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Abstract—We implement a new software-based multi-hop TDMA MAC protocol (Soft-TDMAC) with microsecond synchronization using a novel
system interface for development of 802.11 overlay TDMA MAC protocols (SySI-MAC). SySI-MAC provides a kernel independent message
based interface for scheduling transmissions and sending and receiving 802.11 packets. The key feature of SySI-MAC is that it provides
near deterministic timers and transmission times, which allows for implementation of highly synchronized TDMA MAC protocols. Building on
SySI-MAC’s predictable transmission times we implement Soft-TDMAC, a software based 802.11 overlay multi-hop TDMA MAC protocol. Soft-
TDMAC has a synchronization mechanism, which synchronizes all pairs of network clocks to within microseconds of each other. Building on
pairwise synchronization, Soft-TDMAC achieves tight network-wide synchronization. With network-wide synchronization independent of data
transmissions, Soft-TDMAC can schedule arbitrary TDMA transmission patterns. For example, Soft-TDMAC allows schedules that decrease
end-to-end delay and take end-to-end rate demands into account. We summarize hundreds of hours of testing Soft-TDMAC on a multi-hop
test-bed, showing the synchronization capabilities of the protocol and the benefits of flexible scheduling.
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1 INTRODUCTION

N EW applications of wireless multi-hop networks such
as Voice-over-IP and other audio/video streaming

services require medium access control (MAC) with guar-
anteed Quality-of-Service (QoS). While the IEEE 802.11
protocol is a de facto standard for multi-hop wireless
networks, its Carrier Sense Multiple Access with Collision
Avoidance (CSMA/CA) MAC performs poorly in multi-
hop wireless networks and cannot provide guaranteed QoS
[2]. To achieve guaranteed QoS, one needs to resolve packet
collisions, which are the main cause of 802.11’s CSMA/CA
problems. An effective way to resolve packet collisions
is to use synchronized multi-hop MAC protocols, which
remove collisions by scheduling interfering links in non-
overlapping time or frequency intervals.

Current standardization efforts favour synchronized
multi-hop MAC protocols. IEEE is currently working on
the 802.11s[3] multi-hop MAC protocols, which has a syn-
chronized mode. IEEE and the 3rd Generation Partnership
Project (3GPP) are independently developing synchronized
multi-hop protocols for cellular networks.

These industry efforts mean that issues of protocol devel-
opment, resource management, and dynamic scheduling for
synchronized multi-hop protocols will come to the forefront
of research. While theories in these research areas can
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be developed mathematically and tested with simulations,
to influence industry, researchers need more convincing
arguments, showing that theories can be implemented in
practice. It is unlikely that the equipment implementing
new standards can be modified to develop synchronized
protocols for research purposes. Customizable hardware [4]
is prohibitively expensive. The alternative is to use com-
modity 802.11 hardware to develop synchronized TDMA
overlay MAC protocols.

So far, 802.11 synchronized overlay TDMA MACs have
proven difficult to implement due to the lack of tight syn-
chronization. Without tight synchronization, TDMA pro-
tocols resort to using large gaps between transmissions to
prevent collisions, decreasing the efficiency of the protocol.
We solve the synchronization problem and provide a new
software platform for implementing synchronized MAC
protocols with commodity 802.11 hardware.

We design and implement a system interface for 802.11
overlay TDMA MAC protocols under the Linux operating
system (SySI-MAC) and show its effectiveness with a
new software-based TDMA MAC protocol (Soft-TDMAC).
SySI-MAC provides a simple message-based interface for
overlay MAC protocol implementations to schedule trans-
missions, send packets, and receive packets. SySI-MAC
intercepts network packets from the Linux kernel and
passes them to the overlay MAC protocol, which enqueues
them for a period of time, until it requests SySI-MAC
to transmit them. To transmit the overlay MAC packets,
SySI-MAC disables the 802.11 CSMA/CA functionality
and embeds the packets into 802.11 broadcast frames.
Disabling CSMA/CA ensures that wireless transmissions
have predictable transmission times, necessary for highly
synchronized TDMA MAC protocols.

Building on SySI-MAC’s predictable transmission times,
we implement Soft-TDMAC, a software-based multi-hop
TDMA MAC protocol. The main feature of Soft-TDMAC
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is its tight synchronization. Tight synchronization is nec-
essary to minimize guard times between transmissions and
to increase protocol efficiency. Soft-TDMAC synchronizes
pairs of nodes to within one, 16µs, TDMA slot and builds
a synchronization tree for network-wide synchronization.
We show that by building the synchronization tree, Soft-
TDMAC simplifies synchronization in the network and
minimizes the worst case synchronization error.

To ensure that nodes can join the network without
causing packet collisions, Soft-TDMAC has a carefully
designed network entry procedure, which roughly synchro-
nizes the entrant nodes before they transmit any packets.
Soft-TDMAC also provides a layer-2 routing mechanism
and forwards packets over multiple-hops. For further effi-
ciency, Soft-TDMAC packs smaller network packets into
larger wireless transmissions.

Soft-TDMAC is especially appropriate for medium size
mesh networks, where the issues of TDMA scheduling
does not come into play. In mesh networks, access points
aggregate traffic from clients before it enters the mesh;
one client leaving or joining the network does not cause
a very large variation in inner mesh traffic. So, from the
point of view of the mesh the traffic is close to constant,
making TDMA scheduling easy. More importantly, Soft-
TDMAC can be used to devise and validate more elaborate
scheduling techniques appropriate for networks with highly
variable traffic.

We summarize hundreds of hours of testing Soft-
TDMAC on a multi-hop test-bed. Our experimental results
show that Soft-TDMAC synchronizes multi-hop networks
to within a few microsecond sized TDMA slots. With no
collisions and in good channel conditions, TCP achieves
almost the full channel bandwidth. To show how the lack
of tight synchronization affects TCP, we experiment with
different frame sizes. We emulate protocols without tight
synchronization by increasing transmission and frame du-
rations. Our experiments show that the TCP rate decreases
with larger frame sizes. We also show that with flexible
TDMA scheduling Soft-TDMAC can take advantage of
TDMA schedules, which reduce end-to-end delay and in-
crease end-to-end rates.

1.1 Related Work

Software based TDMA MAC protocols have been previ-
ously proposed for commodity 802.11 networks [5], [6],
[7], [8], [9], [10], [11], [12]. With the exception of the pro-
tocol in [12], these protocols are not tightly synchronized
[5], [6], [7], sometimes use external synchronization [8],
[9], or do not support TDMA schedules independent of the
synchronization mechanism [10], [11].

Without tight synchronization, TDMA protocols need to
use large slots to introduce gaps between transmissions and
prevent collisions. This approach was used to implement
TDMA-like 802.11 overlay MAC protocols, avoiding the
need for good synchronization [5]. A TDMA MAC with
tight pairwise synchronization, provided through wired con-
nections, is proposed in [8], [9]. However, without bounds

on transmission times this protocol still uses large TDMA
guard times.

With restrictions on types of schedules allowed by the
MAC, it is possible to implement collision-free TDMA
MAC protocols over commodity 802.11 hardware without
perfect synchronization [10], [11]. In 2P [10] and its deriva-
tives [11], collisions are prevented with a token passing
mechanism. After a node transmits, it passes the token
to one of its peers, which then transmits while the other
node receives. This approach limits the types of schedules
allowed by the protocol and complicates routing in the
network [13].

Achieving microsecond precision network-wide synchro-
nization, which is essential for development of efficient
TDMA MAC protocols, has proven to be a hard problem.
While protocols such as the Network Time Protocol (NTP)
[14] may be able achieve synchronization to within about
100 µs in wired networks, and may even synchronize
the network to about 1µs using the so-called post-facto
synchronization [15], they do not work in 802.11 wireless
networks. The main problem in achieving precise clock
synchronization in 802.11 networks is in estimating one-
way propagation delay between pairs of wireless nodes,
which is variable due to the 802.11 CSMA/CA collision-
avoidance mechanism. Specialized network synchroniza-
tion algorithms running on 802.11 based wireless networks
are able to guarantee synchronization to within milliseconds
[16] or hundreds of microseconds [17]. With customizable
Mica Berkeley node wireless hardware, the precision of
single-hop synchronization can be brought to about 20µs
[18].

One way to remove the variability of 802.11 delays is to
to time-stamp packets just before they are transmitted [11],
[12]. Our approach is to disable the 802.11 CSMA/CA by
changing the 802.11 QoS parameters, ensuring that wireless
transmissions have predictable transmission times and one-
way propagation delays are almost constant.

Recently, it was shown that a beacon flood can syn-
chronize 802.11 networks in the microsecond range [12].
This synchronization mechanism requires prior knowledge
of the network topology and transmission delays between
all pairs of nodes. The authors provide a heuristic for
the NP-complete problem of finding a good sequence of
beacon re-transmissions. By comparison, Soft-TDMAC’s
synchronization protocol requires no prior knowledge of
the network topology or pairwise delays, and self-adapts
its synchronization for the conditions in the network.

With the Atheros “MadWiFi” driver [19] it is also
possible to build software MAC research platforms [6],
[7], [8], [9]. We use the driver in this paper, however our
dependence on the MadWiFi driver is weaker than [6], [7],
[8], [9]. Our software does not use of any special hardware
features, e.g. hardware timers [9], and it does not directly
bind to the driver. It only relies on the 802.11 QoS features
provided by the MadWiFi driver, which are also available
in other wireless drivers.
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1.2 Contributions

A main contribution of this work is the design and imple-
mentation of a new multi-hop TDMA protocol with very
tight synchronization – Soft-TDMAC. Due to the lack of
tight synchronization, many TDMA MAC protocols [5],
[6], [7], [8], [9], [10], [11] built on top of 802.11 hard-
ware use millisecond long TDMA slots, which decreases
protocol efficiency and results in long frame sizes affect-
ing upper layers. Soft-TDMAC uses phase-locked loops
(PLLs) for pairwise synchronization and builds a minimum-
hop network-wide synchronization tree to achieve tight
network-wide synchronization. We show that building the
minimum-hop synchronization tree minimizes the worst
case synchronization error in the network. With tight syn-
chronization, Soft-TDMAC uses microsecond sized TDMA
slots, which make it very efficient.

Since Soft-TDMAC nodes are tightly synchronized, Soft-
TDMAC can schedule transmissions with arbitrary trans-
mission patterns, allowing for testing of TDMA scheduling
algorithms. This allows us to compare two very different
scheduling strategies for multi-hop TDMA networks on a
test-bed. In the first scheduling strategy, which we call odd-
even scheduling, pairs of nodes alternate their transmissions
with equal transmission times, while in the second strategy,
which we call minimum-delay scheduling, transmissions
times and schedules are chosen to minimize the end-to-
end scheduling delay and maximize end-to-end throughput.
Scheduling delay occurs when packets are forwarded from
an inbound link to an outbound link, but the outbound link
was scheduled to transmit first in the frame [20].

We also develop SySI-MAC, a general system interface
for development of other TDMA MAC protocols over
commodity 802.11 hardware. SySI-MAC allows for imple-
mentation of new MAC protocols in the Linux userspace,
making it easier to use than previous approaches, which
required development of protocols in the Linux kernel [6],
[7], [8], [9], or even wireless card firmware [12]. Since most
of the SySI-MAC interface does not depend on specialized
kernel calls, it is also available for the ns-2 simulator [21],
making it easy to prototype and debug new TDMA MAC
protocols, before the integration testing with hardware.

The rest of the paper is organized as follows: we describe
the Soft-TDMAC protocol in Sec. 2 and its synchronization
mechanism in Sec. 3; we describe SySI-MAC in Sec. 4; we
describe our test-bed and show the performance results of
Soft-TDMAC in Sec. 5; finally we conclude in Sec. 6.

2 SOFT-TDMAC MULTI-HOP TDMA MAC
We now describe the Soft-TDMAC multi-hop MAC proto-
col, showing its frame structure, control information, and
neighbour and route discovery. We explain Soft-TDMAC’s
synchronization mechanism in the next section.

Soft-TDMAC network boots up when the first node
comes online. We use the 802.16 mesh protocol jargon and
call this node “base-station”. The base-station provides a
timing reference for the rest of the network and presents a
natural gateway to the wired network. Soft-TDMAC does

not prevent any network traffic flow patterns, however in all
of our experiments we use the base-station as the gateway.

We use the convention that the base-station is node
0, while the rest of the nodes are numbered from 1 to
MAXNODEID. In the sequel we assume thatMAXNODEID = 31
corresponding to the parameters used in our tests. This
parameter can be changed at compile time. Assignment of
node numbers is independent of node locations and does
not affect the running of the routing and synchronization
algorithms.

Soft-TDMAC divides the time intoTs second long
TDMA slots and groups the slots into fixed size frames.
Each frame consists ofNf slots, for a frame duration of
Tf = Nf Ts seconds. The firstNc slots in the frame are
reserved for network beacons (control sub-frame); the last
Nd = Nf −Nc slots in the frame are used for data traffic
(data sub-frame). The TDMA parametersTs, Nf , and Nc

are configurable during the network boot-up, but stay fixed
while the network operates. In the sequel, we assume that
Ts = 16 µs, corresponding to the value used in our tests.

Each transmission contains the Soft-TDMAC header
containing the length of the packet, sender’s node number,
the link number, and for data packets, the data sub-header.
The link number and the node number uniquely identify a
directional link, originating at the sender. The link number
of all binary 1’s indicates broadcast transmissions and is
reserved for network beacons. The data sub-header contains
the node number of the final destination of the packet
and optionally the information about the subsequent data
packets, which are packed in the same transmission. So,
one Soft-TDMAC data transmission may carry a number
of smaller IP packets to increase the protocol efficiency.
The maximum Soft-TDMAC payload is 2012 bytes, corre-
sponding to the limitations of using 802.11 as the physical
layer technology.

Soft-TDMAC nodes transmit network beacons in the
control sub-frame. Network beacons are 48 bytes long and
are transmitted at the lowest modulation rate. Soft-TDMAC
allocates 20 TDMA slots for each beacon transmission,
where 16 of those slots are used for slack. While this
amount of slack is not strictly required due to Soft-
TDMAC’s tight synchronization, we still use it to make
network beacon transmissions robust during network entry
and resilient to synchronization errors.

Network beacons contain information advertising the
sender’s neighbours. A “neighbour” refers to all of the
nodes that the sender is aware of, including the nodes that
the sender cannot hear from directly. For each neighbour,
the beacon contains the sender’s hop count to neighbour,
used for building the routing tables, and synchronization
hop count to the base-station, used for building the network
synchronization tree. Since a beacon can only carry infor-
mation about a limited number of neighbours, each node
keeps a circular list of its neighbours and cycles through it
to ensure that all neighbours are eventually advertised.

The hop count to each advertised neighbour is sufficient
information for a distance vector routing algorithm similar
to the Routing Information Protocol (RIP) [22]. Soft-
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Fig. 1. Network Beacon Schedule.

TDMAC maintains a next-hop minimum-distance routing
table for the nodes it is aware of and forwards packets
based on that routing table.

Soft-TDMAC sends network beacons in the control sub-
frame with a fixed schedule. There are no restrictions on
the type of schedules in the data sub-frame. However, in
our experiments we group all transmissions of the same
link as continuous sets of TDMA slots to increase protocol
efficiency. We discuss scheduling in the data sub-frame in
the context of our results.

The schedule in the control sub-frame is fixed. Each
frame hasCTRL_LEN = ⌊Nc/20⌋ control sub-frame trans-
mission opportunities (TxOps), where⌊·⌋ is the floor func-
tion. The first TxOp in the control sub-frame is silent for
all nodes and is used to run the clock synchronization
algorithm (Fig. 1). Using the same TxOp to run the
synchronization algorithm ensures that all nodes arrive
at their synchronization decision at about the same time.
This approach also puts a hard cap on how long the
synchronization algorithm is allowed to run at 320µs.
We tested the algorithm to ensure it never goes over the
cap, so we are sure that its running never interfered with
transmissions.

After the first TxOp, the nextCTRL_LEN − 1 control
TxOps are active and are used to send network beacons.
Nodeni transmits its network beacon everyCTRL_REUSEth

TxOp, whereCTRL_REUSE is a configurable parameter. If
there areM nodes in the network, thenCTRL_REUSE ≥M.
Nodeni transmits in each TxOpj for which

i = ( j−FRAME−1) (mod CTRL_REUSE), (1)

where

FRAME =

⌊

j
CTRL_LEN

⌋

,

counts the number of frames since network boot-up, and
j ≥ 0 is the number of TxOps since network boot-up such
that j (mod CTRL_LEN) 6= 0.

For example, ifCTRL_LEN = 4 and CTRL_REUSE = 8,
node n4 transmits in control TxOpj = 6, corresponding
to the 3rd TxOp in frame 1, then again in control TxOp
j = 17, corresponding to the 2nd TxOp in frame 4, and so
on.

Each network beacon is time-stamped with the current
TDMA frame and control sub-frame TxOp number, which
is sufficient information to find time-offset between nodes
required by the synchronization algorithm. The number of
bits used to transmit the frame and slot information is
limited to 28 and 4 bits, respectively. The synchronization

algorithm takes the number of available bits into account
while findings the difference in time-stamps to ensure that
there are no overflow errors.

3 SOFT-TDMAC SYNCHRONIZATION

One way to synchronize the network is for all nodes to
find clock offsets to the base-station and synchronize to it.
However, we show that without estimation errors finding
the clock offset to the base-station is equivalent to finding
pairwise clock offsets between nodes on a path to the base-
station. We use this observation and build a synchronization
tree where all pairs of nodes are synchronized to each
other. We also show that synchronizing nodes along the
minimum hop path to the base-station minimizes the worst-
case synchronization to the base-station for each node
along the path, which prompts us to build a minimum-hop
synchronization tree to the base-station.

Our approach is different from the approach in the
Network time Protocol (NTP) [14], which estimates the
clock offset to the clock source over multiple hops. NTP’s
approach is not possible in Soft-TDMAC for two reasons.
First, the clock information is in the control sub-frame,
which has limited bandwidth to ensure the protocol is effi-
cient. Second, transmitting the clock offsets over multiple
hops introduces additional random delays, making it harder
to obtain the synchronization level required for efficient
TDMA MAC protocols.

First, we explain our network time model. Then we
show that the minimum synchronization tree minimizes the
worst-case synchronization error and explain how the tree
is built. We explain other components of Soft-TDMAC syn-
chronization next: pairwise time-stamp exchange that finds
pairwise clock offsets and phase-lock loop (PLL) used for
pairwise synchronization. Finally, we explain the network
procedure, which is required to prevent packet collisions
before the pairwise exchange of packets synchronizes pairs
of nodes.

3.1 Network Clock Model

We use the oscillator clock model [23], where each node’s
system clock is derived from an oscillator with the output

u(t) = cos

[

2π
∫ t

0
f (τ)dτ

]

, t > 0,

where f (t) is the oscillator’s instantaneous frequency and
t is the time. The oscillator’s instantaneous frequency
consists of a fixed nominal frequencyFnom. and a time
varying phaseϑ(t),

f (t) = Fnom.+ϑ(t).

The instantaneous phaseϑ(t) represents the time variability
of the oscillator, so the oscillator time model comprises
all possible instantaneous frequencies that change randomly
over time (for example due to changes in environmental
temperature). The exact distribution of the instantaneous
frequency is not necessary for any derivations in this work.
In the sequel, we use the nominal frequencyFnom. = 109 Hz,
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corresponding to the nanosecond precision of the Linux
system clock.

System time is obtained by counting the number of
oscillator cycles. Nodej ’s system time is

Cj(t) = Fnom. t +θ j(t), (2)

whereθ j (t) =
∫ t

0 ϑ j (t)dτ is the residual phase of the node’s
oscillator at timet, andϑ j(t) is the time varying phase of
node j ’s oscillator. Without any loss of generality, in the
sequel we assume thatθ j(0) = 0 for all nodesj.

The network time is generated from the clock at the base-
station with

T0(t) =C0(t) = Fnom. t +θ0(t), (3)

whereC0(t) is the system time of the base-station (node 0)
at timet, andθ0(t) the residual phase of the base-station’s
oscillator.

All other nodesj generate local network time from their
system clock with

Tj(t) =Cj(t)−∆0, j(t− ε), (4)

where∆0, j(t−ε) is the clock offset between nodej ’s local
network time and the network time at the base-station,
found ε seconds before the current time,

∆0, j(t− ε) = Tj(t− ε)−T0(t− ε) = θ j(t− ε)−θ0(t− ε).

For smallε, limε→0
∣

∣θ j(t− ε)−θ j(t)
∣

∣= 0 and

Cj (t)−∆0, j(t− ε) =
ε→0

Fnom. t +θ0(t),

meaning the a node can synchronize itself to the base-
station if it can estimate its clock offset to the base-station
accurately and timely.

3.2 Synchronization Tree

We show that estimating clock offset to the base-station
is equivalent to estimating pairwise clock offsets between
pairs of nodes on a path to the base-station. With estimation
errors, synchronizing pairs of nodes along the minimum
hop path to the base-station minimizes the worst-case
synchronization of each node to the base-station.

Soft-TDMAC estimates pairwise clock offsets with a
pairwise time-stamp exchange in the network beacons,
which is explained in detail next. Here we assume that after
thekth beacon period, pairs of nodesj and i have available
a clock offset estimate

∆i j (kTp) = θ j(kTp)−θi(kTp),

which is valid during(k+1)th beacon period, timekTp ≤
t < (k + 1)Tp, where the network bacon periodTp is
approximately

Tp≈
CTRL_REUSE

(CTRL_LEN−1)
Tf , (5)

CTRL_LEN−1 is the number of beacon transmissions in a
frame, andCTRL_REUSE controls how often nodes transmit
in the control sub-frame (1).

Suppose that nodes are labeledn0,n1, . . . ,n j , along a
path. Noden1, on the first hop, has the clock offset to
the base-station (noden0) in after just one beacon period
(kth beacon period). Its network time is

T1(t) = Fnom. t +θ1(kTp)−∆01(kTp)+ ε1

= Fnom. t +θ0(kTp)+ ε1

for kTp≤ t ≤ (k+1)Tp, whereθ j(kTp) is the residual phase
of node j at time kTp, and ε1 represents the error in the
clock offset estimate and clock drift. The residual phase of
noden1 in the next beacon period,(k+1)Tp≤ t ≤ (k+2)Tp,
is

θ1

(

(k+1)Tp

)

= θ0(kTp)+ ε1.

After the beacon periodk noden2, at the second hop,
knows the clock offset node to noden1, but this clock
offset does not include the adjustment we just showed.
However, after the(k+1)th beacon period that adjustment
is propagated and the time two hops away from the base-
station at noden2 is

T2(t) = Fnom. t +θ2

(

(k+1)Tp

)

−∆12

(

(k+1)Tp

)

+ ε2

= Fnom. t +θ0

(

(k+1)Tp

)

+ ε1+ ε2

for t ≥ (k+2)Tp, whereε2 represents estimation and clock
errors in the second hop.

Generalizing, afterj beacon periods, the network time at
noden j , j hops away from the base-station, is

Tj(t) = Fnom. t +θ0(kTp)+
j

∑
i=1

εi

for t ≥ (k+ j +1)Tp, whereεi estimation and clock errors
for hop i. So, j hops away from the base-station the
synchronization error is

‖Tj(t)−T0(t)‖=

∥

∥

∥

∥

∥

j

∑
i=1

εi

∥

∥

∥

∥

∥

≤ jεclock,

where εclock is the maximum single-hop synchronization
error. We show the origins of synchronization errors next.

Given the above development, we conclude that using
the pairwise clock offsets is equivalent to finding the clock
offset to the base-station and that the minimum-hop syn-
chronization tree minimizes the worst case synchronization
error. The above result is our motivation to synchronize
pairs of nodes in the network according to a hierarchy
based on a shortest path synchronization tree. We note
that stronger results than this can be obtained with first-
order clock drift models [24]. However, clock modeling
and analysis is beyond the scope of this work.

Soft-TDMAC builds a minimum hop synchronization
tree from the synchronization hop count broadcast in net-
work beacons. Synchronization hop count is used to run
distance vector algorithm on each node and find the shortest
synchronization path to the base-station, similar to the Soft-
TDMAC routing algorithm. The collection of these paths
is the synchronization tree in the network.
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kTp (k + 1)Tp

Tj(t1) = Fnom. t1 + θj(t1)

Ti(t2) = Fnom. t2 + θi(t2)

t1

t2

Ti(t3) = Fnom. t3 + θi(t3)

Tj(t4) = Fnom. t4 + θj(t4)

t4

t3
(

Tj(t2)− Ti(t1)
)

Fig. 2. Pairwise Time-stamp Exchange.

3.3 Pairwise Clock Offsets

Soft-TDMAC estimates pairwise clock offsets with a time-
stamp exchange in the network beacons. To simplify no-
tation, in the sequel we use[·] to emphasize the discrete
nature of some quantities,∆i j [k] , ∆i j (kTp), whereTp is
the network beacon transmission period (5).

In beacon periodk, the slave sends a network beacon at
time t1≥ kTp, with its local network timeTj(t1) =Fnom. t1+
θ j(t1) (Fig. 2). The master slave relationship is determined
from the synchronization tree – the node closest to the base-
station is the master. After receiving the network beacon at
time t2, the master uses its network timeTi(t2) = Fnom. t2+
θi(t2) to find the network time difference to nodej, Ti(t2)−
Tj(t1). Some time later, the master sends a network beacon
at time t3, with its network timeTi(t3) = Fnom. t3+ θi(t3)
and the previously found network time difference. After
receiving the beacon, at timet4≤ (k+1)Tp, the slave finds
its network time difference to the master,Tj(t4)−Ti(t3).

After the exchange, the slave node estimates its clock
offset to the master with

∆i j [k] =
1
2

[(

Tj(t4)−Ti(t3)
)

−
(

Ti(t2)−Tj(t1)
)]

=θ j [k]−θi[k]+
1
2

[

ε( j ,i)
drift − ε(i, j)drift

]

+
1
2

εprop,
(6)

whereθi [k] , θi(kTp) and θ j [k] , θ j(kTp) are the residual
phases at the slave and the master at timet = kTp, respec-
tively,

ε( j ,i)
drift = θ j (t4)−θ j(kTp)−

[

θi(t3)−θi(kTp)
]

is the difference between nodej ’s clock drift in the time
periodkTp to t4 and nodei’s clock drift in the time period
kTp to t3, and

ε(i, j)drift = θi(t2)−θi(kTp)−
[

θ j(t1)−θ j(kTp)
]

is the difference between nodei’s clock drift in the time
periodkTp to t2 and nodej ’s clock drift in the time period
kTp and t1, and

εprop= Fnom. [(t4− t3)− (t2− t1)]

is the difference in one-way propagation delays.
In the unlikely scenario that the one-way propagation

delays are the same and that there is no clock drift, (6)
calculates the exact clock offset between the master and
the slave at the beginning of the exchange. However, this

is not the case in general.
The errors due to clock drift are negligible since high

manufacturing standards are used even for stock hardware
platforms used in our test-bed. For example, a relatively
large 500µs/s clock drift [14] translates to a clock drift of
a few microseconds in each millisecond longTp interval.

We minimize the errors due to the differences in prop-
agation delay with careful engineering, which ensures low
propagation error for most transmissions. Nevertheless, as
we observe later, the Atheros 802.11 hardware used on our
test-bed sometimes inexplicably delays data packets, which
causes asymmetrical propagation delays with relatively
large propagation errors. The software detects clock offsets
with asymmetrical propagation delays from the round-trip
propagation time and eliminates them from consideration
for synchronization.

The slave finds the round-trip delay with

δi j [k] = [Tj(t4)−Ti(t3)]+ [Ti(t2)−Tj(t1)]

= Fnom.
[

(t4− t1)− (t3− t2)
]

+
[

ε( j ,i)
drift + ε(i, j)drift

]

,

where the first term in the last summation is the round-trip
delay andε(i, j)drift and ε( j ,i)

drift are defined as before. Since the
slave expects the round-trip delay to be

δi j [k]≈ 2∗TTxOp≫ 2∗ ‖εmax
drift‖ ≥ ε( j ,i)

drift + ε(i, j)drift ,

where TTxOp is the duration of network beacon transmis-
sions,εmax

drift is the maximum clock drift in periodTp, and
δi j [k] ≥ 0, it can easily detect clock offset estimates with
asymmetrical delays. ForTTxOp= 320 µs used in our tests,
valid return trip times areδi j [k]≈ 640 µs.

3.4 Software Phase-Lock Loop

The raw pairwise clock offsets are input into a software
PLL to smoothly synchronize clocks. The PLL drives
the slave’s clock offset to 0 as the number of pairwise
exchanges increases. The PLL averages clock offsets over
the lastwu time-exchanges and uses the smoothed clock
offset to update times (SYNCHRONIZE-TO-MASTER).

The algorithm has two major parts. The first part of the
algorithm (Steps 1−4) calculates the average clock offset
∆i j [ku] for the current re-synchronization period from clock
offset estimates∆i j [k]. The re-synchronization period is
different from the network beacon period and is demarcated
by the updates of the local clock offset (Step 7). Before
adding a clock offset to the average, the algorithm checks
the validity of it’s return-trip time (Step 1). Clock offset
estimates with return-trip times less then 0 or greater than
δmax

prop= 800µs are ignored. The algorithm adds valid clock
offset estimates to the running average of the clock offsets
in Step 3 to obtain the average clock offset fromwu valid
offsets

∆i j [ku] =
1

wu

wu

∑
k=1

∆i j [wu(ku−1)+ k], (7)

for the re-synchronization periodku.
The second part of the algorithm (Steps 5− 15) uses

the averaged clock offset to update the node’s clock off-
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Algorithm 1 SYNCHRONIZE-TO-MASTER(∆i j [k], δi j [k])

Initialize globals: l = 0, ku = 1, ∆i j [0] = 0, wu =Wmin

1: if 0< δi j [k]< δmax
prop then

2: l ← l +1
3: ∆i j [ku]← ∆i j [ku]+ (∆i j [k]−∆i j [ku])/l
4: end if
5: if l = wu or ∆i j [ku]> ∆max then
6: ku← ku+1 /* ku = k/wu, if ∆i j ≤ ∆max*/
7: ∆̂i j [ku]← ∆̂i j [ku−1]−∆i j [ku−1]
8: l ← 0
9: if ∆i j [ku]> ∆max then

10: wu←max{wu/2,Wmin}
11: else
12: wu←min{wu+1,Wmax}
13: end if
14: ∆i j [ku]← 0
15: end if

set for the current re-synchronization period,∆̂i j [ku]. The
algorithm only updates local clock offsets everywu

th time
it is run (Step 5), or if the average clock offset is greater
than the target clock offset∆max = Ts/2= 8 µs. We note
that using the target of∆max= 8 µs is sufficient to schedule
any transmission pattern with the granularity of one 16µs
TDMA slot.

The update window,wu, is determined based on how far
the slave’s clock is from the master’s clock (Steps 9−13).
The update window is an integer in the rangewu ∈
[Wmin,Wmax]. In our tests we useWmax=(5 s)/Tp, to ensure
the maximum time between clock updates of 5 s, and
Wmin = 1, to ensure that at least clock offset estimate is
available before the update. If the algorithm finds that the
clock offset to the master is larger than∆max, it halves
the update window (Step 10). On the other hand, if the
algorithm finds that the clock offset is smaller than∆max,
the update window is increased by one frame (Step 12).

The effect of the shorter, or longer, update window is
seen from the software-based PLL model of the algorithm
(Fig. 2). The low-pass filterF(z,wu) corresponds toz-
transform of the averaging of clock offsets on Step 3 of the
algorithm (7). Updating the local clock offset in Step 7 of
the algorithm corresponds to the integration elementD(z).
We note that the PLL is a multi-rate system as indicated by
the two samplers operating at different frequencies. Since
the update window changes the behaviour of the low-pass
filter, it becomes a parameter governing the performance of
the PLL.

We simulate the performance of the software PLL in
Matlab. The performance results can also be derived an-
alytically, however that type of analysis is beyond the
scope of this work. The simulation starts with the slave
and master perfectly synchronized and then the master’s
clock is pushed forward by some amount. Fig. 4 shows
the behaviour of the slave’s clock offset, in terms of the
percentage of the original clock offset, as the number of
clock exchanges increases. Clock offset eventually goes to

θj(t)

every Tp seconds every wuTp seconds

∆ij [k]

θi[k]

∆ij [ku − 1]

− F (z, wu) =
1−z−wu

wu(1−z−1)

D(z) = z−1

+

∆ij [ku]

Fig. 3. Software PLL Control System Model.
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zero, meaning that the algorithm synchronizes the clocks
over time.

Considering Fig. 4, Steps 9-13 in the synchronization
algorithm can be interpreted as follows: if the clocks are far
from each other, the algorithm aggressively decreases the
settling time of the PLL to speed up the synchronization;
on the other hand, if the clocks are close to each other, the
algorithm cautiously increases the settling time of the PLL
to filter out the noise in the clock offset estimates.

3.5 Network Entry

Initially, a node is unsynchronized. An unsynchronized
node collects network beacons for the maximum allowed
re-synchronization time. While unsynchronized, a node
estimates the clock offset to the synchronized nodes by
assuming a one-way propagation delay of 15 slots (240µs).
After the re-synchronization time expires, the unsynchro-
nized node uses the estimated clock offset to synchronize
its clock and declares itselfroughly synchronized. Even
though at this point the node is not fully synchronized to the
network, network beacon transmissions have enough slack
(120 µs), to allow it to transmit network beacons without
collisions.

After the node is roughly synchronized, is starts to trans-
mit network beacons and uses synchronization algorithm
for precise synchronization. After 20 runs of the synchro-
nization algorithm, the node declares itselfsynchronized



8

Soft−TDMAC 802.16 mesh

ns2 networking 
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Fig. 5. Soft-TDMAC Architecture.

and starts to send data packets. Waiting for 20 runs of
the synchronization algorithm limits the total duration of
network entry to at most 105 seconds (5 seconds to achieve
rough synchronization and at most 20∗5 seconds to achieve
full synchronization). However, since in practice the re-
synchronization period is always smaller than the maximum
5 seconds, network entry typically takes 20 to 30 seconds.

4 SYSI-MAC LINUX ARCHITECTURE

The SySI-MAC system interface for 802.11 overlay TDMA
MAC protocols, is positioned between an overlay protocol
implementation and the 802.11 MAC implemented either
in real hardware or in a simulator environment (Fig. 5).
SySI-MAC’s message-based Service Access Point (SAP)
interface provides a simple way to add and implement
new overlay protocols, while the Hardware Abstraction
Layer (HAL) provides a uniform access to the 802.11
MAC implementations across different technologies for
easy porting of SySI-MAC.

In the SySI-MAC’s Linux implementation parts of the
code reside in the Linux userspace, while the rest reside
in the Linux kernel. The SAP interface and the implemen-
tation of hardware independent functions are implemented
as a userspace library. A part of the HAL resides in the
userspace, while the other part resides in the kernel. The
userspace part of the HAL provides timers and inter-process
communications with the part of the HAL residing in the
kernel. The kernel part of HAL is implemented as a kernel
module and provides a direct link to the kernel’s network
service, which manages the 802.11 device drivers.

The relationship between the components is most easily
explained with a traversal of a network packet. When the
kernel module receives an IP packet from the Linux kernel
IP networking stack, it forwards it to the userspace part of
the HAL. The SAP then hands the packet to the overlay
MAC, which process it, enqueues it and requests a timer
interrupt from the SAP for the next packet transmission.
After some time, the HAL creates a timer interrupt and
delivers it to the overlay MAC, which then hands over the
packet to the SAP as a transmission request. The userspace
part of the HAL hands-off the packet to the kernel module,
which requests the kernel’s networking service to send the
packet over the 802.11 hardware.

Waiting Sending

Connecting

Disconnecting

connect/
init()

confirm/
schedule()

timeout/
generate_pdu()

confirm/
schedule()

receive/
process_pkt()

receive/
process_pkt()

Fig. 6. Connection State Diagram.

We have previously implemented SySI-MAC’s SAP and
HAL in ns-2 [26]. In this work, the kernel module and a
POSIX based userspace library implement a Linux version
of the HAL. We rely on the real-time extensions to the
Linux Kernel [27] for microsecond precision timers.

There are three reasons for dividing SySI-MAC architec-
ture into userspace and kernel components. First, since the
majority of the library is in userspace, with few dependen-
cies on its environment, it is possible to plug the library into
a network simulator [26], or to port it to environments other
than Linux, which support POSIX threads [28]. Second,
putting the overlay MAC code into the userspace removes
the difficulties of programming in the kernel due to the
lack of full debugging facilities, standard system routines
and the kernel’s limited, undocumented, and constantly
changing threading and timer interfaces. Three, by putting
the most important components of our software into the
userspace, we avoid tying future overlay MAC protocol
implementations to the restrictive GNU Public License [29].

4.1 SySI-MAC Service Access Point Interface

Due to space constraints, we cannot provide the full details
of the SySI-MAC’s SAP interface and SySI-MAC’s HAL
implementation. These can be automatically generated from
the SySI-MAC’s source code [30]. We only describe the in-
terface briefly to indicate how it formalizes the development
of new TDMA MAC protocols.

The key idea of the SAP interface is to use link layer
“connections” as an abstraction for a TDMA MAC proto-
col. We use the term connection to associate transmissions
with schedules and to signify pairwise wireless links.

A new TDMA MAC protocol is implemented by creat-
ing new connection types, which implement functionality
specific to the protocol. Each connection implements a
connection state machine, which allows it to use SySI-MAC
SAP interface. Fig. 6 shows connection state machine (the
message received by the connection and the procedure that
SySI-MAC calls on the connection after the message is
processed are denoted withmessage/procedure()).
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Connections start in theConnecting state. For a connec-
tion that implements network entry, theConnecting state
is the state during which it synchronizes to the network. On
the other hand, data connections may use theConnecting
state to send control messages to establish pairwise links
between wireless nodes.

After a connection finishes with theConnecting state
it enters theWaiting state where it receives packets or
timer events. If the connection receives a timer event in the
Waiting state, it enters theSending state, where it sends
its packets. After the hardware confirms the sending of the
packet, the connection returns to theWaiting state. We
note that the state machine allows connections to receive
packets in theSending state, even though that may be an
obvious hardware, software or synchronization error. With
this approach, the SAP interface lets the overlay MAC
handle serious errors.

The final state of each connection is theDisconnecting
state. The intention of this state is to allow connections
to release memory and other resources when they are no
longer needed.

New protocols are implemented by implementing the
process_pkt(), generate_pkt() and schedule() pro-
cedures for new connection types. Theprocess_pkt()
procedure receives the packets from the wireless hardware
or the kernel’s network stack and depending on the type
of connection it may send these packets further up the
stack, enqueue them, generate new packets, or perform
management procedures. Thegenerate_pkt() procedure
is called in response to a timer event, which was previously
requested by theschedule() procedure. This procedure re-
quests an immediate packet transmission, with the option of
specifying physical layer parameters. Thegenerate_pkt()
function have a short execution time to ensure that the
delay from the timer to when the packet is transmitted
is small and non-variable. In our protocol implementation,
we achieve this goal by pre-generating all overlay MAC
outgoing packets in theprocess_pkt() function, which
has almost no time constraints.

The schedule() function allows connections to imple-
ment their schedules. It is called after a connection exits the
Connecting state and every time the connection exits the
Sending state to allow a connection to request the timer
message for a future transmission.

4.2 TDMA Hardware Abstraction

SySI-MAC provides a “virtual” TDMA hardware abstrac-
tion to its overlay MAC protocol clients. The hardware
abstraction maps overlay MAC transmissions into slotted
time transmissions (Fig. 7), taking into account the fact that
the overlay MAC’s packets are transmitted as the payload of
actual 802.11 packets. To simplify scheduling in the overlay
MAC protocol, SySI-MAC virtual TDMA slots are grouped
into fixed length frames. Each TDMA slot carries a fixed
number of bytes, which depends on the 802.11 physical
modulation rate used during packet the transmission.

Overlay MAC transmissions have two parts in virtual
time. The virtualguard timecovers hardware and software

Guard Time

Virtual
Time

802.11
Transmission

Payload Time

802.11 HeadersAIFS

Software
Processing Overlay MAC Packet

Fig. 7. Virtual TDMA Time.

overheads, while the virtualpayload timecovers the time
required to transmit an overlay MAC packet without 802.11
overhead (Fig. 7). The overheads include the software
processing time, which corresponds to how long it takes
from the timer event requesting the transmission to the
actual request for a transmission, the 802.11 arbitration
inter-frame space (AIFS) pause, which occurs after 802.11
hardware determines that the channel is free, and the time
required to transmit 802.11 protocol headers. Abstracting
all overhead times into a single guard time, allows for
TDMA protocols agnostic of the underlying transmission
technology.

While the 802.11 transmission time is fixed by hardware
on all systems, the guard time is not. In the simulator
environment, the guard time can be found theoretically by
closely considering the 802.11 standard [26]. However, on
the Linux system, the guard time depends on the software
processing time – how fast the processor is and how quickly
the context switch between timer interrupts and SiSY-MAC
occurs. We determine guard times experimentally, as shown
in the next section.

5 TEST-BED RESULTS

We summarize hundreds of hours of evaluating Soft-
TDMAC on a 4 node test-bed (Fig. 8). All nodes in the
test-bed where situated on a typical office desk, with the
distance between nodes of less than 1 m. Due to the
physical size of the test-bed, all nodes can hear transmission
from all other nodes.

Test-bed nodes are Hewlett-Packard nc6000 laptops,
which use the Pentium M processors running at around
1.5 GHz. The laptops come pre-installed with the wireless
cards using the Atheros Communications AR5212 chipset.
We use the MadWiFi driver [19]. We add profiling software
to the driver, which allows us to measure 802.11 transmis-
sion times. We also add code to change per-packet 802.11
modulation rates. Since we access the MadWiFi driver
through the Linux networking sub-system, we effectively
change only about 10 lines of code in the driver.

The laptops run Linux kernel 2.6.23 [25] with the
real-time extensions [27]. The Linux real-time extensions
streamline the kernel to remove unnecessary software locks
and provide preemptive priority-based thread scheduling,
which is necessary for precise software timers. The system
software is installed with the Gentoo Linux software dis-
tribution. The userspace uses the POSIX real-time thread
implementation provided by glibc-2.6.1. All software is
compiled with gcc-4.1.2.
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Fig. 8. Logical Topology of the Test-bed.

We use the 802.11a wireless channel 100, operating at
5.5 GHz, which we found to be free of other wireless nodes.
We set the 802.11 AIFS time and the 802.11 contention
window to the lowest values allowed by the underlying
hardware. These parameters can be modified with the newer
Linux wireless drivers such as the MadWiFi driver [19] for
the Atheros wireless chipsets. Since Soft-TDMAC requires
fixed transmission times for synchronization, we disable the
802.11 retransmission mechanism.

We use TDMA slots with the durationTs = 16µs, cor-
responding to 4 802.11a Orthogonal Frequency Division
Multiplexing (OFDM) symbols [31]. With these settings, a
TDMA slot can carry 12, 24, 36, 48, 64, 96, or 108 bytes,
corresponding to the 802.11a’s 6 Mbps, 12 Mbps, 18 Mbps,
24 Mbps, 36 Mbps, 48 Mbps and 54 Mbps modulation
rates, respectively.

5.1 Empirical Tuning of TDMA Guard Times

To obtain virtual guard times, we perform series of ex-
periments where a node transmits 20,000 packets at 5 ms
intervals. We repeat experiments for different packet lengths
and modulation rates. We use our modifications of the Mad-
WiFi driver to record the time between the userspace timer
and the hardware interrupt indicating that the card finished
sending the packet. At the lowest 802.11a modulation rate
of 6 Mbps, the longest packet transmission of 2012 bytes
takes around 3.0 ms, so each transmission ends before the
next transmission begins.

Fig. 9 shows the duration of packet processing time
(tproc), 802.11 hardware transmission time (ttran) and the
total time to send the packet (tsend= tproc+ ttran) for a 1
second portion of one of the runs for 48 byte packets
transmitted at 6 Mbps. This experiment corresponds to
network beacon transmissions. We note thattproc is almost
constant with a negligible amount of variability (less than
a few microseconds). Enabling the QoS features of the
MadWiFi driver also ensures thatttran is almost constant.

We note that sometime around 67 s into this experiment
the card experienced what we call a “hiccup” – it inexplica-
bly delayed the packet for a long time (> 1 ms). From our
observations, we know that hiccups happen after the packet
is already on the Atheros card and that they do not happen
due to 802.11 back-off. We believe that the Atheros card
periodically performs a maintenance function that delays
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Fig. 9. Transmission Delays.

the packets. We have confirmed this phenomenon on three
types of Atheros cards.

We have found that the hiccups are a very rare occurrence
that did not significantly affect the experiments we show
later in the paper. The filtering mechanism in the synchro-
nization algorithm is sufficient to remove the hiccups as a
factor in the synchronization.

Using our measurements over various packet sizes
(Fig. 10), we determine an envelope, which always covers
the duration of packet transmissions

ε̂m(l) = 11∗Ts+

⌈

l
bm

⌉

∗Ts, (8)

where ε̂m(l) is the envelope for anl byte overlay packet
transmitted at modulationm, bm ∈ {12,24, . . . ,108} is the
number of bytes carried in a TDMA slot for modulation
m, Ts = 16 µs is the slot duration, and⌈·⌉ is the ceiling
function, which rounds a number to the nearest integer
higher than the number. This envelope is shown as “max
envelope” in Fig. 10.

Observing our data, we found the maximum envelope is
actually very pessimistic – most of the data transmissions
are shorter than the maximum envelope. So, we find a
tighter envelope based on statistical properties of data.

Using the measured times for the 48 byte network
beacons transmitted at the lowest rate and our knowledge of
802.11 operation, we find an envelopeεm(l), which covers
most of the transmission times. Consider the transmission
of a 48 byte packet. The measured 802.11 transmission
time for the 48 byte packets isttrans= 192 µs on average,
with the standard deviation of 2µs. There areh802.11= 36
bytes of 802.11 overheads in each transmission. Since the
wireless card broadcasts 84 bytes of data, at 6 Mbps the
transmission should only take 112µs, which corresponds
to 7, 16 µs TDMA slots. So, the Atheros hardware adds
around 80µs of delay to each transmission. We believe
40 µs of that delay corresponds to the 10 802.11a OFDM
symbols of preamble specified by the standard [31] and the
other 40µs correspond to the Atheros “post-transmission
back-off” [9]. On average, the processing time istproc= 7 µs
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with the standard deviation of 0.2 µs.
Using the measured 802.11 transmission times and the

processing times, we calculate the average sending time for
a 48 byte packet as

tsend= tproc+ ttrans= 7 µs+80 µs+7∗16 µs< 13∗16 µs.

So there are 7 TDMA slots for the payload time and 6 slots
for the guard time to cover 87µs for hardware and software
processing.

Generalizing for all packet sizes, the new envelope is

εm(l) = 6∗Ts+

⌈

l +36
bm

⌉

∗Ts, (9)

whereεm(l) is the envelope for anl byte overlay packet
transmitted at modulationm, bm is the number of bytes
carried in a TDMA slot for modulationm, Ts is the slot
duration.

We test the envelope against a subset of measured
transmission times (Fig. 10). The envelope, (9), is shown as
the envelope “99.9% envelope” and indeed covers 99.9%
of the packets.

Since the 99.9% envelope, (9), is more efficient than the
maximum envelope, we use it for data transmissions. For
example, for transmissions at 54 Mbps, the 99.9% envelope
transmissions are 62.5% shorter than the maximum enve-
lope transmissions for packet size of 128 bytes and 20%
shorter for the maximum packet size of 2012.

In order to make the Soft-TDMAC protocol robust, we
make the network beacon transmissions very robust. We
use the maximum envelope, (8), to find that each network
beacon transmission takes 15 TDMA slots. In addition, we
also add 5 extra guard symbols for the total network beacon
transmission time of 320µs. The average transmission time
for a 48 byte packet is about 200µs, so network beacons
can tolerate synchronization errors of up to 120µs.

5.2 Evaluation of Soft-TDMAC Synchronization

We setup an experiment on the test-bed to measure the
clock offset between the nodes in the network. In this
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TABLE 1
Absolute Clock Offset Statistics

Statistic Hop 1 Hop 2 Hop 3

Mean 3.70±0.03 µs 6.83±0.04 µs 9.71±0.04 µs
Std. Dev. 4.21±0.02 µs 4.57±0.02 µs 5.59±0.03 µs
99 prct. 13µs 17µs 22µs
99.9 prct. 16µs 20µs 26µs
Maximum 58µs 84µs 56µs

experiment, the frame size is 20 ms, the control sub-frame
is Nc = 50 slots long, forCTRL_LEN = 2 TxOps in each
control sub-frame, and we set the control sub-frame re-use
factor to CTRL_REUSE = 8. With these settings the time-
stamp exchange periodTp= 160 ms. We have also run Soft-
TDMAC with other values ofCTRL_LEN andCTRL_REUSE,
with similar results.

Since all nodes are in the range of each other, us-
ing the minimum synchronization tree, each node would
normally select the base-station (noden0) as its clock
master. However, we manually set the synchronization tree
to n0→ n1→ n2→ n3 (thick arrows in Fig. 8), to test clock
synchronization over multiple hops. We run the network
continuously for about 5 hours. The synchronization algo-
rithm has run on average every 1617 ms on the first hop,
1096 ms on the second hop and 323 ms on the third hop.

Fig. 11 shows the inverse empirical Cumulative Density
Function (CDF) of the absolute value of the filtered clock
offsets, measured at the base-station for noden1 (“Hop
1”), noden2 (“Hop 2”) and noden3 (“Hop 3”). We show
absolute values of clock offsets since both negative and
positive synchronization errors affect transmissions. There
are well over a 100,000 clock offsets collected by the base-
station to the other nodes during this period. We note that
10% of clock offsets on the first hop were 0µs - so the
minimum synchronization error is 0µs. We also note that
most clock offsets at any hop are less than 32µs (2 TDMA
slots).

Table 1 shows detailed statistics of the experiment (all
intervals in the table are 99.9% confidence intervals). The
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mean absolute clock offset for all three hops is less than
10 µs. We note that less than 0.1% clock offsets for the
first hop are more than 16µs and that at three hops, less
than 0.1% of clock offsets are greater than 26µs. The worst
case clock offset of 84µs occurred on the second hop. Out
of the 100,000 collected offsets, there was only one clock
offset this high.

We conclude that the synchronization algorithm works
well. With high confidence, it synchronizes a pair of nodes
to within 1 TDMA slot and that it can synchronize all nodes
in a 3 hop network to within 2 TDMA slots.

5.3 Single-hop TCP Performance

We test Soft-TDMAC single-hop TCP performance by
turning off nodesn2 and n3 and only using nodesn0

and n1. We try frame sizesTf = 20 ms andTf = 50 ms.
The longer frame size emulates protocols without tight
synchronization, which use longer transmissions. For both
frame durations, we allocate 12% of the frame to the control
sub-frame, 20% of the frame to the uplink and 68% of the
frame to the downlink. For the frame durationTf = 20 ms,
we allow for 4 control TxOps, while forTf = 50 ms, we
allow 15 control sub-frame TxOps. We allocate 850 of 1250
available data slots and 2125 of 3125 available data slots on
the downlink, forTf = 20 ms andTf = 50 ms, respectively.
The rest for the slots are used for the uplink. The control
sub-frame re-use factor isCTRL_REUSE = 32.

In order to get statistically valid performance results,
we run a series of experiments to test the performance of
TCP throughput for two TCP variants: TCP Reno and TCP
Westwood [32]. In each experiment, we first start noden0

and then noden1. We let noden1 synchronize and after
30 seconds it initiates a download of 30 Mb of data from
noden0. We repeat this setup 30 times for each of the 7
available 802.11a physical modulation rates and the two
TCP variants for a total of 420 experiments.

Fig. 12 shows the average throughput of TCP Reno over
all 30 scenarios, for all modulation rates and for both frame
sizes. The error bars show the throughput of the run with

the best throughput and the run with the worst throughput.
The figure also compares the throughput to the theoretical
maximum (“802.11 TDMA 68% Utilization”), which we
obtain by finding how much throughput the link would
have if it continuously transmitted 68%, corresponding to
the portion of time allocated on the downlink. Since the
delay-bandwidth product increases with the longer frame
duration, TCP throughput decreases with longer frame sizes
when the channel has errors (∼ 1% 802.11 frame loss at
54 Mbps). We do not show TCP Westwood performance
– it performs slightly worse than TCP Reno, at higher
modulations.

Analyzing the data, we discovered a strong correlation
between the decreases in TCP window size and packet
losses in the physical layer. This correlation accounts forthe
fact that the TCP throughput decreases at higher modulation
rates. If we only consider the frame duration of 20 ms
in Fig. 12, theaverageTCP window size and TCP rate
increase until the rate of 36 Mbps. When the rate changes to
48 Mbps, the number of lost 802.11 packets seems to reach
a critical point, where the frequency of dropped 802.11
packets severly impacts TCP window size, thus decreasing
the average TCP rate. Fig. 12 shows that increasing the
frame duration to 50 ms, and consequently round-trip
time, makes TCP rate more susceptible to packet losses,
accounting for lower average TCP rates. It is unclear to
us why this is the case. Soft-TDMAC does not implement
an Automatic Repeat ReQuest (ARQ) mechanism, which
would decrease frame losses in the link layer and likely
improve TCP performance.

We do not believe that the hiccups have affected our
results, since we can clearly trace drops in TCP window
size to channel errors. We found that the Atheros card
hiccups are a relatively rare – the Atheros chipset delays
about 1 in every 1200 transmitted 802.11 frames.

5.4 Multi-hop TCP Performance

We evaluate Soft-TDMAC multi-hop performance using
our test-bed (Fig. 8), with the same TDMA parameters
used in Sec. 5.2. Since the Soft-TDMAC is a connection
oriented link layer protocol, nodes only accept data packets
arriving on one of their registered (logical) incoming links.
For example, noden2 ignores all data packets except the
ones arriving from noden1, (link l12); if node n0 sends an
IP packet to noden2, that packet must traverse noden1.
Noden0 is the base-station.

We evaluate Soft-TDMAC performance with two types
TDMA multi-hop schedules. The first type of schedule,
is a minimum TDMA delay schedule [20] (Fig. 13a).
This schedule minimizes TDMA scheduling delay for all
nodes in the network. TDMA scheduling delay occurs if an
outbound link on a router is scheduled to transmit before an
inbound link on that router. For the path connecting noden0

to noden2, this schedule orders the linksl01 l12 l21 

l10. The schedule maximizes the throughput in the network,
but allocates twice as much bandwidth on the uplink (traffic
to the base-station), as it does on the downlink to model
the asymmetry of traffic in real networks.
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(a) Minimum Delay Schedule.
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(b) Odd-Even Schedule.

Fig. 13. Multi-hop TDMA Schedules.

TABLE 2
Mean TCP Throughput

Schedule Min-Delay Odd-Even Min-Delay
Rates (Mbps) 6/6/6 18/6/6 18/6/6

Node 1 76.9 kb/s 74.3 kb/s 470.1 kb/s
Node 2 67.3 kb/s 68.2 kb/s 68.9 kb/s
Node 3 63.8 kb/s 64.9 kb/s 64.9 kb/s

The second type of schedule is an “odd-even” TDMA
schedule [13] (Fig. 13b), which schedules pairs of nodes
alternatively. This type of scheduling is called odd-even
scheduling because links are either scheduled in even
(l10, l21, l31) or odd slots (l01, l12, l13). We note that despite
the fact that 2P [10] uses odd-even scheduling, results
obtained with Soft-TDMAC using odd-even scheduling
cannot be directly compared to 2P. 2P uses multiple in-
terfaces, which increases channel capacity. Also, 2P slot
allocations are longer than the link durations in Fig. 13b.
Consistent with odd-even scheduling [10], [13], all links
are allocated the same number of slots.

The minimum delay schedule adjusts link bandwidths to
take into account that linksl01 and l10 carry traffic of 3
nodes. Since all links have the same time allocation in the
odd-even schedule, linksl01 andl10 present a bottleneck for
nodesn2 and n3, which have excess bandwidth available
on their links to noden1. To compare the two schedules
in terms of throughput, we fix the rate on all links in the
minimum delay schedule at 6 Mbps, while setting the rate
on links l01 and l10 to 18 Mbps in the odd-even schedule.

For each schedule, we run an experiment where nodes
n1, n2 and n3 start a 3 Mb upload to the base station, at
roughly the same time, with noden1 starting first. We repeat
each experiment 30 times. Table 2 show the average TCP
throughput, over the 30 runs for each node. In all cases,
standard deviation was less than 5 kb/s. The performance
of the minimum delay schedules (“Min-Delay (6/6/6)”) and
the odd-even (“Odd-Even (18/6/6)”) is almost the same.
The throughput of the three nodes is balanced. Noden1

gets slightly higher throughput than the other two nodes
because it starts first.

Taking advantage of the minimum delay bandwidth ad-
justed schedule, we also run experiments where we set the

TABLE 3
Measured Round-trip Delay (6 Mbps)

Min-Delay Odd-Even
Mean Std. Dev. Mean Std. Dev.

Node 1 20.0 ms 0.3 ms 27.0 ms 6.9 ms
Node 2 27.1 ms 7.3 ms 47.0 ms 7.0 ms
Node 3 27.3 ms 7.2 ms 47.0 ms 7.1 ms

rate on the hop between nodesn0 and n1 to 18 Mbps.
Since noden1 now has extra bandwidth allocated to it, its
bandwidth increases substantially (“Min-delay (18/6/6)”).
The bandwidth of the other two nodes stays about the same.

To measure the round-trip delay, we send 1000 Internet
Control Message Protocol (ICMP) packets from noden1,n2,
andn3 to the base-station. The modulation on each link is
fixed at 6 Mbps. We use the Linux version ofping to
find the maximum ICMP flood. Table 3 shows the mean
round-trip time, averaged over the 1000 transmitted ICMP
packets. We note that the round-trip delay for the odd-even
schedule is about two frame sizes for nodes at two hops,
due to the fact that packets going from nodesn2 and n3

are delayed until the next frame at noden1. The minimum
delay schedule round-trip times are always around about
frame duration. We tried this experiment will all available
802.11 physical layer rates and observed similar results.

6 CONCLUSION

We have implemented the SySI-MAC Linux interface for
802.11 overlay TDMA MAC protocol development, and
used it to design and implement Soft-TDMAC, a software-
based TDMA MAC protocol. SySI-MAC provides a simple,
kernel independent, message based interface for overlay
MAC protocol implementations to schedule transmissions,
send packets, and receive packets. The key feature of SySI-
MAC is that it provides near deterministic timers and
transmission times, which allows for implementation of
highly synchronized TDMA MAC protocols.

The key feature of Soft-TDMAC is its microsecond
synchronization, which enables high TDMA efficiency.
Soft-TDMAC has a synchronization mechanism, which
synchronizes the network to within a few microsecond-long
TDMA slots. The tight synchronization decreases the over-
head of transmissions for a very efficient TDMA protocol
with short frame durations. We have tested the protocol on
our test-bed and shown that when channel conditions are
good, TCP can achieve almost full channel bandwidth since
there are no packet collisions. Soft-TDMAC’s small frame
durations help TCP ramp-up to the channel capacity. We
have also shown that Soft-TDMAC’s flexible scheduling
allows for schedules that maximize end-to-end throughput
and decrease end-to-end delay.
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