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Abstract

We study the deployment of data back-haul nodes for wirelessnetworks with energy constraints. We address the

following problem: given the required lifetime of a sensor network, the energy constraint of back-haul nodes, and the

area to be covered, what is the minimum number of nodes neededto construct such a back-haul network and what

is the corresponding deployment scheme? Finding an efficient deployment scheme involves location management,

routing, and power management. We focus on linear networks and formulate a deployment optimization problem.

We then propose and analyze a greedy deployment scheme that achieves close to optimal performance. We reveal

the closed-form relationship among different design parameters, namely, the number of sensor nodes, the desired

lifetime, and the coverage distance. We also study the effect of miscellaneous power consumptions and non-uniform

data density, and consider extensions to planar networks.

I. I NTRODUCTION

We study the deployment of data back-haul nodes for wirelessnetworks with energy constraints. An

application scenarios is in wireless sensor networks. For many sensor-network applications, the desired

lifetime of the network is on the order of a few years. It may beinfeasible or expensive to change batteries

in sensor nodes once a wireless sensor network is deployed. Thus, it is critical and challenging to deploy

sensor nodes effectively to form long-lived sensor networks under energy constraints.

Hierarchical structure has been considered as a necessity for large wireless systems. An example is

shown in Figure 1. The bigger gray nodes represent more capable and expensive nodes in the higher

hierarchy that are responsible for data processing and backhauling. The smaller dark nodes represent

sensing nodes that collect information on interested events and report to nearby gray nodes for processing

and communication. Consider a real-world example. Crossbow Technology Inc. supplies both smaller and
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less expensive mote series and more sophisticated and expensive Gateways series. We can consider the

mote series as sensing nodes and the Gateways series as data back-hauling nodes in the Figure. In a

remote area, both sensing nodes and data back-haul nodes canbe energy constrained, which limit the

lifetime of a sensor network. In this study, we focus on data back-haul nodes that consume more energy

for communications and are mission-critical. Because thesenodes are important and usually expensive,

strategic deployment of these nodes is justified. In this paper, we study the deployment of these nodes to

satisfy the desired lifetime requirement. The degrees of freedom for such a design are multi-fold. They

involve topology management, power management, and routing.

We focus on a many-to-one sensor network. In a many-to-one network, data from all nodes is

directed to a sink-node/fusion-center. Many-to-one communication is typical in sensor networks used

for monitoring/surveillance purposes. Unlike a distributed peer-to-peer wireless networks, the traffic load

is highly asymmetric in a many-to-one network, i.e., nodes closer to the sink node have heavier relay

load, as illustrated in Figure 1. Thus, the traffic load and the corresponding power consumption are

location-dependent. The lifetime of a network can be limited by nodes with heavy traffic load or power

consumptions. This problem is adequately captured in this work.

We use data density to model the amount of data generated in a sensor network and assume that the

data density is uniform unless otherwise stated. Given the energy constraint and data density, our objective

is to answer the following question:

What is the minimum number of data back-haul nodes we need to construct a sensor network

and how these data back-haul nodes should be placed such thatthe network can satisfy the

predetermined life-time and coverage requirement?

An alternative question is:given the number of data back-haul nodes, and the desired life time of the

sensor network, how large an area can this sensor network cover and how? Yet another objective is:

given the number of nodes and the area to be covered, what is the maximum lifetime of the network and

what is the deployment scheme to achieve it?

In this paper, our primary focus is onlinear sensor networks, in which the data back-haul nodes are
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deployed in a linear topology. Such a topology can be used in anarrow and long sensor network, as shown

in Figure 1. This is justified by real world examples. For instance, the sensor network deployed on Great

Duck Island is in a narrow-and-long shape (about 50 nodes long and 5 nodes wide) [17]. Other applications

include sensor networks for border surveillance, highway traffic monitoring, safeguarding railway tracks,

oil and natural gas pipeline protection, and structural monitoring and surveillance of bridges and long

hallways. In addition, we have also provided heuristics foranalyzing planar networks using the analysis

of the basic linear topology.

We assume the deployment of data back-haul nodes is carefully planned and controlled instead of

randomly performed. First, in most current sensor network deployments, sensor nodes are manually

deployed instead of randomly thrown into the field of interest. Furthermore, because data back-haul

nodes are mission-critical, expensive, and in a relativelysmall number, careful planning and deployment

is justified. Our numerical results show that the lifetime ofa randomly deployed network is an order of

magnitude lower than that of a carefully deployed one.

The paper is organized as follows. We discuss related work inSection II. In Section III, we elaborate

the problem and introduce a deployment optimization problem. In Section IV, we propose and analyze

a greedy deployment scheme. We show that the performance of the greedy scheme is close to optimal.

The closed-form analysis of the greedy scheme allows us to understand the relationship among the design

parameters. We study the effects miscellaneous power consumptions and non-uniform data density, and

consider extensions to planar networks in Section V. The paper is concluded in Section VI.

II. RELATED WORK

In this section we briefly discuss the related work on the capacity and lifetime of wireless adhoc/sensor

networks. Bhardwajet al have provided upper bounds on the lifetime of sensor networks [1], [2] where

sensor node locations are given. In [13], the authors propose a transmission range distribution optimization

scheme to maximize the network lifetime given fixed node locations. In comparison, our work is to address

the deployment issue of sensor networks. Energy conservation and lifetime extension is investigated in

[3] using cell-based techniques [20]. In comparison, our work focuses on many-to-one networks, which
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is significantly different from random distributed peer-to-peer networks. In [12], the authors study the

problem of placing the sink-node to maximize the life-time of the network in a two-tiered wireless sensor

network. Furthermore, the placement and power management of additional relay nodes are also considered

in [9]. The joint design problem is formulated as a mixed-integer nonlinear programming problem and

heuristic algorithms are proposed. Our work is different inthe sense that we assume only one fixed sink

node. In addition, the relay nodes do not have their own traffic load in [9], which also differs from our

scenario.

The most closely related work is by Ganesanet al [8], where our work differs in terms of the data

collection model. The problem is not solved for the general model in [8], and the optimal scheme

presented in [8] assumes that each node has the same amount ofdata regardless of its coverage distance.

In comparison, we assume uniform data density across the network, and thus a node that covers a larger

distance has more data. In our model, more complexity is involved because the data volume at each node

is a function of its distance from its neighboring node. In other words, the total amount of data relayed

to the fusion center is linearly proportional to the total number of nodes in [8], while it is proportional

to the total distance that the network covers in our work. Thus, their results do not yield our results. We

justify our assumption using the following example of a borderline surveillance network. Assume that

events happen uniformly and randomly in the surveillance area. Then it is reasonable to assume that the

total number of events reported to the fusion center is proportional to the length of the borderline instead

of the number of nodes deployed. In other words, a node that covers a larger area/distance observes more

events and thus generates more data. This phenomena is particularly evident when we consider the higher

layers in a hierarchical network.

Maximum lifetime routing in sensor and ad hoc networks have been studied extensively in the literature,

see e.g., [5], [21], [15], [18], [10]. Most of proposed schemes assume given node locations (potentially

mobile in ad hoc networks), which is different from the deployment requirement. On the other hand, for

a given deployment, the proposed schemes can be used so that the lifetime of the deployment can be

numerically evaluated, and thus beneficial to obtain good 2Ddeployments.
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Our preliminary work is presented in [6], [11]. We extend theprevious work by including studies on

miscellaneous power consumptions and non-uniform data density, as well as heuristics on planar networks

in this paper.

III. PROBLEM DESCRIPTION

It is well-known that in a many-to-one communication network, the sink node is usually the capacity

bottleneck. It is also noticed that the sink node can be the energy bottleneck. We elaborate the problem in

the context of a linear network. Assume that the sink node is at the end of the network. Data back-haul

nodes closer to the sink node will have much higher relay load. When evenly spaced, nodes close to the

sink consume more power and die quickly, which causes the wireless sensor network to be disconnected.

In this case, nodes closer to the sink node limit the lifetimeof a sensor network. There are different

approaches to alleviate the problem, including allocatingmore energy to nodes closer to the sink node,

placing more nodes, and placing nodes closer in heavy load areas. Another possibility is to perform load

balancing, i.e., a node with lower traffic load can send data over longer hops to release the burden of

other nodes. We consider all these possibilities in the paper. Our objective is to deploy data back-haul

nodes in an optimal way such that the network can cover as large an area as possible given the number

of nodes available and the desired lifetime of the network.

A. System Model

In this paper, we assume a perfect medium access control as in[13], [8]. Due to low energy supplies and

low duty-cycles of wireless sensor networks, many researchefforts have suggested (localized) TDM-type

of access schemes, which is in accord with our assumption.

We use the following communication model in the paper. Letd be the distance between the sender and

the receiver, andP be the transmission power. Then the data rateR is proportional to the received signal

strength; i.e.,R = P/βdγ, whereγ is the distance loss factor,2 ≤ γ ≤ 5, andβ is a constant, which can

be considered as the signal strength requirement. This model is widely used in the literature, e.g., [7],

[4]. We are interested in the case whered is relatively large (e.g., at least on the order of tens of meters).
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We assume that background noise is at a constant level, and therefore the received signal strength infers

signal to noise ratio (SNR). Thus, the energy consumption to convey one unit of data over distanced is

P ×
1

R
= βdγ. (1)

Note that we only consider the transmission power here. Other power consumptions, such as receiving

power and miscellaneous power at the transmitter, are considered in Section V-A.

In practice, due to shadowing and fading phenomena in the transmission environment, the received

signal strength is often random. However, without precise information about the territory and considering

the long-term average, it is reasonable to assume a direct relationship between distance and per bit energy

consumption [16]. Thus, we use Eq. (1) as a the model to understand the deployment issue in wireless

sensor networks.

The ideal bit-energy model in Eq. (1) can also be extended to amore practical power-goodput model.

Basically, we explore the fact that goodput increases as SINRincreases. First, with the advances in DSP and

sensor developments, newer versions of sensors, especially more expensive and sophisticated ones, have

the capability to adjust data rates based on channel conditions. In addition, for a given modulation/coding

rate, where SINR is higher, the BER (bit error rate) is lower, and thus the probability of failure is smaller,

which implies higher goodput and thus lower energy consumption. All results in this paper can be directly

applied to systems with power-goodput model where per-bit energy consumption is a polynomial function

of distance. Such a model can take into account less-than-ideal hardware realization and capture a less

aggressive correlation between energy and distance.

We should note that the communication model does not impose aconstraint on the transmission

range. Instead, it is possible for two far-away nodes to communicate with each other at the cost of high

transmission power. Thus, the model is general. On the otherhand, imposing an additional range constraint

will not change the problem significantly because communications over a long link is penalized in teams

of power consumption. Furthermore, the proposed greedy algorithm does not rely on the assumption of

unlimited communication range, yet yields close-to-optimal performance. Thus, the impact of allowing

large communication range is negligible.
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We assume that each unit coverage distance generatesc unit of data per unit time. An example where this

assumption holds is a surveillance sensor network where incidents happen uniformly along the surveillance

line (e.g., a border line).

B. Problem Formulations

Let E be the initial energy of each node andT be the desired lifetime of the sensor network. We

are interested in the case of a relatively largeT . Let di be the distance between theith the (i + 1)th

nodes,i = 1, · · · , n − 1, andd0 be the area covered by node1, as shown in Figure 2. We assume that

the nodei will collect all the data between nodes(i − 1) and i, which isdi−1c per time unit. Therefore,

di−1 is the coverage distance of nodei. Noden is the sink node. We havedi ≤ D for all i, whereD

is the predefined maximum distance between two nodes. In the case of a hierarchical network,D limits

the distance between a sensor node to its neighboring data back-haul node (i.e., the cluster head) in the

higher hierarchy.

We first introduce Problem IDEAL. In this problem, we assume that energy can be allocated arbitrarily

among nodes. In other words, we only have a total energy constraint. Given (n − 1) nodes, the total

initial energy is(n − 1)E. (Note that noden is the sink node.) This is an idealized case, and its result

serves as abenchmark of the system. When energy can be allocated arbitrarily amongnodes, the network

dies only when there is absolutely no energy left in any nodes. Thus, the definition of the lifetime of

such a network is very general. We will show later that the performance of the proposed scheme under

more realistic assumption is close to that in the benchmark case, and thus the effect of arbitrary power

allocation is limited.

When energy can be allocated arbitrarily among nodes, routing in a linear network is greatly simplified.

A necessary condition for optimality is that nodei should relay all data to nodei+1, its nearest neighbor

toward the destination because(a+ b)γ > aγ + bγ, wherea, b > 0 andγ > 1. In other words, it consumes

more energy to transmit data over longer hops than over multiple shorter hops. This holds when energy

can be arbitrarily allocated among nodes.

The objective of Problem IDEAL is to find a deployment scheme to cover the maximum distance given
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the number of data back-haul nodes and the lifetime requirement. The problem is formulated as

maxmize
~d

n−1
∑

i=0

di (2)

subject to β
n−2
∑

i=0

cdi

n−1
∑

k=i+1

dγ
k ≤

(n − 1)E

T
(3)

0 ≤ di ≤ D, i = 0, · · · , n − 1. (4)

In Eq. (2),cdi is the amount of data collected by node(i + 1) in one time unit and it is relayed to node

(i + 2), ..., and node(n − 1), to noden. Furthermore,(n − 1)E is the total initial energy andT is the

required life time, and thus(n−1)E/T is the maximum amount of energy consumed per time unit by all

nodes. Therefore, Eq. (3) is the energy constraint. Eq. (4) is the maximum distance constraint. We note

that it can take several hops for a packet (bit) to be forwarded to the sink, and thus the energy consumption

could happen at different time periods. The problem formulation assumes steady state. This is reasonable

in a long-lived sensor network, where the time period to forward a packet, on the order of seconds, is

much smaller than the life-time of the network, on the order of months or longer. Problem IDEAL serves

as abenchmark because of its arbitrary energy allocation assumption and the corresponding definition of

lifetime. A similar problem can be formulated to introduce individual energy constraints on each node.

We refer interested readers to [11] for details.

We note that Problem IDEAL is not a convex optimization problem because the domain is not a

convex set. However, because the number of variables is relatively small, we use thefconmin function in

matlab to obtain the solution numerically. Next, we presenta heuristic deployment scheme that achieves

close-to-optimal performance and enables analysis.

IV. GREEDY DEPLOYMENT SCHEME

Problem IDEAL serves as abenchmark because of its arbitrary energy allocation assumption and the

corresponding definition of lifetime. However, such a heterogeneous energy allocation may be inconvenient

and impractical in production and deployment. In this section, we present a greedy deployment scheme

where each node has an individual (usually homogeneous) energy constraint. The intuition of the greedy

scheme is as follows: a node relays data for all nodes that arefurther away from the sink. It tries to push
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its data as far away as possible given the lifetime and energyconstraints, which determines the distance

to its nearest neighbor toward the sink. To elaborate, the total traffic load of nodei is c
(

∑i−1
j=0 di

)

. Let

xi be the pushing distance; i.e., the maximum distance that node i can push this amount of data given

the energy and lifetime constraints. We haveβ(c
∑i−1

j=0 dj)x
γ
i = E

T
. The algorithm is greedy in the sense

a node tries to push its data as far away as possible under the constraints. Furthermore, nodei does

not directly send data to nodej, wherej ≥ i + 2, because it consumes more energy. Because of the

maximum distance constraint, we havedi = min{D, xi}, wheredi is the distance between nodesi and

i + 1. Therefore, the greedy algorithm can be stated as:


















d0 = D

di = min

(

D,

(

E

βTc
Pi−1

j=0
dj

)
1

γ

)

, i = 1, · · · , n − 1.
(5)

In the greedy algorithm,di can be calculated iteratively. We note thatdi is monotonically decreasing

— a node with heavier relay load is compensated through a smaller transmission distance. The greedy

algorithm can be easily adopted to more general cases. For example, if each node has heterogeneous

initial power constraints,Ei, we can replaceE by Ei in Eq. (5). If data density is non-uniform, we can

replacec
∑i−1

j=0 dj by the aggregated load from distance 0 to
∑i−1

j=0 dj.

A. Numerical Comparison

We compare the performance of the greedy scheme with that of Problem IDEAL. Figure 3 compares the

numerical solution of Problem IDEAL and the performance of the greedy one. Problem IDEAL serves as a

benchmark because of its arbitrary energy allocation assumption and the corresponding general definition

of life time. Define a constantC = E/(cβT ). WhenD ≥ C(1/(γ+1)), we havexi ≤ D for all i. This is

the case where the required lifetime is long and/or the initial energy in each data back-haul node is low,

which is of our primary interest. In the numerical result,C = 1, D = 1, andn = 50. We setγ = 4 for

all numerical results in this paper unless otherwise specified. In Figure 3, the x-axis is the index of nodes

and the y-axis isdi, which is the distance between two consecutive nodes. In thelegend,Dn is the total

coverage distance givenn nodes. We notice that the difference in performance of the greedy algorithm
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with the optimal one is very small. Figure 4 compares the energy allocation of the two schemes. In the

greedy scheme, all nodes consume the same amount of energy bydefinition in Eq. (5). In the optimal

solution of Problem IDEAL, we notice that the leftmost nodeshave slightly higher energy allocations,

which infers to the slightly largerdi in Figure 3.

Figure 5 compares the coverage length of the greedy algorithm with the optimal solution of the Problem

IDEAL where D = 1 and C = 0.01, 1, 10, respectively. (Note that smaller values ofC are of more

interests since they correspond to long network lifetime.)It includes both cases whereD ≥ C(1/(γ+1))

andD < C(1/(γ+1)). The x-axis is the number of nodes and y-axis is the total distance covered. For each

fixed C, we can see that the performance of the greedy algorithm is almost indistinguishable from that

of the optimal scheme with arbitrary energy allocations. Figure 6 shows the results forγ = 2.

In summary, the advantage of allowing arbitrary energy allocation is negligible; the greedy algorithm

where each node has the same initial energy performs very well. Its coverage distance is almost equal to

that of the optimal deployment. Thus, it justifies the greedydeployment of homogeneous data back-haul

nodes.

B. Performance Analysis

Because the greedy scheme achieves close to optimal performance, its closed-form analysis can provide

insight into the design of wireless data back-haul networks, which is one of the reasons to introduce the

greedy algorithm. In this section, we obtain a closed-form approximation for the greedy algorithm. Let

Di =
∑i−1

k=0 dk, i.e.,Di is the total length covered by nodes 0 to(i−1), which can be calculated iteratively

using Eq. (5). We claim a closed-form approximation ofDi as follows:

Di ≈ C
1

γ+1

(

γ + 1

γ
i

)
γ

γ+1

, i = 1, · · · , n, (6)

To justify our claim, we only need to show that the above equation satisfies Eq. (5) iteratively. Assume

Eq. (6) hold fork = 0, 1, · · · , i − 1. By Eq. (5), we have

dk =

(

E

cβT
∑i−1

j=0 dj

)
1

γ

=

(

C

Dk

)
1

γ

≈ C
1

γ+1

(

γ

(γ + 1)k

)
1

γ+1

, k = 1, · · · , i − 1. (7)
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In the above equation, the first equality holds by definition (Eq. (5)) and the second by Eq. (6). Then, we

have

Di =
i−1
∑

k=1

dk + d0 ≈

∫ i

1

C
1

γ+1

(

γ

(γ + 1)x

)
1

γ+1

dx + d0 ≈ C
1

γ+1

(

γ + 1

γ
i

)
γ

γ+1

(8)

Thus, Eq. (6) is an approximation of the total distance covered by i nodes in the greedy algorithm. In

Eq. (8), approximations occur when we replace a summation with an integral, and when the impact of

d0 (i.e., the boundary effect) is ignored. The approximation is very close, especially for relatively largen

(e.g.,n ≥ 5). We compare the numerical result to a network up to 10000 nodes, for0.01 ≤ C ≤ 10, and

observe that the maximum discrepancy between the approximation and the actual value is smaller than

0.2% for all n, where5 ≤ n ≤ 10000. Whenn is reasonably large, the approximation of summation by

integral is relatively small.

This closed-form approximation in Eq. (6) reveals the relationship among the design parameters,n,

the number of data back-haul nodes needed,T , the life time of the data back-haul network,L, the total

distance that the network can covered (L = Dn when there aren data back-haul nodes). We have

Lγ+1 =
E

Tcβ

(

γ + 1

γ
n

)γ

. (9)

Having any two design parameters fixed, we can obtain the third. For example, givenT , n ∝ L
γ+1

γ , which

indicates a super-linear increase in the number of node required with respect to the coverage distance.

Given L, n ∝ T
1

γ is sub-linear. In addition, the marginal effect of adding one more node is sub-linear.

Suppose thatγ = 4 and all other parameters are fixed. To double the lifetime of asensor network, we

only need19% more data back-haul nodes. To double the length of the sensornetwork, we need138%

more nodes.

Finally, we compare the greedy scheme with the uniform deployment scheme. In the uniform deployment

scheme, nodes are evenly placed along the line. Assume the routing decision is to relay data to the nearest

node toward the sink node. Because noden − 1 is the closest to the sink node and has the most heavy

relay load, it exhausts its energy first. Thus, its lifetime limits the lifetime of the network. Our analysis

show that givenn, E andT , the greedy scheme can cover((γ + 1)/γ)γ/(γ+1) larger in distance than that
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of the uniform deployment [11]. For example, the coverage distance of our greedy scheme is24% and

19% longer than the uniform one whenγ = 3 andγ = 4, respectively. Alternatively, the lifetime of the

greedy deployment is(1+1/γ)γ times of that of the uniform deployment, which is237% and244% when

γ = 3 andγ = 4, respectively.

V. D ISCUSSIONS

A. Miscellaneous Power Consumptions

In a wireless device, power consumption is multi-facet. It consumes energy to keep the circuit awake,

to receive and process signals, etc. Such power consumptionis usually not negligible in practice. For

instance, the power consumption for reception is usually ofthe same order as that for transmission. In

this section, we consider such miscellaneous power consumptions and their impact on deployment.

To conserve energy in a wireless device, the device should beput into sleep mode when no

transmission/reception occurs. We assume that the energy consumption in the sleep mode is negligible. We

assume perfect synchronization, and thus the transmitter and the receiver are awake only when transmission

occurs. We also assume that data back-haul nodes do not perform sensing or the power consumption of

infrequent sensing/event-driven sensing is negligible.

Let Pa be the amount of additional power consumed by the transmitter in order to keep the circuit

“awake”,Pt be the transmission power, i.e., the power emitted by the antenna, andPmax be the maximum

transmission power allowed by the power amplifier, where0 ≤ Pt ≤ Pmax. Thus,Pt + Pa is the total

power consumed by the transmitter. LetPr be the total power consumed by the receiver, including the

power consumed by a circuit, to receive signals, and to perform signal processing. Given the transmission

powerPt and the SNR requirementβ, if the distance between the transmitter and the receiver isd, then

the achievable data transmission rateR is R = Pt/(βdγ). The total energy consumption by the transmitter

to send one bit over distanced is

Et =
1

R
(Pt + Pa) =

βdγ

Pt

(Pt + Pa) ≥ βdγ Pmax + Pa

Pmax

∆
= E∗

t , (10)

where the inequality holds whenPt ≤ Pmax, and E∗

t is the minimum amount of energy consumed to
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transmit a bit. The energy consumption by the receiver for the bit is

Er =
1

R
(Pr) =

βdγ

Pt

(Pr) ≥ βdγ Pr

Pmax

,
∆
= E∗

r . (11)

Again, the last inequality holds whenPt ≤ Pmax, andE∗

r is the minimum amount of energy consumed

to receive one bit. Thus, it saves energy to transmit with themaximum power at thehighest data rate

instead of lower power at lower data rate because this mode takes the smallest amount of time and thus

reduces the miscellaneous power consumption at both the transmitter and the receiver. This accords to

current research findings [19]. We assume from now on thattransmitting at the maximum power is the

transmission mode used. The challenge remains to determinethe deployment and routing strategy.

Let us consider the tradeoff between long and short hops. Without loss of generality (WLOG), we

compare a long hop of distanceld versus two short hops with distancess1 and s2, whereld = s1 + s2.

Assume all nodes transmit atPmax as discussed earlier. The total energy consumption to move 1bit using

the long hop of distanceld is

Elong =
1

R
(Pmax + Pa + Pr) = βlγd

Pmax + Pa + Pr

Pmax

.

Using two short hops, the energy consumption per bit is

Eshort = β(d1)
γ Pmax + Pa + Pr

Pmax

+ β(d2)
γ Pmax + Pa + Pr

Pmax

.

For γ > 1, we have(ld)
γ = (s1 + s2)

γ ≥ sγ
1 + sγ

2 , and thusElong ≥ Eshort. The intuition is that the total

awake time for two short hops is shorter than that of a long hopwhenγ > 1 and the rate is proportional

to the received SNR. Note that the important factor is that the(maximum) rate decays super-linearly

with respect to distance, i.e.,γ > 1. Thus, the time to transmit and receive one bit grows super-linearly

over distance and so does the total power consumption. In a linear network, long hops can always be

broken into two or more shorter hops iteratively, and thus short hops are preferred under the above stated

assumption.

Compared to the case where we only take the transmission powerinto account, we notice that the

energy consumption to transmit and receive one bit is scaledby a constant factor(Pmax +Pa +Pr)/Pmax.



14

We define

ρ =
Pmax

Pmax + Pa + Pr

as the energy coefficient. In other words,ρ is the ratio of the energy that is used for signal transmission

to the total energy consumption. A node consumes1/ρ times of energy to handle one bit compared to

the transmission-power only case. Because a node (except thesink node) receives and transmits the same

amount of data, this is equivalent to scaling the original energy by a factor ofρ.

Note we make the assumption that a data back-haul node receives data from sensors in the lower

hierarchy and does not perform sensing itself. Furthermore, we assume that a node consumes the same

amount of energy to receive one unit of data from a neighboring data back-haul node and from sensors in

the lower hierarchy. This assumption may not always be true because a sensor node in the lower hierarchy

may have smaller transmission power and consumes longer time to transmit one bit to data back-haul

nodes. However, for nodes with a large relay load, the difference is small. The larger the value ofi, the

better the approximation. The difference is more significant for nodes far away from the sink node.

In summary, the effect of miscellaneous power consumption can be well modeled by a scaling factorρ. It

may seem counterintuitive that smaller hops are desirable even when miscellaneous power consumptions

are taken into account. The reason is that when nodes are closer, the reliable data rate is higher, the

aggregated time for transmission/reception is shorter, the miscellaneous power consumption is lower, and

thus the total energy consumption is lower.

B. Non-uniform Data Density

In sensor network applications, data density may vary over locations. For instance, different portions of

a road may experience different volumes of traffic and intersections are in general busier. To model this

phenomena, letc(x) be the density at locationx, wherex ≥ 0. The sink node is located at the rightmost

location. The greedy algorithm can be extended to the case with non-uniform data densities along the

coverage area as follows:

di = min

(

D, xi : βl(i)xγ
i =

E

T

)

, (12)
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wherel(i) is the load for nodei to forward; i.e.,l(i) =
∫

Pi−1

j=0
dj

0 c(x)dx. In words, in the greedy algorithm,

nodei tries to push its loadl(i) as far as possible within the constraintD, which reflects the same intuition

as in Eq. (5).

Next, we show numerical results in the case of non-uniform data density. We consider a linear network

of length 10000(m). The data density along the linear network is not uniform, as shown in Figures 7

and 8, respectively. In both figures, the x-axis represents location and y-axis shows the variation in data

density. Figure 7 represents a linear network with location-varying data density, e.g., a border line with

different volumes of traffic. Figure 8 represents a network with bursty data traffic, e.g., a highway with

exits. We assume that the data density profile does not changeover time and can be estimated when

the sensor network is deployed. When the lifetime of the network is relatively long, short-term variation

(e.g., rush-hour vs. mid-night) is smoothed. In addition, to evaluate the impact of estimation errors of data

density on the network lifetime, a zero-mean Gaussian estimation error is added to the actual data density

profile to create a noisy estimate, as shown by the lower plot in each figure. The standard deviation of

the Gaussian-distributed error is 20% of the actual value of the load, which we consider as moderate

estimation errors.

We compare the performance of the greedy scheme with perfectknowledge of the data density profile,

the greedy scheme using noisy estimate, uniform deployment, and random deployment. We first use the

greedy algorithm in Eq. (12) to calculate the number of data back-haul nodes needed to monitor the linear

network, denoted asn. The greedy algorithm is then used based on the noisy estimated data density (the

lower plot in each profile). In the uniform deployment,n nodes are evenly distributed along the linear

network. In the random deployment,n nodes are randomly and uniformly distributed along the line. In

all deployments, each node forwards data to its nearest neighbor toward the sink node, which is at the

end of the linear network. The network is considered dead when the first node runs out of energy.

Figure 9 compares the greedy deployments with and without estimation errors on the data density. The

x-axis is the node index, and y-axis represents the distancebetween two consecutive nodes. The two

curves of the greedy deployment with and without estimationerrors (noted as “greedy” and “w. error” in
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the legend) are almost indistinguishable. To achieve the desired lifetime, the greedy deployment requires

243 nodes with perfect density information. In the presenceof estimation errors, 244 nodes are required

and the deployment achieves 99% of the desired lifetime. The preliminary result shows that independent

estimation errors have little impact on the performance of the greedy deployment. This is due to the fact

that the aggregated load at each node is more important than the density at a location. Because estimation

errors are independent, theaggregated estimation error at a particular location is small comparedto the

total aggregated load, due to the central limit theorem, formoderate or large values ofi. Therefore, the

impact ofindependent estimation errors is small. On the other hand, if estimationerrors are correlated, say

a large portion of the network is under-estimated, the impact will be larger. The impact of such correlated

errors needs to be further investigated.

As a reference, we plot the curve of a greedy deployment wherethe data density is uniform with the

same average density (average over the whole linear network), which is noted as “unif” in the legend.

This deployment requires 256 nodes to achieve the desired lifetime. The difference between the uniform

and non-uniform density cases is most significant when a low data density exists and thus the distance

between two consecutive users are larger (e.g., nodes 20-50).

In the uniform deployment,n (n = 243) nodes are evenly spaced in the linear network. The lifetimeof

the uniform deployment is34% of the desired lifetime. This is in accordance with the result presented in

Section IV. In the random deployment, we run 100,000 independent realizations, where in each realization,

n (n = 243) nodes are randomly and uniformly deployed. The average lifetime of the random deployment

is less than1% of the desired lifetime. This is due to the randomness in the deployment of nodes; i.e,

there exists consecutive nodes with a large gap with a high probability. The larger the network, the worse

the lifetime of the random network in comparison. This justifies strategic deployment of nodes and is in

accord with theoretical results on the coverage and connectivity properties of randomly deployed networks

(e.g., [14]). We also note that nodes closer to the sink are more likely to fail due to their heavier loads.

Bursty data density is also considered, as shown in Figure 8. Similar comparison is shown in Figure 10.

In this case, the estimation error costs the greedy algorithm no additional node and 2% decrease in the
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desired lifetime. The uniform deployment achieves 47% percent of the desired lifetime and the random

deployment achieves less than 1%.

While we consider the estimation error on data density above,another type of error occurs on deployment

due to inaccurate geographic measurements or physical constraints. We expect the greedy deployment

scheme to be robust against small independent deployment errors. Letdi be the desired deployment and

d′

i be the actual deployment with errors. The lifetime of the actual deployment isη times of the desired

one, where

η = min i
dγ

i

∑i
k=0 dk

(d′

i)
γ
∑i

k=0 d′

k

.

However, asn increases, the performance deteriorates because it is bounded by the worst-case scenario.

We hope to study the issue further in the future.

C. Planar Networks

The deployment in planar networks presents great challenges, mainly due to the large search space of

decision variables. For instance, even with the assumptionof arbitrary power allocation, we cannot reduce

the search space of routing possibilities much due to possible triangular routes. Withx data back-haul

nodes, we have2x + x2 continuous variables to optimize. In addition, the coverage area of each data

back-haul node needs to be determined so that the total transmission power is minimized while it is

guaranteed that all sensors in the lower hierarchy can be connected to at least one back-haul node. In the

following, we present two heuristics for the planar deployment.

Consider a square area where the sink is located at the right upper corner. A square-shaped deployment

is shown in Figure 12. There aren2 nodes and node(n, n) is the sink. The deployment is symmetric:

di is the distance between nodes(i, j) and (i + 1, j), and the distance between(j, i) and (j, i + 1). Each

node collects data of the left-lower rectangular. Assume only total energy constraint is considered. When

γ ≥ 2, to send data from(i, j) to (i + 1, j + 1), it is more efficient to send to node(i, j + 1) and then to

(i + 1, j + 1) because
(√

d2
i + d2

j

)γ

≥ (dγ
i + dγ

j ).
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In this case, routing is simple — a packet is routed either a right or upper neighbor until it reaches the

sink. Formally, the problem is formulated as

maxmize
~d

n−1
∑

i=0

di (13)

subject to
n−1
∑

i=0

n−1
∑

j=0

cdidjβ

(

n−1
∑

k=i+1

dγ
k +

n−1
∑

k=j+1

dγ
k

)

≤
(n2 − 1)E

T
(14)

0 ≤ di ≤ D, i = 0, · · · , n − 1. (15)

Eq. (14) is the total energy constraint, wherecdidj is the volume of data collected by node(i + 1, j + 1)

andβ(
∑n−1

k=i+1 dγ
k +

∑n−1
k=j+1 dγ

k) is the energy to relay one bit to the sink from this node. Note that Eq. (13)

is not a general 2D deployment problem because we limit the degree of freedom in allocating nodes.

An alternative is the strip deployment, shown in Figure 11. The whole area is divided into a number

of strips, where the result in the linear network can be applied in each strip. In the figure, the greedy

algorithm is used, shown as circles. At the right edge, a dense linear network is deployed vertically to

pull data to the sink node, shown by the hexagon nodes. The strip deployment is similar to the proposed

in [8], where linear approaches are extended to planar networks by dividing a planar network as strips or

pieces of pies.

We compare the performance of the two schemes. For a fixedn, we solve Eq. (13) numerically to

determine the maximum coverage givenn2 nodes. The perimeter of the area is denoted byL. We then

run the greedy algorithm to determine how many nodes are needed to cover the same area. The number

of horizontal rows in the strip deployment is determined bymr = ⌈L/D⌉ because the maximum width of

a strip isD. The width of each strip iswr = L/mr. The load for theith node in the strip iscwr

∑i−1
k=0 dk.

Eq. (5) can then be used to determine the distancedi. The vertical line at the right edge is determined

with data densitycwrL per strip.

In Figure 13, we show the perimeter of the coverage area as a function of n under different values of

C. In Figure 14, we compare the number of nodes needed to cover the same area by the two schemes.

In the figure, the x-axis represents the square deployment wheren2 is the number of nodes needed, the

y-axis represents the strip deployment wheren2
strip is the total number of nodes needed. The dashed line
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is the diagonal. The square deployment is better if the curveis above the diagonal line (e.g.,C = 10), and

the strip one is better if the curve is below the line (e.g.,C = 0.01). We note that square deployment is

preferred whenC is large, and strip one preferred whenC is small. SmallC implies small energy budget

per bit (e.g., longT or high c). In this case, it is more efficient to aggregate the data to a few heavy duty

nodes with short transmission distances, as the dense vertical line in the strip mode. This implies that

some kind of heavy-duty backbone may be desirable in optimal2D deployments.

In general, deployment of large planar sensor network is of great challenge and requires further study.

We hope that the strip and square deployments can shred lights on general 2D deployments. Other potential

solutions include deploying multiple sink nodes, exploiting mobile sinks, and decreasing data dimension

(e.g., the maximum temperature instead of temperature of all nodes).

VI. CONCLUSION

In this paper, we study the deployment issue for data back-hauling in wireless sensor networks.

Determination of an optimal deployment scheme involves location management, routing, and power

management. We formulate a general deployment optimization problem in a linear network and obtain

numerical solutions. We then propose a greedy algorithm that performs close to optimal compared to

the benchmark case. The closed-form analysis of the performance of the greedy algorithm revealed the

relationship among the design parameters, i.e., the required lifetime, the number of data back-haul nodes,

and the length of a linear network to be covered. We expect such relationship holds in the case of optimal

deployments because the greedy scheme depicts close-to-optimal performance.

We study the effect of miscellaneous power consumptions, including circuit power consumption and

receiving power consumption. We also study the cases of non-uniform data density and bursty data pattern.

The greedy algorithm can be easily adapted to both cases withsignificant better performance compared

to that of homogeneous and random deployment schemes. We present two heuristic extensions to planar

networks. Future study include planar networks, and the impacts of realistic data aggregation models and

deployment errors.
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Fig. 1. A Hierarchical Linear Network
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Fig. 3. Compare the locations of data back-haul nodes in the greedy scheme with the numerical solution of Problem IDEAL.
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Fig. 4. Compare the power allocation among data back-haul nodes in the greedy scheme with the numerical solution of Problem IDEAL.
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Fig. 5. Compare the coverage distance of the greedy scheme with the numerical solution of Problem IDEAL whenγ = 4.
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Fig. 6. Compare the coverage distance of the greedy scheme with the numerical solution of Problem IDEAL whenγ = 2.

0 2000 4000 6000 8000 10000
0

2

4

6

Location (x)

D
en

si
ty

0 2000 4000 6000 8000 10000
0

2

4

6

8

Location (x)

E
st

im
at

e

Fig. 7. Nonuniform data density profile.
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Fig. 8. Bursty data density profile.
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Fig. 9. Compare the deployment of the greedy algorithm with and without estimation errors.
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Fig. 10. Compare the deployment of the greedy algorithm with and without estimation errors.
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Fig. 11. Deployment of data back-haul nodes in the strip mode.
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Fig. 12. Square-shape 2D deployment with total energy constraints.
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