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Abstract

Nagaraj et al.[1, 2] present a skewed-non-linear Genealiziroth Series (s-nGLS) framework.
S-nGLS uses non-linear maps for GLS to introduce a secuaitgrpetea which is used to build
a keyspace for image or data encryption. The map introdumedinearity to the system to add
an “encryption key parameter”. The skew is added to achigtienal compressionfciency.
s-nGLS used as such for joint encryption and compressiomisak candidate, as explained in
this communication. First, we show how the framework is eu#tble to known plaintext based
attacks and that a key of size 256 bits can be broken withi0 fr¢dls. Next, we demonstrate that
the proposed non-linearity exponentially increases thevisare complexity of design. We also
discover that s-nGIS can't be implemented as such for laitggdams. Finally, we demonstrate
how correlation of key parameter with compression perforoedeads to further key vulnerabil-
ities.
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1. Introduction

Multimedia communication withféicient compression and security has become an increas-
ing concern for wide applications in commercial and defemglications. The pervasive use
of multimedia communications in entertainment (HDTV, mebinternet video [3]), public do-
main (surveillance [4], tele-medicine) and defense apfitims (Unmanned air vehicles [5]) has
increased concern forffecient multimedia encryption. The challenge of enablinghbocom-
pression and security by a single operation is gaining it@ma@e given the ubiquitous nature of
compressed media files, challenging demands of video casipresystems and huge popularity
of mobile videos (v.i.z. mobile phones, ipods, notebook3TM etc). In 2011, more than 50%
of data trdfic in cellular networks was videos and this trend is going todase.

Arithmetic Coding (AC) is widely used for the entropy codioftext and multimedia data.
The range [0,1) is iteratively partitioned into sub-intesaccording to the relative probabilities
of occurrence of the input symbols (can be binary or multfgylmbols). However, as conven-
tionally implemented, it is not particularly secure.
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In order to perform source coding (data compression), Nagdral. [1, 2] present a new
scheme called as Generalized Luroth Seroies (GLS). GL&treassages as coming from in-
dependent and identically distributed (i.i.d.) sourcebeylare represented as imprecise mea-
surements (symbolic sequence) of a chaotic system whicty@li, preserves the Lebesgue-
measure and is a nonlinear-dynamical system. GLS achidas®n’s entropy bound and turns
out to be a generalization of arithmetic coding, the popsitaurce coding algorithm used in in-
ternational compression standards such as JPEG2000 aédl. H2e authors use a skew version
of non-linear GLS coding (s-nGLS coding) for data encryptio

GLS is an ergodic and Lebesgue measure-preserving distyatemical system. Skewed
non-linear GLS exhibits Robust Chaos, has positive Lyapum@onents and preserves the
Lebesgue measure and has high key sensitivity. Howeveseberity of the scheme has not
been proven. In our study, we found several vulnerabilifethe proposed scheme, as enumer-
ated below.

Weakness of s-nGLS coding

1. Known Plaintext Attack: An adversary may make a wrong guess in value of the skew
parametea. However, this may lead to imperfect reconstruction andnamessarily to
completely random output, which can be exploited for vudibdities. A closely related
value of a can lead to perfect reconstruction of first few syisibf a binary string even
when it is not exactly the same asThereforejt is possible for an adversary to launch a
known plaintext attack and thus successfully iterate tosgulee value of aAs the guess
of a gets closer to the actual value, more and more symbols wikbenstructed properly.

2. Small bitstreams: Traditionally Arithmetic coding based schemes can’t beldeencode
large strings because of ‘big-number’ arithmetic involuedub-division of interval. How-
ever, re-normalization allowdlicient implementation of arithmetic coding in software and
hardware. GLS can'’t be re-normalized, hence unsuitablifge bitstreams.

3. Computational Complexity: Arithmetic coding is computationally expensive, as com-
pared to other variable length coding schemes and thus tgadagy in baseline profiles
of video encodersThe skew proposed in [2] further increases the complexityoafer
exponentially by adding a squaring and square root operatio

4. Compression-based attack: The authors introduce a loss in compressifficiency to
introduce what they call as “scrambling” the length of coegsed data. However, this
overhead is directly proportional to magnitude of key patera. This discrepancy can
be exploited to leak the key.

In this paper, we briefly discuss these weaknesses with iexgetal results and observations.
The paper is organized as follows: Section 2 gives a briefvie® of s-nGLS scheme followed
by discussion of weaknesses and experimental setup incudrsesections.

2. Skewed-nGL S framework

GLS or Generalized-Luroth-Coding is a framework for joiatisce coding and encryption.
The properties of a good encryption such as mixing and seifsito the key parameter are
provided by a chaotic ergodic map [6]. GLS-coding is Sharomtimal and thus presented as an
ideal candidate for joint source coding and encryption.

A measure preserving non-linear skew extension of GLS (kras\s-nGLS) exhibits Robust
Chaos [7] and can improve the keffieiency. The skew is obtained by approximating the straight
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lines in GLS with parabolic trajectories. The skew is prdjooral to the probability of input
symbol while non-linearity is proportional to key paranrete

s-n GLS coding exhibits robust chaos, which refers to thedxs of attracting periodic orbits
in the neighborhood of the parameter space. This featuresRkbust Chaos very desirable
for cryptographic purposes. The piecewise non-linear ggization of GLS is given by the
following equation:

(a-p)+ (p - a)?+4ax
2a
2
_ (1+a-p++(p-a-1) +4a(1_x),psx<1 @
2a

where 0< x < 1 and O< a < min{p, 1 — p}. Herep stands fop(A) (for i.i.d binary source)
anda is the private-key. Notice that in the limit @a— 0, s-nGLS reduces to GLS (Skewed-
Tent map). S-nGLS is a 2D map which exhibits Robust Chaos th &@nd p dimensions.In
a typical joint source coding and encryption applicatiar,d given sourcefd is given),a acts
as the private key (the key space isKQ wherek = min{p,1 — p}). Encoding and decoding
are exactly the same as we did with GLS. Owing to Robust Chamsdifferent keys; anday
which are very near to each other would produce uncorreltetbolic sequences after a few
iterations. Thus, it can been seen that the same messagediéysequence) would get widely
different initial conditions for dferent parties (dierenta). There is a slight loss of compression
optimality since it is important to ensure that the lengthtaf compressed and encrypted data
are not predictable.

The inverse iteration over the map, is used for encoding s§srb’ and ‘1’ on the chaotic
map. We begin with initial interval [0,1) and iterate it ourverse map to get the final interval.
The smallest codeword is chosen from the final interval aamsimitted as compressed bitstream.
The inverse map is given by:

s—-nGLS(a, p, X) ,0<x<p. Q)

ay? - y(a—- p), when encoding ‘0’ ©)
1-ay’ - y(1+a- p), when encoding ‘1’ (4)

s-nGLS*(a p.y)

s-n GLS is readily generalizable to non-binary alphabetsS Gan also be used for adaptive
coding by appropriately changing the skew of the GLS to antfau the changing source symbol
probabilities at every iteration. GLS and its non-lineareasions (s-nGLS) exhibit properties
of ergodicity (mixing), chaos (sensitive dependence otiainconditions), and strong pseudo-
randomness (due to Robust Chaos). All these are desiratjtgrfosource coding and encryption
application. Unlike GLS, s-n GLS has higher computatiomahplexity.

This work has inspired further works in the community. In, [@Jithors build a chaotic convo-
lution coder using chaotic maps to alternate connectiomicest Cryptanalysis of these papers
is presented in [9, 10]. [11] presents a modified scheme b@séthgaraj's work where they use
M-ary codes (using piece-wise chaotic maps) and use a simgbdianism to data encryption.

3. Related worksin joint compression and encryption

A Randomized Arithmetic Coding (RAC) scheme was presenye@tangetto et al. [12] in
2006. It achieves encryption by inserting some randonamrati the arithmetic coding procedure
3



at no expense in terms of codinffieiency. RAC needs a key of length 1-bit per encoded symbol.
The applications targeted by Grangetto et al. [12] was $ipalty an JIPEG2000-encoder. Thus,
a potential adversary will not have access to the originalgenor blocks of image coder nor be
in a position to provide a particular image to be encoded.sThobustness to plaintext attacks
was not a goal in original design of RAC. The RAC encoder, bglft without the scrambling,
confusion and dfusion dfered by the image coder, willbe very vulnerable. The numbaials
needed to determine an N-bit $hing sequence would be on the orderf since the output
pairs corresponding to inputs thatf@r in exactly one symbol can be compared to get the result.

Wen et al. [13] presented Secure Arithmetic Coding (SAC) 002where a arithmetic-
coding based encoder is combined with a pre and post scragniyieration for improved se-
curity. The SAC based encoder is constructed over a KeytfagliArithmetic Coding (KSAC)
presented by the same authors in 2006 [14]. IN KSAC, a keyasd i3 split the intervals of an
arithmetic coder based on choice of a key.

However, SAC introduces loss in codinffieiency particularly for small sized inputs, which
are later restricted to a small value by putting some coimtran the keyspace. The SAC
encoder may introduce multiple sub-intervals (which camdstricted by the algorithm) which
significantly increasing the computational cost of encodéany papers have been published
demonstrating successful attacks against SAC scheme ¢19,71 18]. These works consider
plaintext based attacks on these schemes.

4. Known-plaintext attack

Let us assume a case where the encoder uses M bits key (M cameaany value such as 32,
64, 128 or 256). If we split the interval [@) (p < 0.5) into 2¥ intervals, one key value represent
one unique interval. We setup a simple experiment where wedma symboPT of lengthN
and encode it using key valug!

CT = GLS-encod€®T, a)

An attacker has access to the encryption oracle, but no latgel of the key. He sets up a trial
experiment wherein he guesses the input keys. Let us cajjubss key aa,.

CTy = GLS-encode®T, ay)

A metric SigWtwas defined to indicate the correlation between the codgalibuiith random
trials and the coded output with chosen valueaf ‘S igWtis obtained by assigning a binary
number to string obtained on XORing the trial output with edautput. Thus, the initial bits of
SigWt (corresponding to initial bits of key) are given higheight.

len
SigWt= Z(CT(i) ® CTy(i)) x 2°m
i=1

wherelenis given by larger of the length @ T andCT,. We vary the valugg by varying it
across the interval [@) in N + 1 uniform steps. Thus, the step size%is For GLS coding, the
larger the diferenceay — a, the larger will be the value d igWt After, one iteration, we can
reduce the interval toaf, — ﬁ,an + ﬁ) by finding a, corresponding to the minimum value of

4



300
—%— M=32 -
2500~ —+— M=64 e P i
——M=128 P
20000 | M=256 T i
Q 7
©
= 1500- /.// R
/’// e x>
* \ /// o _
1000 S T 1
X e s T S
500~ DRIV N +'++74\¢7+'++'+'+'+++++ anl i
A
- W
NT—*—»«H
O L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50

Figure 1: Known plaintext attack: Plot showing the numbetrials required for worst case scenario as a function of N.

SigWtin previous iteration. The number of iteratiomsequired to find the exact key can be
obtained by solving the following inequality:

“ya -M
(=2
which can be simplified to:

(¢ +M)log2—alogN <0

The number of guesses is approximatedby e = 2(K.2V)Ye = ng‘;%,ﬁl'jz;) , Which is a function

with minimum at origin. The approximation was made by equathe inequality and consid-
ering fractional values. The exact value was found througherical simulations where N was
varied from 3 to 50 and the least valuemfvas found satisfying the inequality. The curve was
plotted for diferent values of N (splits of interval) and M (length of keygdsFigure 1). The
figure shows a dip for N5 (not 3) as the exact solution forftirent scenarios. We also observe
that a key of length 1000 can also be broken by around 1008.tria

In the above discussion, we assumed the resulSligiVtmetric shows a gradual dip across
different values o&. For an ideal cipher this should actually be a straight lirith & slight dip
exactly at correctd’ value, and all other values should give almost same vake®e Correlation).
To validate our assumption, we carried some simulationglaadesults are plotted in Figure 4.
Figure 4(a-b) show the result for the case when original keyea is 0.3101 and the source
probability valuep is 0.6. Figure 4(c-d) show the result for the case when caidiay valuea is
0.111101 and the source probability values 0.8. The metriS igWtshows a gradual dip near
the correct key value, which can be exploited to launch kttaa the system. Thus, GLS coding
is prone to known plaintext attacks.

The authors propose to append some random data to the begivfithe message in order
to ensure that nothing is revealed by observing a few it@matj2]. However, appending of some
random data is found to have significant degradation in cesgion performance of the coding
algorithm. We obtain a performance degradation of up to 80gxtreme symbol probabilities
(p > 0.85 or p < 0.15) when XORing random bits to the beginning of message. 0hsek
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Figure 2: Compression losses with XORing random bits ini@igg of message.

will be much higher in appending instead of XORing. Therefar is not reasonable to loose
compression in@ciency at the cost of increased security strength. Moreildedee given in
Figure 2. Obviously, if we use large string size - say1000 or 10000, appending a few bits in
the beginning will have negligiblefiect in compressionficiency.

However, we found that GLS scheme has limitations that ittdsm as such applied to large
strings because of absence of renormalization proceeldisaletailed in next section.

5. Small string restrictions

In practise, arithmetic coders operate at a fixed limit o€fmien. They know the approximate
precision the decoder will be able to match and the cal@riatdf fractions is approximated at
both ends to same precision [19, 20, 21, 22]. As such, it ispessible to operate a simple
arithmetic coder with strings larger than the precisiffiei@d by the decoder.

The process called as renormalization comes to rescue.eftskine finite precision from
becoming a bottleneck on the total number of symbols thatbeaencoded. Whenever the
range is reduced to the point where all values in the ranges sfeatain beginning digits, those
digits are sent to the output. As stated in [23]: "One of thgambhottlenecks in any arithmetic
encoding and decoding process is given by the renormalizatiocedure. Renormalization in
the M coder is required whenever the new interval range R afterval subdivision does no
longer stay within its legal range. Each time a renormalimedperation must be carried out one
or more bits can be output at the encoder or, equivalentlye kabe read by the decoder. This
process, as it is currently specified in the standard, isopmed bit-by-bit, and it is controlled
by some conditional branches to check each time if furtheommalization loops are required.
Both conditional branching and bitwise processing, howaanstitute considerable obstacles to
a suficiently high throughput.” Many schemes have been propasefnormalization [23, 24]

This‘renormalization’step is required not just to accelerate the arithmetic gpdimstandard
software and hardware platforms but also to make it feasiblthese architectures. The reason
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being as follows: Arithmetic coding (or GLS coding) techumés require splitting of intervals
at every stage. In GLS coding this split is interpreted akhmration over chaotic maps and
iterative shrinking of interval (initially [0,1)). The simking of these intervals is so fast that we
can't actually compute GLS coding values for large stringshsas 1000 or 10000 bits on fixed
point arithmetic. We conducted experiments to find out th&imam length of strings which
can be encoded using GLS coding (or arithmetic coding withemormalization). The results
are presented in Figure 3 where we show the mean and starsldaadions of runs over 32 and
64 bit IEEE single and double precision arithmetic codinigies.

Thus, even with 64 bit arithmetic it is not possible to impaThGLS coding in hardware for
a string longer than 60 bits. An obvious solution to this peabis to apply the renormalization
proceedure, same way as arithmetic coding. However, thistipossible.

Renormalization works for arithmetic coding because, itcegsive iterations - the window
(range) of final codeword keeps shrinking and thus we carespandingly shift our operating
window also. For example, the initial interval [0,1) may iskrto [0.626, 0.663) and so on.
In this case, we can output portion of final codeword (0, = 0.625%J and renormalize the
intervals. This is not possible in chaotic mapping (GLS miagpbecause there is no localization
of codeword although the fierence between beginning and final interval keeps shrinking

It is not possible to implement GLS coding on long stringshwiit this re-normalization
even on hardware accelerators such as FPGA. Related researk [25, 26]have also raised
this issue.

For experimental evaluation, in this work we use variablecfgion arithmetic in Matlab
(similar to use of Big numbers in C) to find solutions with béggtrings (N-100 or 1000).

6. Computational Complexity

Joint source-coding frameworks such as GLS coding are ptiedevith a motivation to re-
duce the computation cost of compression-then-encryppenation. However, as we shall iden-
tify in this section, s-nGLS coding massively increase thmputational complexity of arithmetic
coding and reduce the system throughput. Binary Arithm@tiding (BAC) followed by encryp-
tion with AES (American Encryption Standard) algorithm i€ thaive candidate which should
provide best security. AES was designed keeping in mind ¢kq@irements of both hardware
and software and is therefore extremely fast when it is fpipelined in custom hardware such
as FPGA [27]. The authors of that paper were able to achieveck frequency of 184 MHz,
and a net throughput of 23.57 MHz on Xilinx XC2V4000 FPGA. Hawer, Binary Arithmetic
Coding (in its original form) and GLS are sequential in natuiThis becomes the bottleneck
in a combined BAGAES system. A combined system also needs dedicate hardembeth
compression and encryption operation.

The arithmetic operations required for one bit encodingesradiing using BAC is 2 adders
and 1 multipliers. The 128 bits AES encryption involves diemgnd basic operations such as table
lookups, shifts, and XORs. In total, requires 40 sequetrgasformation steps are requreid by
the operation. This approximately requires 336 bytes of orgn608 XOR operations per cycle
of AES or roughly 3 bytes memory and 5 XOR operations per sibglof encoding. However,
s-nGLS encoding increases the computational complexitrdghmetic Coding by 10 times
(shown in results later) which is much more than the comjmrtat complexity of BAG-AES.

We used a Xilinx Virtex-6 VLX75 FPGA for synthesis using Xik ISE 12.4 design suite.

The s-nGLS decoder operation has one square and one sg@aa@peration. Both opera-
tions have a significant overhead when implemented in hae\ifdoe synthesis results illustrate
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the overhead in hardware implementation of s-n GLS coding.vi&re able to design a 48 bit
fixed pointimplementation of s-n GLs coding, which take al@x more logic slices than a direct
implementation of Binary Arithmetic Coding. The maximunhaable clock frequency for the
design reduces to 240 MHz which is a drop by 2.5 times, as cordpaith implementation of
Binary Arithmetic Coding.

The approximate implementation results are shown in Tabld used Xilinx CORE gen-
erator to generate square root and multipleguarer. The Xilinx CORDIC LogiCORE is a
module for generation of the generalized coordinate ratafi digital computer (CORDIC) al-
gorithm which iteratively solves trigonometric, hyperisaddnd square root equations. The core
is fully synchronous using a single clock. However, it cangrate square root core for upto 48
bit fixed point implementation only.

Table 1: Computational Complexity: 10x increase in har@wasources and 2.5x slowdown in s-nGLS implementation
over FPGA

| | bits | Logic Slices| Frequency (MHz)|

Binary Arithmetic Coding| 48 600 581
Square root 48 2860 241
Multiplier 48 2424 450
s-n GL S (approx) 48 | 5884 (10x) 241 (0.4x)
Binary Arithmetic Coding| 64 1685 500
Square root 64 - -
Multiplier 64 4256 450
sn GL S (approx) 64 - -

The computational complexity of n-GLS coding is signifidahitigher than binary arithmetic
coding for large strings (say,NL0000) because the renormalization process traditionakyl
in arithmetic coding can’t be used for GLS framework [26].€Tihcreased computational com-
plexity of s-nGLS framework adds to this complexity.

7. Compression-based attacks

The authors introduce a loss in compressiffitiency to introduce what they call as “scram-
bling” the length of compressed data. The introduction gff@rameter&” quadratically dfects
the width of final interval (see equation 3 and 4). The largentaluea, the larger is the loss of
compressionféiciency.

In GLS coding, as in arithmetic coding, there is no directjson or correlation between
source symbol probability and size of compressed bitstredlowever, the average length of
coded bitstream (for large number of plaintexts) is detaadiby the source symbol probability
(p) according to Shannon'’s entropy theorem. As we go on ingrgdke value of, the average
size of compressed bitstream keeps increasing propoktmneagnitude of.. This property can
be used to localize the valueafising compression statistics, although it is not possibébtain
the precise value & using this approach.

To test this property of s-nGLS coding, we set a sample test&B0 random plaintexts were
encoded with increasing values af 50 sample values & were chosen, uniformly distributed
over range [0,p). The result is shown in Figure 5. The gradhdt from left to right (blue

10



Length of Coded data (bits)

60

# Trials 10

axp/s0

Figure 5: Compression based attack: The length of compidstgtream is proportional to the magnitude of key param-
etera (reported over 50 trials)

to red) indicates gradual increasea¥alues. We can also observe gradual increase in size of
compressed bitstream oveff@rent trials.

8. Conclusions

In this letter, we discuss some weaknesses of s-nGLS to usdrasework for joint video
compression and encryption. There is a great scope of futorle- to use the attractive features
of GLS encoding positively by alleviating the above menéidfimitations.
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