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Abstract—We implement a new software-based multi-hop TDMA MAC protocol (Soft-TDMAC) with microsecond synchronization using a novel
system interface for development of 802.11 overlay TDMA MAC protocols (SySI-MAC). SySI-MAC provides a kernel independent message
based interface for scheduling transmissions and sending and receiving 802.11 packets. The key feature of SySI-MAC is that it provides
near deterministic timers and transmission times, which allows for implementation of highly synchronized TDMA MAC protocols. Building on
SySI-MAC's predictable transmission times we implement Soft-TDMAC, a software based 802.11 overlay multi-hop TDMA MAC protocol. Soft-
TDMAC has a synchronization mechanism, which synchronizes all pairs of network clocks to within microseconds of each other. Building on
pairwise synchronization, Soft-TDMAC achieves tight network-wide synchronization. With network-wide synchronization independent of data
transmissions, Soft-TDMAC can schedule arbitrary TDMA transmission patterns. For example, Soft-TDMAC allows schedules that decrease
end-to-end delay and take end-to-end rate demands into account. We summarize hundreds of hours of testing Soft-TDMAC on a multi-hop
test-bed, showing the synchronization capabilities of the protocol and the benefits of flexible scheduling.

Index Terms—Multi-hop TDMA MAC, 802.11 Overlay MAC, Network Synchronization
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1 INTRODUCTION be developed mathematically and tested with simulations,

fio influence industry, researchers need more convincing

EW applications of wireless multi-hop networks suc ; : . .
rguments, showing that theories can be implemented in

as \oice-over-IP and other audio/video streamingl ) It likelv that th . imol :
services require medium access control (MAC) with gua ractice. It is unlikely that the equipment implementing

anteed Quality-of-Service (QoS). While the IEEE g02.19éW standards can be modified to dev_elop synchronized
protocol is a de facto standard for multi-hop Wirelesgrotocols for research purposes. Customizable hardware [4

networks, its Carrier Sense Multiple Access with Collisiof? pr_ohibitively expensive. The alternative is t(.) use com-
Avoidance (CSMA/CA) MAC performs poorly in multi- modity 802.11 hardware to develop synchronized TDMA
%\éerlay MAC protocols.

hop wireless networks and cannot provide guaranteed Q .
[2]. To achieve guaranteed Qo0S, one needs to resolve packesn’o far, 802.11 synchronized overlay TDMA MACs have

collisions, which are the main cause of 802.11’s CSMA/CROVEN difficult to implement due to the lack of tight syn-

problems. An effective way to resolve packet coIIisionghron'Zat'on‘ W'th9Ut tight synchronization, TDMA pro-
is to use synchronized multi-hop MAC protocols, whicfiocols resort to using large gaps between transmissions to

remove collisions by scheduling interfering links in nonPrevent collisions, decrgasi_ng the efficiency of thg protoc
overlapping time or frequency intervals We solve the synchronization problem and provide a new

Current standardization efforts favour synchronize%‘jmcm’are platform for implementing synchronized MAC

multi-hop MAC protocols. IEEE is currently working on protocols W'th comm0d|ty 802.11 hardware.
the 802.11s[3] multi-hop MAC protocols, which has a syn- We design and implement a system mte_rface for 892'11
chronized mode. |IEEE and thé¥3Generation Partnershipoverlay TDMA MAC protocols under the Linux operating

- ; : : tem (SySI-MAC) and show its effectiveness with a
Project (3GPP) are independently developing synchroniz
multi-hop protocols for cellular networks. new software-based TDMA MAC protocol (Soft-TDMAC).

These industry efforts mean that issues of protocol devéySHvIAC provides a simple message-based interface for

. . lay MAC protocol implementations to schedule trans-
opment, resource management, and dynamic schedulin q ?r_ y P P )
b 9 y gn¥|35|ons, send packets, and receive packets. SySI-MAC

synchronized multi-hop protocols will come to the forefron. " work kets f the Li K | and
of research. While theories in these research areas é%tﬁrceps Network packets from he Linux kernel an
passes them to the overlay MAC protocol, which enqueues
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is its tight synchronization. Tight synchronization is necon transmission times this protocol still uses large TDMA
essary to minimize guard times between transmissions aguhrd times.

to jncrease protoco_l e_fficiency. Soft-TDMAC synchr(_)nizes With restrictions on types of schedules allowed by the
pairs of nodes to within one, 145, TDMA slot and builds MAC, it is possible to implement collision-free TDMA

a synchronization tree for network-wide synchronizatiorMAC protocols over commodity 802.11 hardware without

We show f[hat_l:_)y building th? Synch_ronization tree, Sof Yerfect synchronization [10], [11]. In 2P [10] and its deriv
TDMAC simplifies synchronization in the network an

o h hronizati ives [11], collisions are prevented with a token passing
minimizes the worst case synchronization error. mechanism. After a node transmits, it passes the token

To ensure that nodes can join the network withoyl one of jts peers, which then transmits while the other

causing packet collisions, Soft-TDMAC has a carefully,qe receives. This approach limits the types of schedules
designed network entry procedure, which roughly synchrgp, veq by the protocol and complicates routing in the
nizes the entrant nodes before they transmit any packeisork [13].

Soft-TDMAC also provides a layer-2 routing mechanism
and forwards packets over multiple-hops. For further effi- Achieving microsecond precision network-wide synchro-
ciency, Soft-TDMAC packs smaller network packets int§ization, which is essential for development of efficient
larger wireless transmissions. TDMA MAC protocols, has proven to be a hard problem.
Soft-TDMAC is especially appropriate for medium siz&/Vhile protocols such as the Network Time Protocol (NTP)
mesh networks, where the issues of TDMA schedulifld4] may be able achieve synchronization to within about
does not come into play. In mesh networks, access poift@0 S in wired networks, and may even synchronize
aggregate traffic from clients before it enters the mesHle network to about his using the so-called post-facto
one client leaving or joining the network does not caus®y/nchronization [15], they do not work in 802.11 wireless
a very large variation in inner mesh traffic. So, from th8€tworks. The main problem in achieving precise clock
point of view of the mesh the traffic is close to constanBynchronization in 802.11 networks is in estimating one-
making TDMA scheduling easy. More importantly, SoftWay Ppropagation delay between pairs of wireless nodes,
TDMAC can be used to devise and validate more elabora#@ich is variable due to the 802.11 CSMA/CA collision-
scheduling techniques appropriate for networks with yighRvoidance mechanism. Specialized network synchroniza-
variable traffic. tion algorithms running on 802.11 based wireless networks
We summarize hundreds of hours of testing Soff'® able to guarantee synchronization to within millisetson
TDMAC on a multi-hop test-bed. Our experimental resultgt6] or hundreds of microseconds [17]. With customizable
show that Soft-TDMAC synchronizes multi-hop networklica Berkeley node wireless hardware, the precision of
to within a few microsecond sized TDMA slots. With noingle-hop synchronization can be brought to aboup20
collisions and in good channel conditions, TCP achiev&s]-
almost the full channel bandwidth. To show how the lack One way to remove the variability of 802.11 delays is to
of tight synchronization affects TCP, we experiment witko time-stamp packets just before they are transmitted [11]
different frame sizes. We emulate protocols without tighftL2]. Our approach is to disable the 802.11 CSMA/CA by
synchronization by increasing transmission and frame dghanging the 802.11 QoS parameters, ensuring that wireless
rations. Our experiments show that the TCP rate decreagesismissions have predictable transmission times and one
with larger frame sizes. We also show that with f|eXib|Way propagation delays are almost constant.
TDMA scheduling Soft-TDMAC can take advantage of

TDMA schedules, which reduce end-to-end delay and in; Rec_ently, it was shown _that a b_eacon flood can syn-
chronize 802.11 networks in the microsecond range [12].
crease end-to-end rates.

This synchronization mechanism requires prior knowledge
of the network topology and transmission delays between
1.1 Related Work all pairs of nodes. The authors provide a heuristic for
Software based TDMA MAC protocols have been previl® NP-complete problem of finding a good sequence of
ously proposed for commodity 802.11 networks [5], [6]I?eacon rg-trgnsmlsmons. By comparison, Soft-TDMAC’s
[7], (81, [9], [10], [11], [12]. With the exception of the pro synchronization protocol requires no prior knowledge of

tocol in [12], these protocols are not tightly synchronize@e network topology or pairwise delays, and self-adapts

[5], [6], [7], sometimes use external synchronization [8]1,ts synchronization for the conditions in the network.

[9], or do not support TDMA schedules independent of the With the Atheros “MadWiFi” driver [19] it is also
synchronization mechanism [10], [11]. possible to build software MAC research platforms [6],

Without tight synchronization, TDMA protocols need td7], [8], [9]. We use the driver in this paper, however our
use large slots to introduce gaps between transmissions degendence on the MadWiFi driver is weaker than [6], [7],
prevent collisions. This approach was used to implemei®, [9]. Our software does not use of any special hardware
TDMA-like 802.11 overlay MAC protocols, avoiding thefeatures, e.g. hardware timers [9], and it does not directly
need for good synchronization [5]. A TDMA MAC with bind to the driver. It only relies on the 802.11 QoS features
tight pairwise synchronization, provided through wiresh€o provided by the MadWiFi driver, which are also available
nections, is proposed in [8], [9]. However, without boundi® other wireless drivers.



1.2 Contributions not prevent any network traffic flow patterns, however in all
A main contribution of this work is the design and imple®f our experiments we use the base-station as the gateway.

mentation of a new multi-hop TDMA protocol with very We.use the convention that the base-station is node
tight synchronization — Soft:-TDMAC. Due to the lack ofo: While the rest of the nodes are numbered from 1 to
tight synchronization, many TDMA MAC protocols [5], VWXNCDE! D. In the sequel we assume tH#XNCDEID=31
6], [7], [8], [9], [10], [11] built on top of 802.11 hard- corresponding to the parameters u_sed_ in our _tests. This
ware use millisecond long TDMA slots, which decreasd¥@rameter can be changed at compile time. Assignment of
protocol efficiency and results in long frame sizes affechiode numbers is independent of node locations and does
ing upper layers. Soft-TDMAC uses phase-locked IoorﬂsOt aﬁect the running of the routing and synchronization
(PLLs) for pairwise synchronization and builds a minimum@gorithms. o o
hop network-wide synchronization tree to achieve tight SOf-TDMAC divides the time intoTs second long
network-wide synchronization. We show that building thd PMA slots and groups the slots into fixed size frames.
minimum-hop synchronization tree minimizes the wordfach frame consists dii; slots, for a frame duration of
case synchronization error in the network. With tight syntt = Nt Ts seconds. The firsNc slots in the frame are
chronization, Soft-TDMAC uses microsecond sized TDMAEserved for network beacons (control sub-frame); the last
slots, which make it very efficient. Ng = Nf — N¢ slots in the frame are used for data traffic
Since Soft-TDMAC nodes are tightly synchronized, Softdata sub-frame). The TDMA parametefs N, and N
TDMAC can schedule transmissions with arbitrary tran&f€ configurable during the network boot-up, but stay fixed
mission patterns, allowing for testing of TDMA sc:hedulingye/hlle the network operates. In the sequel, we assume that
algorithms. This allows us to compare two very differents = 16 1S, corresponding to the value used in our tests.
scheduling strategies for multi-hop TDMA networks on a Each transmission contains the Soft-TDMAC header
test-bed. In the first scheduling strategy, which we call-odgontaining the length of the packet, sender's node number,
even scheduling, pairs of nodes alternate their transomissi the link number, and for data packets, the data sub-header.

with equal transmission times, while in the second strategh/'€ link number and the node number uniquely identify a
which we call minimum-delay scheduling, transmissio irectional link, originating at the sender. The link numbe

times and schedules are chosen to minimize the end-g§-all binary 1's indicates broadcast transmissions and is
end scheduling delay and maximize end-to-end throughp[ﬁ.served for network beacons. The data sub-header contains

Scheduling delay occurs when packets are forwarded frdfif node number of the final destination of the packet
an inbound link to an outbound link, but the outbound linRNd optionally the information about the subsequent data
was scheduled to transmit first in the frame [20]. packets, which are packed m_thg same transmission. So,
We also develop SySI-MAC, a general system interfa@1® SOft-TDMAC data transmission may carry a number
for development of other TDMA MAC protocols overOf smaller IP packets to increase the protocol efficiency.
commodity 802.11 hardware. SySI-MAC allows for imple] & maximum Soft-TDMAC payload is 2012 bytes, corre-
mentation of new MAC protocols in the Linux userspacépond'ng to the limitations of using 802.11 as the physical

making it easier to use than previous approaches, whi@yer technology. . _
required development of protocols in the Linux kernel [6], SCft-TDMAC nodes transmit network beacons in the

[7], [8], [9], or even wireless card firmware [12]. Since mosgontrol sub_—frame. Network beacons_are 48 bytes long and
of the SySI-MAC interface does not depend on specializ&(i€ transmitted at the lowest modulation rate. Soft—TDM_AC
kernel calls, it is also available for the ns-2 simulator][212/locates 20 TDMA slots for each beacon transmission,
making it easy to prototype and debug new TDMA MACWhere 16 of those_z slots are used fo_r slack. While this
protocols, before the integration testing with hardware, @mount of slack is not strictly required due to Soft-
The rest of the paper is organized as follows: we descrif@MAC'S tight synchronization, we still use it to make

the Soft-TDMAC protocol in Sec. 2 and its synchronizatioR€Work beacon transmissions robust during network entry
mechanism in Sec. 3; we describe SySI-MAC in Sec. 4; vi&'d resilient to synchronization errors. o
describe our test-bed and show the performance results oN€fwork beacons contain information advertising the

Soft-TDMAC in Sec. 5: finally we conclude in Sec. 6. sender’s neighbours. A “neighbour” refers to all of the
' nodes that the sender is aware of, including the nodes that

the sender cannot hear from directly. For each neighbour,
2 SOFT-TDMAC MuLTI-HOP TDMA MAC the beacon contains the sender’s hop count to neighbour,
We now describe the Soft-TDMAC multi-hop MAC proto-used for building the routing tables, and synchronization
col, showing its frame structure, control information, antiop count to the base-station, used for building the network
neighbour and route discovery. We explain Soft-TDMAC’synchronization tree. Since a beacon can only carry infor-
synchronization mechanism in the next section. mation about a limited number of neighbours, each node

Soft-TDMAC network boots up when the first nodekeeps a circular list of its neighbours and cycles through it

comes online. We use the 802.16 mesh protocol jargon aiodensure that all neighbours are eventually advertised.
call this node “base-station”. The base-station provides aThe hop count to each advertised neighbour is sufficient
timing reference for the rest of the network and presentsrdormation for a distance vector routing algorithm simila
natural gateway to the wired network. Soft-TDMAC doeto the Routing Information Protocol (RIP) [22]. Soft-
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One way to synchronize the network is for all nodes to
Fig. 1. Network Beacon Schedule. find clock offsets to the base-station and synchronize to it.

However, we show that without estimation errors finding
the clock offset to the base-station is equivalent to finding

TDMAC maintains a next-hop minimum-distance routingairwise clock offsets between nodes on a path to the base-
table for the nodes it is aware of and forwards packegsation. We use this observation and build a synchroniaatio
based on that routing table. tree where all pairs of nodes are synchronized to each

Soft-TDMAC sends network beacons in the control sutwther. We also show that synchronizing nodes along the
frame with a fixed schedule. There are no restrictions eninimum hop path to the base-station minimizes the worst-
the type of schedules in the data sub-frame. However, ¢dase synchronization to the base-station for each node
our experiments we group all transmissions of the samang the path, which prompts us to build a minimum-hop
link as continuous sets of TDMA slots to increase protocglynchronization tree to the base-station.
efficiency. We discuss scheduling in the data sub-frame inOur approach is different from the approach in the
the context of our results. Network time Protocol (NTP) [14], which estimates the

The schedule in the control sub-frame is fixed. Eaadtlock offset to the clock source over multiple hops. NTP’s
frame hasCTRL_LEN = |N./20| control sub-frame trans- approach is not possible in Soft-TDMAC for two reasons.
mission opportunities (TxOps), whete| is the floor func- First, the clock information is in the control sub-frame,
tion. The first TxOp in the control sub-frame is silent fowhich has limited bandwidth to ensure the protocol is effi-
all nodes and is used to run the clock synchronizati@mient. Second, transmitting the clock offsets over muatipl
algorithm (Fig. 1). Using the same TxOp to run thdwops introduces additional random delays, making it harder
synchronization algorithm ensures that all nodes arrite obtain the synchronization level required for efficient
at their synchronization decision at about the same timEDMA MAC protocols.
This approach also puts a hard cap on how long theFirst, we explain our network time model. Then we
synchronization algorithm is allowed to run at 328. show that the minimum synchronization tree minimizes the
We tested the algorithm to ensure it never goes over tiorst-case synchronization error and explain how the tree
cap, so we are sure that its running never interfered withbuilt. We explain other components of Soft-TDMAC syn-
transmissions. chronization next: pairwise time-stamp exchange that finds

After the first TxOp, the nexiCTRL_LEN— 1 control pairwise clock offsets and phase-lock loop (PLL) used for
TxOps are active and are used to send network beacop@irwise synchronization. Finally, we explain the network
Noden; transmits its network beacon eve(EVRL_REUSEth procedure, which is required to prevent packet collisions
TxOp, whereCTRL_REUSE is a configurable parameter. Ifbefore the pairwise exchange of packets synchronizes pairs
there areM nodes in the network, the@TRL_REUSE > M. of nodes.
Noden; transmits in each TxOp for which

i = (j—FRAME—1) (mod CTRL_REUSE), (1) 3.1 Network Clock Model

We use the oscillator clock model [23], where each node’s
where . system clock is derived from an oscillator with the output

FRAVE = { : J ) u(t) =cos[2rt/ot f(T)dT} , >0,

CTRL_LEN
counts the number of frames since network boot-up, and
j >0 is the number of TxOps since network boot-up suchhere f(t) is the oscillator’s instantaneous frequency and
thatj (modCTRL_LEN) # 0. t is the time. The oscillator's instantaneous frequency
For example, ifCTRL_LEN = 4 and CTRL_REUSE = 8, consists of a fixed nominal frequendyom and a time
node ng transmits in control TxOpj = 6, corresponding varying phased(t),
to the 39 TxOp in frame 1, then again in control TxOp f(t) = E S(t
j =17, corresponding to the"® TxOp in frame 4, and so (t) = From +3(t).
on. The instantaneous pha8é) represents the time variability
Each network beacon is time-stamped with the curreat the oscillator, so the oscillator time model comprises
TDMA frame and control sub-frame TxOp number, whiclall possible instantaneous frequencies that change radgdom
is sufficient information to find time-offset between nodesver time (for example due to changes in environmental
required by the synchronization algorithm. The number éémperature). The exact distribution of the instantaneous
bits used to transmit the frame and slot information iBequency is not necessary for any derivations in this work.
limited to 28 and 4 bits, respectively. The synchronizatiolm the sequel, we use the nominal frequeRgy, = 10° Hz,



corresponding to the nanosecond precision of the LinuxSuppose that nodes are labelegin,...,n;, along a

system clock. path. Nodeni, on the first hop, has the clock offset to
System time is obtained by counting the number dhe base-station (nod®) in after just one beacon period
oscillator cycles. Nodg's system time is (K" beacon period). Its network time is
G (t) = Fhom t+ 0; (1), (2) T1(t) = From t+ el(kTp) _A01(kTp) +€&

where8; (t) = [39(t)dt is the residual phase of the node’s = Fion t+80(kTp) +&1

oscillator at timet, andd(t) is the time varying phase of for kT, <t < (k+1)T,, whereb;(kT,) is the residual phase
node j’'s oscillator. Without any loss of generality, in theof node j at time kTy, ande€; represents the error in the

sequel we assume th@f(0) = 0 for all nodes;. clock offset estimate and clock drift. The residual phase of
The network time is generated from the clock at the baseeden; in the next beacon periotk+1)Tp <t < (k+2)T),
station with is

To(t) = Co(t) = From t-+60(t), 3) 61 ((k+ 1)Tp) = Bo(KTp) +€1.

whereCq(t) is the system time of the base-station (node 0) After the beacon perio& noden,, at the second hop,
at timet, and®y(t) the residual phase of the base-stationinows the clock offset node to node, but this clock

oscillator. offset does not include the adjustment we just showed.
All other nodesj generate local network time from theirHowever, after thetk+1)™ beacon period that adjustment
system clock with is propagated and the time two hops away from the base-

station at node, is

To(t) = From t+62( (K+1)Tp) —A12( (K+1)Tp) +¢€
wherel j(t —¢€) is the clock offset between nodé local 2(t) = From 2(( ) p) 12(( ) p) 2

network time and the network time at the base-station, = From t+90((k+ 1)Tp) et
found € seconds before the current time,

Tj(t) =Cj(t) —Loj(t —¢), (4)

for t > (k+2)Tp, wheree, represents estimation and clock
Do j(t—€)=Tj(t—€)—To(t—€) =0j(t—€) —Bo(t—€).  errors in the second hop.
For smallg, lims_,o |ej (t—g)— Gj(t)| —0 and Generglizing, aftef beacon periods, tht_a net_vvork time at
noden;j, j hops away from the base-station, is

Ci(t) —Doj(t—¢) sjanom t+6o(t), j
meaning the a node can synchronize itself to the base- Ti(t) = Foom t+eo(kTp)+i;8i
station if it can estimate its clock offset to the base-stati

accurately and timely. fort > (k+ j+1)Tp, whereg; estimation and clock errors

for hop i. So, j hops away from the base-station the
synchronization error is
3.2 Synchronization Tree .
L . i
We show that estimating clock offset to the base-station ITj(t) = To(t)|| =
is equivalent to estimating pairwise clock offsets between

2
i=
pairs of nodes on a path to the base-station. With estimati\%ere €ciock is the maximum single-hop synchronization

errors, synchronizing pairs .Of noc_ie_s glong the MINIMUBY6r We show the origins of synchronization errors next.
hop path to the base-station minimizes the worst-case

synchronization of each node to the base-station. Given the above development, we conclude that using
Soft-TDMAC estimates pairwise clock offsets with 4he pairwise clock offsets is equivalent to finding the clock

pairwise time-stamp exchange in the network beacorfd/Set o the base-station and that the minimum-hop syn-

which is explained in detail next. Here we assume that aftgironization tree minimizes the worst case synchroninatio

the ki beacon period, pairs of nod¢sandi have available €O The above result is our motivation to synchronize
a clock offset estimate pairs of nodes in the network according to a hierarchy

based on a shortest path synchronization tree. We note
Aij (KTp) = 8j(KTp) — 6i(KTp), that stronger results than this can be obtained with first-
C . . th . . order clock drift models [24]. However, clock modeling
which is valid during(k+1)™" beacon period, tim&T, < . .
. — and analysis is beyond the scope of this work.
t < (k+1)Tp, where the network bacon period, is . o o
approximately Soft-TDMAC builds a minimum hop synchronization
tree from the synchronization hop count broadcast in net-
CTRL_REUSE L .
p R m-ﬁ’ (5) vv_ork beacons. Sync_hromzauon hop count is used to run
( - distance vector algorithm on each node and find the shortest
CTRL_LEN—1 is the number of beacon transmissions in synchronization path to the base-station, similar to thi#- So
frame, andCTRL_REUSE controls how often nodes transmitTDMAC routing algorithm. The collection of these paths
in the control sub-frame (1). is the synchronization tree in the network.

< j€clock,
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Fig. 2. Pairwise Time-stamp Exchange.

3.3 Pairwise Clock Offsets

is not the case in general.

The errors due to clock drift are negligible since high
manufacturing standards are used even for stock hardware
platforms used in our test-bed. For example, a relatively
large 500ps/s clock drift [14] translates to a clock drift of
a few microseconds in each millisecond lofiginterval.

We minimize the errors due to the differences in prop-
agation delay with careful engineering, which ensures low
propagation error for most transmissions. Nevertheless, a
we observe later, the Atheros 802.11 hardware used on our
test-bed sometimes inexplicably delays data packets,hwhic
causes asymmetrical propagation delays with relatively
large propagation errors. The software detects clock tsffse

Soft-TDMAC estimates pairwise clock offsets with a timeWwith asymmetrical propagation delays from the round-trip
stamp exchange in the network beacons. To simplify ngropagation time and eliminates them from consideration
tation, in the sequel we usd to emphasize the discretefor synchronization.

nature of some quantitiegyj k] £ 4jj (kTy), where T, is
the network beacon transmission period (5).

In beacon period, the slave sends a network beacon at

timety > kT, with its local network timeT; (t1) = Fhom t1+

0;(t1) (Fig. 2). The master slave relationship is determingﬂ
from the synchronization tree — the node closest to the ba
station is the master. After receiving the network beacon

time tz, the master uses its network tifigty) = Fhom t2+
6i(t2) to find the network time difference to nodeT;(t2) —

The slave finds the round-trip delay with
3ij (K = [T (ta) — Ti(ts)] + [Ti(t2) — Tj(ta)]
= Fnom [(t4 —t1) —(ts _tZ)} + [séjnlft) + 88?” )

here the first term in the last summation is the round-trip

%Ie_lay andagr’ijfg and séjr‘ig are defined as before. Since the
Save expects the round-trip delay to be
8j[K ~ 2+ Treop > 2 e > egh + i

Tj(t1). Some time later, the master sends a network beacon

at timets, with its network timeTi(t3) = Fnom t3+ 6i(t3)

where Trxop is the duration of network beacon transmis-

and the previously found network time difference. Aftesions, & is the maximum clock drift in period,, and

receiving the beacon, at tinig< (k+1)Tp, the slave finds
its network time difference to the mastdi(ts) — Ti(t3).

&ij[k] > 0, it can easily detect clock offset estimates with
asymmetrical delays. FOfryop = 320 us used in our tests,

After the exchange, the slave node estimates its clogRlid return trip times arej [k] ~ 640 ps.

offset to the master with
> (1) - Titw)) - (T() - Tiw))]

A K =3
1 i 1
=0;[k] — 6i[k] + > [ - Egr'ijfz] + 5 Eprop:

(6)
where6;[k] = 6;(kTy) and 6;[k] = 6j(kTy) are the residual
phases at the slave and the master at timekT)p, respec-
tively,

egin = 03 (1) — 83 (KTy) — [8i(t2) — Bi(KTy )
is the difference between nodés clock drift in the time
periodkT, to t; and node’s clock drift in the time period

KTy to t3, and
Eqin = Oi(t2) — B1(KTp) — [8; (t2) — 85 KTy |

is the difference between nods clock drift in the time
periodkT, to to and nodej’s clock drift in the time period
kT, andty, and

€prop = From [(t4 —13) — (t2 —t1)]

is the difference in one-way propagation delays.

In the unlikely scenario that the one-way propagation

3.4 Software Phase-Lock Loop

The raw pairwise clock offsets are input into a software
PLL to smoothly synchronize clocks. The PLL drives
the slave’s clock offset to 0 as the number of pairwise
exchanges increases. The PLL averages clock offsets over
the lastw, time-exchanges and uses the smoothed clock
offset to update times (VCHRONIZE-TO-MASTER).

The algorithm has two major parts. The first part of the
algorithm (Steps % 4) calculates the average clock offset
Zij [ky] for the current re-synchronization period from clock
offset estimateshjj[kl. The re-synchronization period is
different from the network beacon period and is demarcated
by the updates of the local clock offset (Step 7). Before
adding a clock offset to the average, the algorithm checks
the validity of it's return-trip time (Step 1). Clock offset
estimates with return-trip times less then O or greater than
dnrop = 800 s are ignored. The algorithm adds valid clock
offset estimates to the running average of the clock offsets
in Step 3 to obtain the average clock offset frem valid
offsets
_ 1 W
Bijlkl = oo k;Aij (Wu(ky — 1) + K],

(7)

delays are the same and that there is no clock drift, (8r the re-synchronization peridq,.
calculates the exact clock offset between the master andrhe second part of the algorithm (Steps-35) uses
the slave at the beginning of the exchange. However, thiee averaged clock offset to update the node’s clock off-



every T, seconds every w, T}, seconds

Algorithm 1 SYNCHRONIZE-TO-MASTER(A;;[K], &ij [K])

Initialize globals: | =0, ky = 1, &ij[0] = 0, Wy = Whnin 6/ o B oy = e | Bl
1 if 0< [k < 81 then e
2 |_<— I+1 B B
3 Ajjlku] < Aij (k] + (A5 (K] — Aij [ka]) /1
4: end if 0;[k] D(z) =271
5. if | =wy or Ajj[Ky] > Amax then B
6: Ku — ku‘f":\l. [* ku = k/Wu, if Z” S Amax*/ inj[ku 1]
7 ik < Bijlk— 1] = BAij [ka — 1] g
8 |1«+0 ~

10: Wy < max{Wy/2, Wiin} Fig. 3. Software PLL Control System Model.

1L el$ Change in Clock Offset vs. Time

12: wy < min{wy + 1, Wnax} r

13 end if wl

14:  Nijlky] <0

15: end if 5

set for the current re-synchronization perid&;l,-, [ku]. The

algorithm only updates local clock offsets evany time

it is run (Step 5), or if the average clock offset is greater

than the target clock offséimax = Ts/2 =8 ps. We note

that using the target dfnax= 8 us is sufficient to schedule

any transmission pattern with the granularity of onep&6 . ‘ ‘

TDMA slot. ' Timé (s)
The update windowy,, is determined based on how far

the slave’s clock is from the master’s clock (Steps 23). Fig. 4. Performance of the Software PLL.

The update window is an integer in the rangg €

[Whnin, Wmax. In our tests we us@hax= (5 s)/Tp, to ensure ) ) )

the maximum time between clock updates of 5 s, arf§r0: meaning that the algorithm synchronizes the clocks

Whin = 1, to ensure that at least clock offset estimate RVer time. _ _ o

available before the update. If the algorithm finds that the Considering Fig. 4, Steps 9-13 in the synchronization

clock offset to the master is larger thaiay, it halves algorithm can be mterpreteql as follows: |f the clocks are fa

the update window (Step 10). On the other hand, if tH&°m each other, the algorithm aggressively decreases the

algorithm finds that the clock offset is smaller thAmax settling time of the PLL to speed up the synchronization;

the update window is increased by one frame (Step 12)°N the other hand, if the clocks are close to each other, the
The effect of the shorter, or longer, update window iglgorithm cautiously increases the settling time of the PLL

seen from the software-based PLL model of the aIgorithFﬂ filter out the noise in the clock offset estimates.
(Fig. 2). The low-pass filtefF(z,w,) corresponds taz-
transform of the averaging of clock offsets on Step 3 of thig5 Network Entry
algorithm (7). Updating the local clock offset in Step 7 ofnitially, a node is unsynchronized An unsynchronized
the algorithm corresponds to the integration eleni2f®). node collects network beacons for the maximum allowed
We note that the PLL is a multi-rate system as indicated g-synchronization time. While unsynchronized, a node
the two samplers operating at different frequencies. Singetimates the clock offset to the synchronized nodes by
the update window changes the behaviour of the low-pagssuming a one-way propagation delay of 15 slots (230
filter, it becomes a parameter governing the performanceMfter the re-synchronization time expires, the unsynchro-
the PLL. nized node uses the estimated clock offset to synchronize
We simulate the performance of the software PLL iits clock and declares itselioughly synchronizedEven
Matlab. The performance results can also be derived aheugh at this point the node is not fully synchronized to the
alytically, however that type of analysis is beyond theetwork, network beacon transmissions have enough slack
scope of this work. The simulation starts with the slavgl20 ps), to allow it to transmit network beacons without
and master perfectly synchronized and then the mastar@lisions.
clock is pushed forward by some amount. Fig. 4 shows After the node is roughly synchronized, is starts to trans-
the behaviour of the slave’s clock offset, in terms of thmit network beacons and uses synchronization algorithm
percentage of the original clock offset, as the number &dr precise synchronization. After 20 runs of the synchro-
clock exchanges increases. Clock offset eventually goesntiaation algorithm, the node declares itsslfnchronized

% of The Original Clock Difference
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Fig. 5. Soft-TDMAC Architecture.

\_( Disconnecting ’
and starts to send data packets. Waiting for 20 runs of

the synchronization algorithm limits the total duration of . _ _
network entry to at most 105 seconds (5 seconds to achidy@ 8- Connection State Diagram.
rough synchronization and at most2®seconds to achieve

full synchronization). However, since in practice the re- \e have previously implemented SySI-MAC’s SAP and
synchronization period is always smaller than the maximupjaL_ in ns-2 [26]. In this work, the kernel module and a
5 seconds, network entry typically takes 20 to 30 secon¢sps|x based userspace library implement a Linux version

of the HAL. We rely on the real-time extensions to the
4 SYSI-MAC LINUX ARCHITECTURE Linux Kernel [27] for microsecond precision timers.

The SySI-MAC system interface for 802.11 overlay TDMA Th.ere are three reasons for dividing SySI—MAC arghitec—
MAC protocols, is positioned between an overlay protoc8fre into userspace ar_1d _kernel components. First, since the
implementation and the 802.11 MAC implemented eithdp&jority of the library is in userspace, with few dependen-
in real hardware or in a simulator environment (Fig. 5fi€S On its e_nwronment, it is p035|bl_e to plug the libranpin
SySI-MAC’s message-based Service Access Point (SA@petwgrk 5|mul_ator [26], or to port it to environments other
interface provides a simple way to add and implemeftan Linux, which support POSIX threads [28]. Second,
new overlay protocols, while the Hardware AbstractioRutting the overlay MAC code into the userspace removes
Layer (HAL) provides a uniform access to the 802.1the difficulties of programming in the kernel due to _the
MAC implementations across different technologies fdack of full debugging facilities, standard system routine
easy porting of SySI-MAC. and the kernel’§ Ilmlted,. undpcumented, and constaqtly
In the SySI-MAC’s Linux implementation parts of theChanging t.hreadmg and timer interfaces. Three, b)_/ putting
code reside in the Linux userspace, while the rest resif¢ Most important components of our software into the
in the Linux kernel. The SAP interface and the implementiSerspace, we avoid tying future overlay MAC protocol
tation of hardware independent functions are implementéPlementations to the restrictive GNU Public License [29]
as a userspace library. A part of the HAL resides in the
userspace, while the other part resides in the kernel. Thé SySI-MAC Service Access Point Interface
userspace part of the HAL provides timers and inter-proceBsie to space constraints, we cannot provide the full details
communications with the part of the HAL residing in theof the SySI-MAC’s SAP interface and SySI-MAC's HAL
kernel. The kernel part of HAL is implemented as a kernéhplementation. These can be automatically generated from
module and provides a direct link to the kernel's networthe SySI-MAC's source code [30]. We only describe the in-
service, which manages the 802.11 device drivers. terface briefly to indicate how it formalizes the developmen
The relationship between the components is most easilffnew TDMA MAC protocols.
explained with a traversal of a network packet. When the The key idea of the SAP interface is to use link layer
kernel module receives an IP packet from the Linux kern&tonnections” as an abstraction for a TDMA MAC proto-
IP networking stack, it forwards it to the userspace part abl. We use the term connection to associate transmissions
the HAL. The SAP then hands the packet to the overlayith schedules and to signify pairwise wireless links.
MAC, which process it, enqueues it and requests a timerA new TDMA MAC protocol is implemented by creat-
interrupt from the SAP for the next packet transmissioimg new connection types, which implement functionality
After some time, the HAL creates a timer interrupt andpecific to the protocol. Each connection implements a
delivers it to the overlay MAC, which then hands over theonnection state machine, which allows it to use SySI-MAC
packet to the SAP as a transmission request. The usersp@d® interface. Fig. 6 shows connection state machine (the
part of the HAL hands-off the packet to the kernel modulenessage received by the connection and the procedure that
which requests the kernel's networking service to send tisgSI-MAC calls on the connection after the message is
packet over the 802.11 hardware. processed are denoted withssage/ procedure()).



Software

Connections start in théonnect i ng state. For a connec- Procesing AIFS 80211 Hoaders Oty MAC Packet
tion that implements network entry, tl@nnecting state 2

ransmission

is the state during which it synchronizes to the network. On
the other hand, data connections may useCimmecting — veu _ (1111
state to send control messages to establish pairwise links —c— —
between wireless nodes.

. After a conn.ecltion finishes With.th@onn_ecti ng state Fig. 7. Virtual TDMA Time.

it enters theWai ting state where it receives packets or

timer events. If the connection receives a timer event in the

Wi ting state, it enters th&endi ng state, where it sends gyerheads, while the virtualayload timecovers the time

its packets. After the hardware confirms the sending of thgquired to transmit an overlay MAC packet without 802.11

packet, the connection returns to théi ting state. We oyerhead (Fig. 7). The overheads include the software
note that the state machine allows connections to reCGin%cessing time, which corresponds to how long it takes
packets in theSendi ng state, even though that may be arom the timer event requesting the transmission to the
obvious hardware, software or synchronization error. Withctyal request for a transmission, the 802.11 arbitration
this approach, the SAP interface lets the overlay MAfater-frame space (AIFS) pause, which occurs after 802.11
handle serious errors. o . hardware determines that the channel is free, and the time

The final state of each connection is Diesconnecting  required to transmit 802.11 protocol headers. Abstracting
state. The intention of this state is to allow connectiong| gverhead times into a single guard time, allows for
to release memory and other resources when they are{fi\a protocols agnostic of the underlying transmission
longer needed. _ _ . technology.

New protocols are implemented by implementing the \yhjle the 802.11 transmission time is fixed by hardware
process_pkt (), generate_pkt() andschedul e() pro- o g systems, the guard time is not. In the simulator
cedures for new connection types. Theocess_pkt()  environment, the guard time can be found theoretically by
procedure receives the packets from the wllreless hardwgrg,smy considering the 802.11 standard [26]. However, on
or the kernel's network stack and depending on the tyRge Linux system, the guard time depends on the software
of connection it may send these packets further up theqcessing time — how fast the processor is and how quickly
stack, enqueue them, generate new packets, or perfQHa context switch between timer interrupts and SiSY-MAC

management procedures. Thener at e_pkt () procedure occyrs. We determine guard times experimentally, as shown
is called in response to a timer event, which was previously the next section.

requested by thechedul e() procedure. This procedure re-

guests an immediate packet transmission, with the option of

specifying physical layer parameters. Tjemerate_pkt() ° TEST-BED RESULTS

function have a short execution time to ensure that tWge summarize hundreds of hours of evaluating Soft-
delay from the timer to when the packet is transmittelDMAC on a 4 node test-bed (Fig. 8). All nodes in the
is small and non-variable. In our protocol implementationest-bed where situated on a typical office desk, with the
we achieve this goal by pre-generating all overlay MA@istance between nodes of less than 1 m. Due to the
outgoing packets in therocess_pkt () function, which physical size of the test-bed, all nodes can hear transmissi
has almost no time constraints. from all other nodes.

The schedul () function allows connections to imple- Test-bed nodes are Hewlett-Packard nc6000 laptops,
ment their schedules. Itis called after a connection ekés twhich use the Pentium M processors running at around
Connecting state and every time the connection exits the5 GHz. The laptops come pre-installed with the wireless
Sendi ng state to allow a connection to request the timefards using the Atheros Communications AR5212 chipset.

message for a future transmission. We use the MadWiFi driver [19]. We add profiling software
. to the driver, which allows us to measure 802.11 transmis-
4.2 TDMA Hardware Abstraction sion times. We also add code to change per-packet 802.11

SySI-MAC provides a “virtual” TDMA hardware abstrac-modulation rates. Since we access the MadWiFi driver
tion to its overlay MAC protocol clients. The hardwarghrough the Linux networking sub-system, we effectively
abstraction maps overlay MAC transmissions into slottezhange only about 10 lines of code in the driver.
time transmissions (Fig. 7), taking into account the faatth The laptops run Linux kernel 2.6.23 [25] with the
the overlay MAC'’s packets are transmitted as the payload@fal-time extensions [27]. The Linux real-time extensions
actual 802.11 packets. To simplify scheduling in the owerlastreamline the kernel to remove unnecessary software locks
MAC protocol, SySI-MAC virtual TDMA slots are groupedand provide preemptive priority-based thread scheduling,
into fixed length frames. Each TDMA slot carries a fixedavhich is necessary for precise software timers. The system
number of bytes, which depends on the 802.11 physicaiftware is installed with the Gentoo Linux software dis-
modulation rate used during packet the transmission. tribution. The userspace uses the POSIX real-time thread
Overlay MAC transmissions have two parts in virtualmplementation provided by glibc-2.6.1. All software is
time. The virtualguard timecovers hardware and softwarecompiled with gcc-4.1.2.
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Transmission Times for 48 byte Packets at 6 Mbps
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Fig. 8. Logical Topology of the Test-bed. ol \
We use the 802.11a wireless channel 100, operating at S o1 w2 e wa e wre &7 w8 &8 &

Experiment Time (s)

5.5 GHz, which we found to be free of other wireless nodes.

We set the 802.11 AIFS time and the 802.11 contentiqg? 9 Transmission Delavs

window to the lowest values allowed by the underlying 9% ye:

hardware. These parameters can be modified with the newer

Linux wireless drivers such as the MadWiFi driver [19] fokpe packets. We have confirmed this phenomenon on three

the Atheros wireless chipsets. Since Soft-TDMAC requireg)spes of Atheros cards.

fixed transmission times for synchronization, we disabée th' \we have found that the hiccups are a very rare occurrence

802.11 retransmission mechanism. that did not significantly affect the experiments we show
We use TDMA slots with the duratiofis = 16is, cor- |ater in the paper. The filtering mechanism in the synchro-

responding to 4 802.11a Orthogonal Frequency Divisigfization algorithm is sufficient to remove the hiccups as a

Multiplexing (OFDM) symbols [31]. With these settings, &actor in the synchronization.

TDMA slot can carry 12, 24, 36, 48, 64, 96, or 108 bytes, Using our measurements over various packet sizes

corresponding to the 802.11a’s 6 Mbps, 12 Mbps, 18 Mbpgsig. 10), we determine an envelope, which always covers

24 Mbps, 36 Mbps, 48 Mbps and 54 Mbps modulatiothe duration of packet transmissions

rates, respectively. |

Em() = 11xTo+ {_W * Ts, (8)
bm

5-1 Empirical Tuning of TDMA Guard Times where€n(l) is the envelope for ah byte overlay packet

To obtain virtual guard times, we perform series of exransmitted at modulatiom, by, € {12,24,...,108} is the
periments where a node transmits, @00 packets at 5 ms number of bytes carried in a TDMA slot for modulation
intervals. We repeat experiments for different packettle®ig m, Ts = 16 ps is the slot duration, an@] is the ceiling
and modulation rates. We use our modifications of the Mafiinction, which rounds a number to the nearest integer
WiFi driver to record the time between the userspace timgigher than the number. This envelope is shown as “max
and the hardware interrupt indicating that the card finisheghvelope” in Fig. 10.
sending the packet. At the lowest 802.11a modulation rateObserving our data, we found the maximum envelope is
of 6 Mbps, the longest packet transmission of 2012 bytestually very pessimistic — most of the data transmissions
takes around ® ms, so each transmission ends before thge shorter than the maximum envelope. So, we find a
next transmission begins. tighter envelope based on statistical properties of data.
Fig. 9 shows the duration of packet processing time Using the measured times for the 48 byte network
(tproc), 802.11 hardware transmission timiaf) and the beacons transmitted at the lowest rate and our knowledge of
total time to send the packetsdng= tproc+1ttran) for @ 1 802.11 operation, we find an envelogg(l), which covers
second portion of one of the runs for 48 byte packetaost of the transmission times. Consider the transmission
transmitted at 6 Mbps. This experiment corresponds &6 a 48 byte packet. The measured 802.11 transmission
network beacon transmissions. We note tigat is almost time for the 48 byte packets tgans= 192 ps on average,
constant with a negligible amount of variability (less thawith the standard deviation of @s. There aréngg211 = 36
a few microseconds). Enabling the QoS features of tigtes of 802.11 overheads in each transmission. Since the
MadWiFi driver also ensures thafan is almost constant. wireless card broadcasts 84 bytes of data, at 6 Mbps the
We note that sometime around 67 s into this experimemansmission should only take 118®, which corresponds
the card experienced what we call a “hiccup” — it inexplicao 7, 16 uys TDMA slots. So, the Atheros hardware adds
bly delayed the packet for a long time (L ms). From our around 80us of delay to each transmission. We believe
observations, we know that hiccups happen after the packétps of that delay corresponds to the 10 802.11a OFDM
is already on the Atheros card and that they do not happgymbols of preamble specified by the standard [31] and the
due to 802.11 back-off. We believe that the Atheros camther 40us correspond to the Atheros “post-transmission
periodically performs a maintenance function that delaymack-off” [9]. On average, the processing timéyigc= 7 s
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Packet Transmission Times Empirical Inverse CDF of Absolute Clock Offset
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Fig. 10. Envelope on Transmission Times. Fig. 11. Multi-hop Synchronization.
. o TABLE 1
with the standard deviation of. D ps. Absolute Clock Offset Statistics
Using the measured 802.11 transmission times and the
processing times, we calculate the average sending time fatatistic Hop 1 Hop 2 Hop 3
a 48 byte packet as Mean 370+0.03 ps  683+0.04ps 971+0.04 s
Std. Dev. 42140.02ps 457£0.02ps 559+ 0.03 ps
tsend= tproc+ ttrans= 7 US+ 80 Us+ 7% 16 us< 13x« 16 ps. 99 prct. 13ps 17us 22 us
99.9 prct. 16ps 20pus 26 us
So there are 7 TDMA slots for the payload time and 6 slotsMaximum 58s 84 s 56 us
for the guard time to cover 8% for hardware and software
processing.

Generalizing for all packet sizes, the new envelope is gyneriment, the frame size is 20 ms, the control sub-frame

is Nc = 50 slots long, forCTRL_LEN = 2 TxOps in each
control sub-frame, and we set the control sub-frame re-use
factor to CTRL_REUSE = 8. With these settings the time-

i _ _ stamp exchange peridg = 160 ms. We have also run Soft-
transmitted at modulatiom, by, is the number of bytes TDMAC with other values ofCTRL LEN and CTRL REUSE,
carried in a TDMA slot for modulatioim, Tg is the slot with similar results. - -

duration. gSince all nodes are in the range of each other, us-

em(l) = 6% Ts+ F E‘Q’ﬂ T, 9)

whereen(l) is the envelope for ah byte overlay packet

We '_[es.t thg enve!ope against a subset O_f MEASULER the minimum synchronization tree, each node would
transmission times (Fig. 10). The envelope, (9), is shownﬁ rmally select the base-station (nodg) as its clock
" 0 ” H . -
the envelope “99% envelope” and indeed covers.9% master. However, we manually set the synchronization tree

of the packets. to ng — N1 — Nz — n3 (thick arrows in Fig. 8), to test clock

Slnce the 999% envelope, (9)’ IS more efﬁuem t_han theSynchronlzatlon over multiple hops. We run the network
maximum envelope, we use it for data transmissions. F

&ntinuously for about 5 hours. The synchronization algo-
example, for transmissions at 54 Mbps, thed88 envelope Y y g

. 6% sh h " 1 rithm has run on average every 1617 ms on the first hop,
ltransmlssmn_s are f o~ oliter than ; izrgat;qmum ednvzeo'lo/o% ms on the second hop and 323 ms on the third hop.
ope transmissions for packet size o ytes an °Fig. 11 shows the inverse empirical Cumulative Density

shorter for the maximum packet size of 2012. ; .
In order to make the Soft-TDMAC protocol robust, WeFunctlon (CDF) of the absolute value of the filtered clock

] ffsets, measured at the base-station for nodg“Hop
make the network beacon transmissions very robust. \%2 noden, (“Hop 2") and nodenz (“Hop 3”). We show
use the maximum envelope, (8), to find that each_r_letwogl solute values of clock offsets since both negative and
beacon transmission takes 15 TDMA slots. In addition,

I 4d 5 ext q bols for the total network b ositive synchronization errors affect transmissionseréh
aisoa extra guard symbais for the total network DEacRp, \,q| over a 10M00 clock offsets collected by the base-

transmission time of 3_2[15. The average transmission UM&tation to the other nodes during this period. We note that
for a 48 byte packet is about 2Q®, so network beaconslo% of clock offsets on the first hop were(8 - so the

can tolerate synchronization errors of up to 20 minimum synchronization error is {Is. We also note that

most clock offsets at any hop are less tharu822 TDMA
5.2 Evaluation of Soft-TDMAC Synchronization slots).

We setup an experiment on the test-bed to measure th@able 1 shows detailed statistics of the experiment (all
clock offset between the nodes in the network. In thistervals in the table are 9% confidence intervals). The
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TCP Throughput vs. 802.11a Modulation
T T T T T
TCP Reno, T':ZO ms
|:| TCP Reno, T,=50 ms
[ 802.11 TDMA 68% Utilization

4000

the best throughput and the run with the worst throughput.
The figure also compares the throughput to the theoretical
maximum (“802.11 TDMA 68% Utilization”), which we
obtain by finding how much throughput the link would
have if it continuously transmitted 68%, corresponding to
the portion of time allocated on the downlink. Since the
delay-bandwidth product increases with the longer frame
duration, TCP throughput decreases with longer frame sizes
when the channel has errors (% 802.11 frame loss at
54 Mbps). We do not show TCP Westwood performance
— it performs slightly worse than TCP Reno, at higher
modulations.

Analyzing the data, we discovered a strong correlation
6Mbps  12Mbps  18Mbps  24Mbps  36Mbps  48Mbps  54Mbps between the decreases in TCP window size and paCket

802112 Physical Rate losses in the physical layer. This correlation accountser
fact that the TCP throughput decreases at higher modulation
rates. If we only consider the frame duration of 20 ms
in Fig. 12, theaverageTCP window size and TCP rate
mean absolute clock offset for all three hops is less thincrease until the rate of 36 Mbps. When the rate changes to
Mbps, the number of lost 802.11 packets seems to reach

10 ps. We note that less than186 clock offsets for the . .
first hop are more than 1@s and that at three hops, lesd critical point, where the frequency of dropped 802.11

than Q1% of clock offsets are greater than @& The worst packets severly impacts T.CP window size, thus decreasing
case clock offset of 84 occurred on the second hop. OuLhe average TCP rate. Fig. 12 shows that increasing the

3500
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1500

Throughput (kb/s)

1000~

500~

Fig. 12. One-hop TCP Throughput.

of the 100000 collected offsets, there was only one cloc fame duration to 50 ms, and consequently round-rip
offset this high. Ime, makes TCP rate more susceptible to packet losses,

Wi lude that th hronization algorith kS

€ conclude t af[ the sync ronlzatl_on agon? m WOrkss why this is the case. Soft-TDMAC does not implement

well. With high confidence, it synchronizes a pair of nodes . hani hich

to within 1 TDMA slot and that it can synchronize all nodeé'jm Automatic Repeat ReQuest. (ARQ). mechanism, whic

in a 3 hop network to within 2 TDMA slots, yvould decrease frame losses in the link layer and likely
improve TCP performance.

We do not believe that the hiccups have affected our
5.3 Single-hop TCP Performance results, since we can clearly trace drops in TCP window
We test Soft-TDMAC single-hop TCP performance bgize to channel errors. We found that the Atheros card
turning off nodesn, and nz and only using nodesy hiccups are a relatively rare — the Atheros chipset delays
andn;. We try frame sizesls = 20 ms andT¢ = 50 ms. about 1 in every 1200 transmitted 802.11 frames.

The longer frame size emulates protocols without tight

synchronization, which use longer transmissions. For botft Multi-hop TCP Performance

frame durations, we allocate 12% of the frame to the contrdle evaluate Soft-TDMAC multi-hop performance using
sub-frame, 20% of the frame to the uplink and 68% of theur test-bed (Fig. 8), with the same TDMA parameters
frame to the downlink. For the frame duratidn=20 ms, used in Sec. 5.2. Since the Soft-TDMAC is a connection
we allow for 4 control TxOps, while fofls =50 ms, we oriented link layer protocol, nodes only accept data packet
allow 15 control sub-frame TxOps. We allocate 850 of 125&rriving on one of their registered (logical) incoming Ik
available data slots and 2125 of 3125 available data slotsBor example, nod@e, ignores all data packets except the
the downlink, forT; =20 ms andls =50 ms, respectively. ones arriving from node;y, (link I12); if node ng sends an
The rest for the slots are used for the uplink. The contrt® packet to noden,, that packet must traverse node.
sub-frame re-use factor STRL_REUSE = 32. Nodeng is the base-station.

In order to get statistically valid performance results, We evaluate Soft-TDMAC performance with two types
we run a series of experiments to test the performance @MA multi-hop schedules. The first type of schedule,
TCP throughput for two TCP variants: TCP Reno and TCB a minimum TDMA delay schedule [20] (Fig. 13a).
Westwood [32]. In each experiment, we first start noge This schedule minimizes TDMA scheduling delay for all
and then noden;. We let noden; synchronize and after nodes in the network. TDMA scheduling delay occurs if an
30 seconds it initiates a download of 30 Mb of data frorautbound link on a router is scheduled to transmit before an
nodeng. We repeat this setup 30 times for each of the inbound link on that router. For the path connecting niagle
available 802.11a physical modulation rates and the two noden,, this schedule orders the linkg ~ |12 ~ 21 ~
TCP variants for a total of 420 experiments. l10. The schedule maximizes the throughput in the network,

Fig. 12 shows the average throughput of TCP Reno oveut allocates twice as much bandwidth on the uplink (traffic
all 30 scenarios, for all modulation rates and for both frante the base-station), as it does on the downlink to model
sizes. The error bars show the throughput of the run withe asymmetry of traffic in real networks.

ccounting for lower average TCP rates. It is unclear to
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| TABLE 3

w E—— s —— Measured Round-trip Delay (6 Mbps)

" o —_— Min-Delay Odd-Even

]“n 250 :)('mmo—‘ 750 000 1250 Mean Std Dev. Mean Std Dev.

(2) Minimum Delay Schedule. Nodel 200ms 03ms 270ms 69 ms

Node 2 271 ms 73 ms 470 ms 70 ms
Node 3 273 ms 72 ms 470 ms 71 ms

;.” 777777777777777 —— i

Iy \——"Wj 77777777777777777777

" s - - e rate on the hop between nodes and n; to 18 Mbps.

Since noden; now has extra bandwidth allocated to it, its

bandwidth increases substantially (“Min-delay (18/6)6)”

The bandwidth of the other two nodes stays about the same.
To measure the round-trip delay, we send 1000 Internet

(b) Odd-Even Schedule.

Fig. 13. Multi-hop TDMA Schedules.

TABLE 2 Control Message Protocol (ICMP) packets from noges,
Mean TCP Throughput andns to the base-station. The modulation on each link is
fixed at 6 Mbps. We use the Linux version pfng to

Schedule Min-Delay Odd-Even  Min-Delay find the maximum ICMP flood. Table 3 shows the mean
Rates (Mbps) 6/6/6 18/6/6 18/6/6 round-trip time, averaged over the 1000 transmitted ICMP
Node 1 769 kb/s 743 kb/s 4701 kb/s packets. We note that the round-trip delay for the odd-even
Node 2 673 kb/s 682 kb/s 689 kb/s schedule is about two frame sizes for nodes at two hops,
Node 3 638 kb/s 649 kb/s 649 kb/s

due to the fact that packets going from nodesand n3

are delayed until the next frame at noge The minimum

delay schedule round-trip times are always around about
The second type of schedule is an “odd-even” TDMArame duration. We tried this experiment will all available

schedule [13] (Fig. 13b), which schedules pairs of nod@92.11 physical layer rates and observed similar results.

alternatively. This type of scheduling is called odd-even

scheduling because links are either scheduled in evgn CoNncLUSION

(l10,121,131) or odd slots Ip1,l12,113). We note that despite

the fact ‘h"?“ 2P [10] uses od_d-even scheduling, resugsn.11 overlay TDMA MAC protocol development, and
obtained with Soft-TDMAC using odd-even scheduling 5 design and implement Soft-TDMAC, a software-

cannot be d.|rectlly compared to 2p. 2P Uses multiple E%sed TDMA MAC protocol. SySI-MAC provides a simple,
terfaces, which increases channel capacity. Also, 2P so . ;
ernel independent, message based interface for overlay

allocations are longer than the link durations in Fig. 13lR]IAC protocol implementations to schedule transmissions,

Consistent with odd-even scheduling [10], [13], all IInkSsend packets, and receive packets. The key feature of SySl-
are allocated the same number of slots.

e have implemented the SySI-MAC Linux interface for

The minimum delay schedule adjusts link bandwidths t't\(élAC 'S t_hat I.t prowde_s near determ_lnlsnc t|mer§ and
ransmission times, which allows for implementation of

takde mtg_ acc01|1|n|§ tEathlmk&t’fl] andlio tqarry :lraffu; of 3 trr]1ighly synchronized TDMA MAC protocols.
ncd)des. mci ad Im I? Rave dF same ITeS ?[lca |onk|]11 “The key feature of Soft-TDMAC is its microsecond
odd-even schedule, infg andlip present a bOENeck 1or o oy iz ation, which enables high TDMA efficiency.

nodesn, and n3, which have excess bandwidth ava"abl%oft-TDMAC has a synchronization mechanism, which

on their links to noden. To compare the wo .SChe.dU|essynchronizes the network to within a few microsecond-long
in terms of throughput, we fix the rate on all links in th

- . . “IDMA slots. The tight synchronization decreases the over-
minimum delay schedule at 6 Mbps, while setting the raheead of transmissions for a very efficient TDMA protocol
on links lo1 andlso to 18 Mbps in the odq-even schedule ith short frame durations. We have tested the protocol on
For each schedule, we run an experiment wherg no test-bed and shown that when channel conditions are
M1, Nz andng start a 3 Mb upload to the base station, &ood, TCP can achieve almost full channel bandwidth since
roughly the same time, with nodg starting first. We repeat re are no packet collisions. Soft-TDMAC’s small frame

each experiment 30 times. Table 2 show the average TGE. 4.0 help TCP ramp-up to the channel capacity. We
throughput, over the 30 runs for each node. In all CaS§Rve also shown that Soft-TDMAC's flexible scheduling

standard deviation was less than 5 kb/s. The performa - e
of the minimum delay schedules (“Min-Delay (6/6/6)") an r%jw;ezgzgzeednuf;_tgr?; rgggl;mze end-to-end throughput

the odd-even (“Odd-Even (18/6/6)") is almost the same.
The throughput of the three nodes is balanced. Node EFERENCES
gets slightly higher throughput than the other two nodég
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