coding values.

Thus, even with 64 bit arithmetic it is not possible to implement GLS coding in hardware for
a string longer than 60 bits. An obvious solution to this problem is to apply the renormalization
proceedure, same way as arithmetic coding. However, this isnot possible.

Renormalization works for arithmetic coding because, in successive iterations - the window
(range) of final codeword keeps shrinking and thus we can correspondingly shift our operating
window also. For example, the initial interval [0,1) may shrink to [0.626, 0.663) and so on.
In this case, we can output portion of final codeword (0.101bin = 0.625dec) and renormalize the
intervals. This is not possible in chaotic mapping (GLS mapping) because there is no localization
of codeword although the difference between beginning and final interval keeps shrinking.

It is not possible to implement GLS coding on long strings without this re-normalization
even on hardware accelerators such as FPGA. Related research work [25, 26]have also raised
this issue.

For experimental evaluation, in this work we use variable precision arithmetic in Matlab
(similar to use of Big numbers in C) to find solutions with bigger strings (N=100 or 1000).

6. Computational Complexity

Joint source-coding frameworks such as GLS coding are presented with a motivation to re-
duce the computation cost of compression-then-encryptionoperation. However, as we shall iden-
tify in this section, s-nGLS coding massively increase the computational complexity of arithmetic
coding and reduce the system throughput. Binary ArithmeticCoding (BAC) followed by encryp-
tion with AES (American Encryption Standard) algorithm is the naive candidate which should
provide best security. AES was designed keeping in mind the requirements of both hardware
and software and is therefore extremely fast when it is fullypipelined in custom hardware such
as FPGA [27]. The authors of that paper were able to achieve a clock frequency of 184 MHz,
and a net throughput of 23.57 MHz on Xilinx XC2V4000 FPGA. However, Binary Arithmetic
Coding (in its original form) and GLS are sequential in nature. This becomes the bottleneck
in a combined BAC+AES system. A combined system also needs dedicate hardware for both
compression and encryption operation.

The arithmetic operations required for one bit encoding or decoding using BAC is 2 adders
and 1 multipliers. The 128 bits AES encryption involves simple and basic operations such as table
lookups, shifts, and XORs. In total, requires 40 sequentialtransformation steps are requreid by
the operation. This approximately requires 336 bytes of memory, 608 XOR operations per cycle
of AES or roughly 3 bytes memory and 5 XOR operations per single bit of encoding. However,
s-nGLS encoding increases the computational complexity ofArithmetic Coding by 10 times
(shown in results later) which is much more than the computational complexity of BAC+AES.

We used a Xilinx Virtex-6 VLX75 FPGA for synthesis using Xilinx ISE 12.4 design suite.
The s-nGLS decoder operation has one square and one square-root operation. Both opera-

tions have a significant overhead when implemented in hardware. The synthesis results illustrate
7
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Figure 3: Figure showing the maximum length of a bitstream which can be encoded using GLS coding with standard
fixed point arithmetic on most ‘of-the-shelf’ processors. The bars show the average (over 1000 simulations) length of
encodes after which software precision is unable to resolvethe sub-intervals in GLS iterations. The error bars show the
minimum and maximum values over 1000 iterations.
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Figure 4: Corelation values for GLS encoding (N=20, averaging over 1000 simulations)
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the overhead in hardware implementation of s-n GLS coding. We were able to design a 48 bit
fixed point implementation of s-n GLs coding, which take over10x more logic slices than a direct
implementation of Binary Arithmetic Coding. The maximum achievable clock frequency for the
design reduces to 240 MHz which is a drop by 2.5 times, as compared with implementation of
Binary Arithmetic Coding.

The approximate implementation results are shown in Table 1. We used Xilinx CORE gen-
erator to generate square root and multiplier/ squarer. The Xilinx CORDIC LogiCORE is a
module for generation of the generalized coordinate rotational digital computer (CORDIC) al-
gorithm which iteratively solves trigonometric, hyperbolic and square root equations. The core
is fully synchronous using a single clock. However, it can generate square root core for upto 48
bit fixed point implementation only.

Table 1: Computational Complexity: 10x increase in hardware resources and 2.5x slowdown in s-nGLS implementation
over FPGA

bits Logic Slices Frequency (MHz)

Binary Arithmetic Coding 48 600 581
Square root 48 2860 241
Multiplier 48 2424 450

s-n GLS (approx) 48 5884 (10x) 241 (0.4x)

Binary Arithmetic Coding 64 1685 500
Square root 64 - -
Multiplier 64 4256 450

s-n GLS (approx) 64 - -

The computational complexity of n-GLS coding is significantly higher than binary arithmetic
coding for large strings (say, N=10000) because the renormalization process traditionallyused
in arithmetic coding can’t be used for GLS framework [26]. The increased computational com-
plexity of s-nGLS framework adds to this complexity.

7. Compression-based attacks

The authors introduce a loss in compression efficiency to introduce what they call as “scram-
bling” the length of compressed data. The introduction of key parameter “a” quadratically affects
the width of final interval (see equation 3 and 4). The larger the valuea, the larger is the loss of
compression efficiency.

In GLS coding, as in arithmetic coding, there is no direct prediction or correlation between
source symbol probability and size of compressed bitstream. However, the average length of
coded bitstream (for large number of plaintexts) is determined by the source symbol probability
(p) according to Shannon’s entropy theorem. As we go on increasing the value ofa, the average
size of compressed bitstream keeps increasing proportional to magnitude ofa. This property can
be used to localize the value ofa using compression statistics, although it is not possible to obtain
the precise value ofa using this approach.

To test this property of s-nGLS coding, we set a sample test where 50 random plaintexts were
encoded with increasing values ofa. 50 sample values ofa were chosen, uniformly distributed
over range [0,p). The result is shown in Figure 5. The gradualshift from left to right (blue
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Figure 5: Compression based attack: The length of compressed bitstream is proportional to the magnitude of key param-
etera (reported over 50 trials)

to red) indicates gradual increase ofa values. We can also observe gradual increase in size of
compressed bitstream over different trials.

8. Conclusions

In this letter, we discuss some weaknesses of s-nGLS to use asa framework for joint video
compression and encryption. There is a great scope of futurework - to use the attractive features
of GLS encoding positively by alleviating the above mentioned limitations.
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