
Dynamic Branch Decoupled Architecture

AKHILESH TYAGI, HON-CHI NG
�

Dept. of Electrical & Computer Engg.
Iowa State University

Ames, IA 50011
tyagi, hcng@iastate.edu

PRASANT MOHAPATRA

Dept. of Computer Science & Engg.
Michigan State University

E. Lansing, MI 28824
prasant@cse.msu.edu

Abstract

We propose an alternative approach to branch resolu-
tion based on the earlier work on decoupled memory ar-
chitectures. Branch decoupling is a technique to decouple
a single instruction stream program into two streams. One
stream is solely dedicated to resolving branches as early
as possible (both the branch condition and the branch tar-
get). The resolved branch targets are consumed by the other
computing stream through a queue. We have proposed a
compiler based, static branch decoupling methodology ear-
lier. In this paper, we propose a dynamic branch decoupled
(DBD) architecture. Simulations show a speedup of

����� ���

for SPEC95 integer benchmarks and
�	��
��

for SPEC95 FP
benchmarks over a 2-level adaptive branch predictor. The
average number of branch penalty cycles per instruction for
DBD reduces to

� ������
compared to

� ������
for the 2-level

branch predictor.

1 Introduction

The instruction-level-parallel processors rely upon dy-
namic branch prediction techniques [11] to improve perfor-
mance. Several attempts have been made in the recent years
to improve the accuracy of branch prediction [3, 7, 12].
These predictors try to adapt to the dynamic program be-
havior in order to improve their performance. With typical
branch frequency of about 20%, the impact of branches on
pipeline performance is quite significant.

In this paper, we propose the dynamic branch decoupled
(DBD) architecture built upon the static, branch decoupled
architectures [10]. The primary technique is to dynamically
decouple the incoming, single instruction stream into two
streams. One instruction stream is dedicated to resolving
the branch instructions which are executed on a branch pro-
cessor (BP). The branch outcomes are conveyed through a

�
This work was partially supported by NSF Grant #MIP9703702.

queue to the other instruction stream executing on program
processor (PP). The instruction fetch engine of the program
processor uses the addresses in this queue for the control
flow. Note that our approach is not to improve the predic-
tion accuracy, but to eliminate the need for predictions by
resolving the branches ahead of time, whenever possible.

The proposed DBD architecture is modeled using the
SimpleScalar toolkit [2]. We have used the SPEC95 bench-
mark suite to evaluate the performance of the DBD architec-
ture. Since branch prediction, specifically 2-level adaptive
prediction, is widely deployed to minimize impact of con-
trol hazard, it is used as the base comparison point for the
DBD architecture. The performance of branch prediction,
as measured in prediction accuracy, depends on how closely
related the branch outcomes are, whereas the DBD architec-
ture depends on how loosely coupled the basic blocks are,
whose performance is measured in branch-outcome avail-
ability. We simulated three of the SPEC95 integer bench-
marks and three of the SPEC95 FP benchmarks on a DBD
simulator. These benchmarks were also simulated with the
out-of-order SimpleScalar simulator using a 2-level adap-
tive branch predictor with single 8-bit history shift regis-
ter at 1st level and 1k 2-bit counter entries at 2nd level
along with a 8K BTB of 512 sets with 4-way set asso-
ciativity. The DBD simulations were performed along a
wide range of the architecture queue parameters. The DBD
speedup over branch prediction was as high as 41% and as
low as

�� ���
. The average speedup was

����� ���
for the inte-

ger benchmarks and
�	� �����

for the FP benchmarks. The
average speedup over all the six benchmarks (go, li,
m88ksim, swim, applu, fpppp) was

���� �����
. The

branch penalty cycles also declined significantly. The av-
erage number of branch penalty cycles per instruction for
DBD reduces to

� ������
compared to

� ������
for the 2-level

branch predictor.

The rest of the paper is organized as follows. In the
next section (Section 2, we describe some of the previous
work related to the DBD architectures. Section 3 describes
the static branch decoupled architecture. The proposed dy-

namic adaptation of this architecture, DBD architecture, is
described in Section 4. The experimental setup and results
are given in Section 5. We conclude in Section 6.

2 Related Work

Decoupled architectures have been proposed earlier in
the context of decoupling access and execution [9, 8, 6].
In addition to pipelining, the concurrent processing of exe-
cution and memory access can result in significant perfor-
mance improvement. These techniques form the basis of
the decoupled access/execute architectures. These architec-
tures use two processors, one to perform address calcula-
tions and load and store operations, and the other to operate
on the data and produce results. The two processors are
usually termed as access processor and execute processor,
respectively. FIFO buffers or queues are provided between
the two processors to maximize the overlap and indepen-
dence of the two processors. This implementation allows
the access processor to slip ahead of the execute processor
and fetch data before the execute processor needs it. Good-
man et al. [5] describes a pipelined implementation of a
memory decoupled architecture. This study explores the
potential speedup achievable from a decoupled architecture.
The average speedup over 12 Lawrence Livermore loops
was 1.58 with several loops achieving a speedup of close
to 2. An innovative integration of decoupled architectures
and loop pipelining is reported in Bird [1]. The memory ac-
cess processor is further decoupled into a control processor
and an address processor. The control processor is assigned
the task of recognizing basic blocks for the loop pipelin-
ing accounting for flushing of a loop pipeline. A study of
the memory latency effects in decoupled architectures has
been reported in [6]. A static branch decoupled architec-
ture was proposed in [10], where instructions are decou-
pled into two separate streams, namely program stream and
branch stream. A compiler performs the dependence anal-
ysis and splits the instructions into P-stream and B-stream.
The static decoupling has binary compatibility problem and
cannot handle branch dependencies that are not visible at
compile time.

3 Branch Decoupled Architecture

The branch decoupling works under the premise that the
dependences for a branch within a basic block are shallower
than the dependences for the rest of the basic block compu-
tations. The primary approach is to statically decouple a
program into two instruction streams, a branch stream (B-
stream) – whose sole responsibility is to resolve branches,
and a program stream (P-stream) – consisting of all the
leftover computations. The P-stream does not contain any

branch instructions in a fully decoupled program. The con-
trol flow is left entirely in the B-stream. The architecture
consists of two logical processors, branch processor (BP)
and program processor (PP) (Figure 1 (a)). BP has a tradi-
tional program counter, and can even undertake branch pre-
diction. However, the program processor’s program counter
(PPC) is a queue (Figure 1 (b)) of address offsets and some
additional information provided by the branch processor.
A branch instruction in the B-stream has sufficient infor-
mation about the basic blocks controlled by it both in the
B and P streams. For instance, BEQZ R1, B-Offset,
P-Offset, taken-count, not-taken-count is
a possible branch instruction in the B-stream. It evaluates
the branch condition based on a register in its own register
file, R1. If the branch is taken, the B-stream PC (BPC) gets
the BTA given by adding the current BPC value to the PC-
relative offset B-Offset. At this point the information
about the P-stream basic block controlled by this branch
is also queued into the PPC queue, the PC-relative offset
for the PPC P-Offset and the instruction count of the
taken P-stream basic block taken-count. If the branch
is not taken, the BPC continues sequentially. However,
the PPCQ gets an entry for the (PPC-offset, block-
count) as (0, not-taken-count). The offset of
zero makes the P-stream continue sequentially for not-
taken-count instructions.

The PPC grabs a (offset, count) tuple from the
PPCQ and adds the offset to the current value of the
PPC, and loads a count register with count. The default
behavior for the PPC is to increment PPC by one instruction
(4 bytes for a 32-bit instruction architecture) and to decre-
ment the count register by one. This continues until the
count register is zero. A zero count register necessitates an-
other dequeuing from the PPCQ. For more details of this
architecture, the reader is referred to [10].

4 Dynamic Branch Decoupled Architecture

4.1 Architectural Organization

The dynamic branch decoupling makes the underlying
decoupled streams transparent to the compiler/programmer.
This clearly limits the amount of decoupling that can be per-
formed since the hardware can only look at a limited num-
ber of instructions at a time.

The dynamic branch decoupled (DBD) processor has
logically separate branch unit (BU) and program unit (PU)
just as a statically decoupled processor. However, now
there is a third major unit for decoupling – fetch and de-
couple unit (FDU). The FDU fetches instructions and de-
couples them into the two streams, B-stream and P-stream
dynamically. The dependence resolution for the decoupling
is “piggybacked” on the comparators needed for the issue

2

�

� �
�� ��

�

�

�
�

�

Branch processor

�

�
�

� �

��P-FunctionUnits
P-
Register
File

P-DataCache
P-PC

P-InstructionCache

B-FunctionUnits
B-
Register
FileB-PC

B-UnifiedCache

P-B-Q

Program processor � �

PC Queue (PCQ)

�
Count Register (CR)

PC

...

PCoffset1 count1

PCoffset2 count2

PCoffset
�

count
�

Figure 1. (a) Branch Decoupled Architecture (b) Block Diagram for P-Stream Program Counter

logic of a superscalar processor. The operations of both PU
and BU are asynchronous, even though they communicate
through a data-forward queue (DFQ) and share the same
load-store queue (LSQ). The DFQ is used to forward some
results from the BU to the PU. Certain types of instruction
sequences are not decoupled. For instance, all the system
calls are handled on the PU in their entirety. During those
times, the BU is suspended, or put to “sleep”. This function-
ality is also needed to handle certain dependences correctly.

Both BU and PU have their own sets of registers, B-RF
and P-RF respectively. The complexity of the underlying
processors BP and PP can be different. For instance, they
both could be implemented as 4-way superscalar proces-
sors. Or, the branch processor could be simpler than the
program processor under the assumption that the expected
load on the BU would be lower than on the PU. The experi-
mental results answer these questions partially in Section 5.

4.2 Decoupling Logic

The fetch and decouple unit (FDU) is responsible for
fetching a block of instructions in to the instruction fetch
queue, and for decoupling these instructions. The fetched
instructions are checked for an incoming branch instruction.
The branch target address is also computed at this time. If
a branch instruction and its target are known to be in the in-
struction window, a dependence check is performed to de-
termine the decoupling.

An instruction is a branch-determining-instruction
(BDI) if its destination register is live at the branch instruc-
tion or at another BDI and if it is used by the branch in-
struction or another BDI. The dependence check marks all
the BDIs in the instruction window (IFQ). All the BDIs
are sent to the B-instruction queue (B-IQ) at BU. All the

In IFQ:
LD R7, 0(R2)
SUB R4, R6, R8
AND R1, R7, R3
ADD R2, R3, R4
LSR R5, R2, R1
BEQ R2, loc1

�
�

�� �

�
�
� �	�

Split to B-IQ: Split to P-IQ:
SUB R4, R6, R8 LD R7, 0(R2)
ADD R2, R3, R4 SUB R4, R6, R8
BEQ R2, loc1 AND R1, R7, R3

ADD R2, R3, R4
LSR R5, R2, R1

Figure 2. Example of Instructions Decoupling
by FDU

instructions are shipped to the P-instruction queue (P-IQ).
Note that some of the original instructions may have live
results only within the B-stream. However, we choose to
execute all the instructions at the PU to simplify the imple-
mentation.

Figure 2 illustrates the decoupling with a small example
program. The instructions in this example have the opcode
followed by the destination register, followed by the source
operands. Only SUB and ADD are found to be the branch-
determining instructions in this basic block, and hence are
copied to the B-stream along with the branch. Had we not
copied these BDIs, ADD and SUB, to the P-stream as well,

3

In IFQ: In P-IQ:
LD R7, 0(R2) ST 0(R6), R1
SUB R4, R6, R8 LD R3, 0(R5)
AND R1, R7, R3
ADD R2, R3, R4
LSR R5, R2, R1
BEQ R2, loc1

�

� � � � � � � � � � ���

�������������� �

�
�
�
�
�
�
�
� � �

Split and copy to B-IQ: Split to P-IQ:
LD R3, 0(R5) ST 0(R6), R1

LD R3, 0(R5)

SUB R4, R6, R8
ADD R2, R3, R4 LD R7, 0(R2)
BEQ R2, loc1 SUB R4, R6, R8

AND R1, R7, R3
ADD R2, R3, R4
LSR R5, R2, R1

Figure 3. Example of Instructions Decoupling
with Instructions from P-IQ

we would need to check if their destination registers are live
in the following basic block P-stream. If yes, these values
would have to be transferred to the PU’s register file. In
the first set of experiments, we have decided to simplify
the decoupling logic by keeping the entire original basic
block in the P-stream. However, we have provided a data-
forwarding queue (DFQ) to forward the results computed in
the BU to PU. A forwarded result can alleviate the pressure
on the reservation stations and FUs in the PU.

The decoupling logic should also check for dependences
of the BDIs with respect to the previously decoupled in-
structions sitting in the P-IQ. This is necessary because BU
does not execute every instruction in the original instruction
stream in IFQ. Figure 3 shows how the dependence check is
extended to the instructions in P-IQ for source registers of
the current basic block, in this case, R3, R6 and R8. Note
that dependence of R4 in ADD instruction is “shadowed”
(redefined) by the SUB instruction. The LD R3, 0(R5)
instruction of previous basic block in P-IQ is copied to B-
IQ since R3 in ADD instruction depends on the earlier write
to R3. This is necessary to ensure that the correct R3 value
is available for ADD instruction. Otherwise, BU has to stall
(put to sleep) till PU computes R3 and forwards it.

There are some dependences that are not obvious. A long
word based dependence is such an example. An instruction
with a long word result, ADD.L R2, R6, R4, modifies
both R2 and R3. However, that information is not avail-
able in the operand in MIPS like architectures. Hence, the

In IFQ:
LD R7, 0(R2)
AND R1, R7, R3
JAL loc3

�
�

�� �

�
�
� �	�

Split to B-IQ: Split to P-IQ:
JMP loc3 LD R7, 0(R2)

AND R1, R7, R3
LIMM R31, retadr

Figure 4. Example of Decoupling Linking
Jump Instruction

opcode would also have to be consulted in order to get a
complete picture of the dependences. Section 4.3 presents
some other examples of non-obvious dependences.

4.3 Issues and Solutions

The major shortcoming of the dynamic branch decou-
pling approach is that is is able to look at a very small in-
struction window at a time. Such a “peephole” into a pro-
gram does not provide sufficient information to decouple
safely in many instances. Of course, the big advantage of
the dynamic decoupling approach, the availability of the
run-time information more than offsets for the shortcom-
ings. We enumerate a few limiting scenarios for dynamic
decoupling, most arising out of limited context.
Procedure Calls:
On a procedure call, the stack pointer and/or frame pointer
based dependences need to be considered. However, these
dependences are not explicit unlike some other data depen-
dences. In particular, consider a linking jump (or branch)
which is typically used for a procedure call. It implicitly
saves the return address in a fixed register ($31 in MIPS ar-
chitecture, for instance). Any instruction using the return
address register is dependent on the linking jump implicitly.
For instance, an instruction to push the return address on
the stack is dependent on the linking jump instruction. The
decoupling logic has to be “aware” of these implicit depen-
dences. Figure 4 presents an example.

The procedure calls generate other headaches for the
the decoupling logic as well. Recall that the dynamic de-
coupling copies every instruction except a branch/jump to
the program stream, and the branch/jump along with the
branch-determining instructions to the branch stream. If we
follow this model for the linking jump instructions, the de-
coupled program behaves incorrectly for the following rea-
son. The program processor is keeping the complete pro-

4

gram state at all times. A part of this program state is the
contents of the return address register which is implicitly
modified by the linking jump instruction. If the linking in-
struction gets moved to the branch stream without any left-
over proxy in the program stream, the return address register
is never modified as was intended. Hence, the dynamic de-
coupling inserts a proxy instruction in the program stream
to load the return address (which is inserted as an immediate
value in the instruction at the dispatch stage) into the return
address register.

Also note that none of the stack manipulating instruc-
tions can be moved into the branch stream. This is because
in a dynamic decoupling scheme, we have no control on
the memory mapping. The entire dynamic decoupling is
transparent to the compiler/program. The compiler makes
allowance for only one program stack space. We cannot
dynamically allocate another part of the memory to grow
another independent stack for the branch program. This is
also one reason limiting the decoupling between the pro-
gram and branch streams to one block. Note that the branch
stream is allowed to access data on the stack (specially if it
is relative to the frame-pointer, or if synchronization points
guarantee certain number of push/pop operations from the
procedure entry point). However, it cannot issue any stack
modifying instructions such as a push or a pop. The pro-
gram stream has a write lock on the stack.
Load after Store (LAS):
A program can also have memory dependences. A store
queue would usually resolve these dependences dynami-
cally, letting a load bypass a store when there is no aliasing.
However, at the decoupling stage, the aliasing has not been
resolved. Hence, a load following a store cannot be decou-
pled into the branch stream without creating a data hazard.
One option is to suspend the branch processor in such a
situation and wake it again after the store execution. This
is one kind of synchronization mechanism that we have im-
plemented. Recall that we do not replicate store instructions
into the branch stream since all the program state is written
by the program processor.
System Calls:
The system calls have many more implicit dependences
than a procedure call. It is not an explicit control altering
instruction either. Hence, a safe mechanism is to let the
program processor handle all the system calls and excep-
tions. This is what we have implemented currently. Given
an extremely low frequency of system calls in the typical
programs, this decision has not affected us negatively in a
significant way.

5 Experimental Evaluation

In order to obtain quantitative measurement of the per-
formance, the proposed DBD architecture is modeled and

Table 1. Simulation of Base (“Out-of-order”)
Architecture

SPEC95 Sim Cycles CPI IPC BPred
[million] Accuracy

go 2stone9 663.522 1.2105 0.8261 0.7189
li boyer 115.472 0.6638 1.5066 0.9054
m88ksim test 362.095 0.7316 1.3668 0.9117
swim train 683.371 0.8579 1.1656 0.9651
applu train 361.451 0.6795 1.4716 0.9049
fpppp train 459.007 1.3916 0.7186 0.9033
Int Aver 380.363 0.8686 1.2332 0.8453
FP Aver 501.276 0.9763 1.1186 0.9244
Average 440.820 0.9225 1.1759 0.8849

simulated using SimpleScalar toolset (version 2.0) [2]. For
performance evaluation, a typical dynamically scheduled
four-way superscalar five-stage pipelined RISC processor
with speculative execution is used as control (base). Simu-
lator for the base architecture is the “out-of-order” simulator
in [2]. The architectural parameters for base architecture
used in simulation are as follows (mostly default values):
16K level-1 instruction cache and 16K level-1 data cache;
256K level-2 unified cache; 64-entry instruction TLB and
128-entry data TLB; Memory bus bandwidth of 8 bytes with
access latency of 18 cycles for 1st chunk and 2 cycles for
remaining chunks; 2-level adaptive branch predictor with
single 8-bit history shift register at 1st level and 1K 2-bit
counter entries at 2nd level & 8K 4-way associative BTB of
512 sets; branch misprediction (fetch) penalty of 3 cycles;
5-stage pipelines: fetch, dispatch/decode, issue, writeback,
commit; Fetch bandwidth of 4 instructions per cycle; Is-
sue bandwidth of 4 instructions per cycle; RUU size 16; 4
integer ALUs, 1 integer multiplier/divisor, 4 floating point
adders, 1 floating point multiplier/divisor. The performance
of the base architecture simulator (“out-of-order” simulator)
simulated with six of the SPEC95 benchmarks are tabulated
in Table 1. The “Int Aver” is the average of “go”, “li” and
“m88ksim” integer benchmarks, whereas the “FP Aver” is
the average of “swim”, “applu” and “fpppp” floating point
benchmarks. The “Average” is the overall average for the
six benchmarks.

5.1 DBD Parameters Exploration

We performed many simulations to find an optimal set of
parameters for the DBD architecture. We start with a “de-
fault” architectural parameters for DBD architecture, and
observe the impact of these parameters on the performance.
Basically, we want to identify the critical path, and adjust
the parameters for cost-effective performance. In addition
to the parameters of base architecture, the “default” archi-

5

Table 2. Simulation of “Default” DBD Archi-
tecture

SPEC95 Sim Cycles CPI IPC Speedup
[million]

go 2stone9 523.294 0.9547 1.0475 1.2680
li boyer 81.864 0.4706 2.1251 1.4105
m88ksim test 322.628 0.6519 1.5340 1.1223
swim train 610.149 0.7660 1.3055 1.1200
applu train 345.269 0.6491 1.5405 1.0469
fpppp train 451.526 1.3689 0.7305 1.0166
Int Aver 309.262 0.6924 1.5689 1.2669
FP Aver 468.981 0.9280 1.1922 1.0611
Average 389.121 0.8102 1.3805 1.1640

tectural parameters for DBD architecture used for simula-
tions throughout the rest of this section are as follows, un-
less stated otherwise: IFQ (fetch queue), P-IQ, and B-IQ
length of 16 instructions, DFQ length of 16 data in word
(32 bits), LSQ length of 16 outstanding accesses, PU and
BU configured as the base processor.

The performance of the “default” DBD architecture sim-
ulated with the above architectural parameters are tabulated
in Table 2. Speedups greater than 1 indicate performance
improvement, even though different benchmarks demon-
strate different degrees of speedups.

Next, we look at how the lengths of IFQ, P-IQ and B-
IQ affect the performance. The purpose is to find out the
critical path of DBD architecture. Besides simulating with
the default queue size of sixteen instructions, IFQ, P-IQ and
B-IQ are also simulated with various combinations of sizes
ranging from eight to thirty-two. In addition to speedups,
average queue lengths per cycle for IFQ, P-IQ and B-IQ
and maximum length filled or B-IQ are also captured.

Even though queue size of B-IQ is doubled from sixteen
to thirty-two instructions, none of the benchmarks show any
performance improvement. This indicates that queue size of
B-IQ is not part of the critical path for the “default” param-
eters of DBD architecture. We also observe that the P-IQ
queue size may be the bottleneck as indicated by the av-
erage P-IQ length of 15.47 in “applu” simulation, i.e. P-
IQ is nearly full throughout the simulation. However, only
the “swim” benchmark also has close-to-full average P-IQ
length, whereas other benchmarks show very low average
queue length for P-IQ, between 1.3 and 2.5. Hence, this
means P-IQ is only critical to “applu” and “swim” bench-
marks, but may not be so for the other benchmarks. Next, in
order to verify if P-IQ is the bottleneck for speedups, queue
size of P-IQ is doubled from sixteen to thirty-two instruc-
tions, and B-IQ is reverted back to sixteen instruction size.
However, only slight improvements are shown on “swim”
and “fpppp” benchmarks Again, the P-IQ in “applu” and

“swim” benchmarks are almost fully filled, 31.31 and 26.81
respectively. This indicates that the pipeline stages follow-
ing P-IQ in PU are the bottleneck, which are unable to keep
up with the filled P-IQ. Note that such conclusion can only
be made when the preceding pipeline stages of P-IQ, which
is IFQ, is held constant. This is because increase in “pro-
ducer” throughput can potentially be also a factor that fills
up P-IQ.

We also study the influence of DFQ on the performance
of the DBD architecture. Simulations are performed with
DFQ queue size of sixteen and zero. For simulation results,
the fractions of data used from DFQ and data skipped on
DFQ over instructions executed by PU1 are listed. In ad-
dition, the fraction of data forwarded to DFQ over instruc-
tions executed by BU2 and the maximum length filled for
DFQ are also captured. They show the utilization of DFQ
with respect to the instructions executed by BU and PU. For
the simulation results of DFQ with queue size of sixteen,
the fraction of data used from DFQ (“DFQ used / P-IQ”)
indicates the degree of contribution by data from DFQ to
the performance of PU, which is closely related to overall
performance since PU is on the critical path. As observed,
the number of data used from DFQ for integer benchmarks
is much higher than those for floating point benchmarks,

� 0.15 vs � 0.05. This is explained by the high frequen-
cies of integer benchmarks and their high branch depen-
dency because BDIs are the instructions that fill the DFQ.
However, the fraction of data forwarded to DFQ by BU
(“DFQ filled / B-IQ”) is the opposite, i.e. those for integer
benchmarks are lower than those for floating benchmarks,

� 0.15 vs � 0.40. Nevertheless, they do not contradict each
other. There are two possible reasons fro these low frac-
tions. There are fewer BDIs for branch instructions in in-
teger benchmarks, i.e. average BDIs per branch is lower.
Another possible reason is that the decoupling of integer
benchmarks results in more instructions copied from P-IQ
to B-IQ.

Finally, we also considered the impact of the absence
of floating point units on the performance. There was no
performance degradation in integer benchmarks by remov-
ing FP units from BU. For the FP benchmarks however the
speedup declined from

�� ���
�

to

�� ���� �
with this change.

It appears to be a minimal performance impact justifying
the area savings of a “lean” BU implementation.

The summary choice for the DBD parameters depends
on the types of applications. For the integer applications, a
good choice is IFQ, P-IQ, B-IQ and DFQ queue sizes of 8
instructions with no floating point units supported by BU.
For the FP applications, the default configuration of IFQ,

1Total number of instructions in P-IQ = Data used from DFQ + Data
skipped on DFQ + non-BDIs.

2Total number of instructions in B-IQ = Data forwarded to DFQ + In-
structions copied from P-IQ + Branch instructions.

6

P-IQ, B-IQ and DFQ queue sizes of 16 instructions with FP
units in BU performs better.

5.2 Comparison with Branch Prediction

One of the goals of the DBD architecture is to achieve
better overall performance compared to branch prediction.
Hence, comparing simulation results between both tech-
niques offers a perspective on how well DBD architecture
performs over branch prediction. Both “optimal” configura-
tions of DBD processor for integer benchmarks and floating
point benchmarks described in the previous section are sim-
ulated. Note that neither of the processors, PU or BU, in the
DBD architecture uses any kind of branch prediction. The
simulation results for both configurations of the DBD archi-
tectures are shown in Tables 3 and 4 on Page 7. The config-
uration for processor with branch prediction is the same as
the base architecture described earlier, same as that used in
Table 1. However, a different set of results are captured, as
shown in Table 5.

Since BU and PU in DBD architecture contain the same
resources as the base architecture, it can be argued that
the speedup may be due to the extra resources. Therefore,
we also look at performance of enhanced base architecture
which is given an equal amount of resources, shown in Ta-
ble 6. To reflect the similar amount of resources found
in DBD architecture for fair comparison, the data path of
base architecture is doubled, hereafter referred to as “en-
hanced base architecture”. Specifically: Fetch queue length
of 16 instructions; Decode, Issue and Commit bandwidths
of 8 instructions per cycle; 8 integer ALUs, 2 integer mul-
tiplier/divisor, 8 FP adders, 2 FP multiplier/divisor; and 3
memory ports. However, a careful study reveals that the
enhanced base architecture may have more resources than
DBD architecture. Measuring in terms of transistor count3,
the queues and decoupling logic in DBD architecture are
approximately “comparable” to the 2-level branch predictor
(history table + update logic). Hence, enhanced base archi-
tecture actually has a resource advantage with its 8 kbytes
of BTB4.

For simulation results, speedup shows the relative im-
provement of performance. CPI and IPC tell how close
the performance is to the ideal. For both DBD simulations,
fractions of integer branches and all branches over total in-
structions are also tabulated. They represent the addition
of expected speedups. They are used to provide compari-
son between expected speedup and the actual speedup ob-
tained. Note that these are not simulator-specific figures
— they are run-time benchmark-specific statistics. Since
in DBD architecture, PU executes all instructions except

3Can’t compare them in terms of functional parameters because they
are different functional blocks.

4As well as the address decoding logic within BTB.

Table 3. Simulation of DBD with “integer” con-
figurations

SPEC95 fraction Speedup CPI IPC PU idle
branch cycles

go 2stone9 0.1464 1.2651 0.9569 1.0451 0.0396
li boyer 0.2274 1.4107 0.4705 2.1253 0.1111
m88ksim test 0.2303 1.1220 0.6521 1.5335 0.1149
swim train 0.0528 1.0898 0.7872 1.2702 0.0170
applu train 0.0336 1.0466 0.6493 1.5402 0.0001
fpppp train 0.0107 1.0087 1.3796 0.7249 0.0016
Int Aver 0.2014 1.2659 0.6932 1.5680 0.0885
FP Aver 0.0324 1.0484 0.9387 1.1784 0.0062
Average 0.1169 1.1571 0.8159 1.3732 0.0474

Table 4. Simulation of DBD with “floating
point” configurations

SPEC95 fraction Speedup CPI IPC PU idle
branches cycles

go 2stone9 0.1464 1.2680 0.9547 1.0475 0.0396
li boyer 0.2274 1.4105 0.4706 2.1251 0.1107
m88ksim test 0.2303 1.1223 0.6519 1.5340 0.1147
swim train 0.0635 1.1200 0.7660 1.3055 0.0179
applu train 0.0336 1.0469 0.6491 1.5405 0.0001
fpppp train 0.0137 1.0166 1.3689 0.7305 0.0018
Int Aver 0.2014 1.2669 0.6924 1.5689 0.0884
FP Aver 0.0369 1.0611 0.9280 1.1922 0.0066
Average 0.1192 1.1640 0.8102 1.3805 0.0475

branches (PU executes branches within system calls and
for integer-configured DBD case, PU also executes floating-
point branches), the additional speedup for DBD over base
architecture is expected to be at least the same as the frac-
tion of branch instructions “saved” on P-IQ.

To further compare performance between DBD and base
architecture, we also look at the cycles wasted due to branch
instructions. Note, however, that the clock period for the
two architectures may differ. For DBD architecture, the
fraction of idle cycles in PU due to waiting for BU to resolve
branches is used, whereas for base architecture, the frac-
tion of cycles spent in recovering from the mis-prediction
is used. Both capture the branch penalty seen by the pro-
cessor. Comparing the simulations of DBD processor with
the integer-benchmark configuration in Table 3 and the base
processor in Table 5, the three integer benchmarks demon-
strate large gains in speedup, led by “li” benchmark with
1.41, “go” with 1.27 and “m88ksim” with 1.12. In fact,
these gains are pretty much expected because these inte-
ger benchmarks have high percentage of non-floating point

7

Table 5. Simulation of Default Base Architec-
ture

SPEC95 Speedup CPI IPC mispred
cycles

go 2stone9 1.0000 1.2105 0.8261 0.1678
li boyer 1.0000 0.6638 1.5066 0.1791
m88ksim test 1.0000 0.7316 1.3668 0.0972
swim train 1.0000 0.8579 1.1656 0.0419
applu train 1.0000 0.6795 1.4716 0.0103
fpppp train 1.0000 1.3916 0.7186 0.0048
Int Aver 1.0000 0.8686 1.2332 0.1480
FP Aver 1.0000 0.9763 1.1186 0.0190
Average 1.0000 0.9225 1.1759 0.0835

Table 6. Simulation of Base Architecture with
Double Datapath

SPEC95 Speedup CPI IPC mispred
cycles

go 2stone9 1.0748 1.1263 0.8879 0.1938
li boyer 1.0010 0.6631 1.5081 0.2275
m88ksim test 1.0708 0.6832 1.4636 0.1196
swim train 1.0440 0.8218 1.2168 0.0497
applu train 1.0523 0.6458 1.5485 0.0101
fpppp train 1.1504 1.2096 0.8267 0.0057
Int Aver 1.0489 0.8242 1.2865 0.1803
FP Aver 1.0822 0.8924 1.1973 0.0218
Average 1.0656 0.8583 1.2419 0.1011

branches, 0.14, 0.23, and 0.23 for “go”, “li” and “m88ksim”
benchmarks respectively. Therefore, PU is relieved from
resolving these branches. The differences between branch
frequencies and additional speedups are due to factors re-
lated to these branches, such as memory latency of fetching
taken branches, block sizes between branches, etc.

Note that the idle cycles in PU in waiting for branches
to be resolved by BU are relatively higher for integer
benchmarks than for floating point benchmarks. This
may sound puzzling since integer benchmarks demonstrate
higher speedup. Majority of the idle cycles in PU in waiting
for BU are due to back-to-back branches, i.e. block size of
one. This only explains why the number of idle cycles in
PU in waiting for BU is high, but it does not clarify the dis-
parity between speedups and PU idle cycles. The probable
reason for such low number of idle cycles in PU in waiting
for BU is because other “idle” cycles are dominated by the
bottleneck on PU in executing its instructions. These bot-
tlenecks at execution make the idle cycles in PU in waiting
for BU less critical to overall performance of floating point
benchmarks.

For the simulations of DBD processor with the config-
uration for floating point benchmarks shown in Table 4,
performance of integer benchmarks is almost identical to
that in Table 3. As the configuration is intended for float-
ing point benchmarks, a significant performance gain is ob-
served on the floating point benchmarks. However, “applu”
benchmark remains the “anomaly” among floating point
benchmarks, as discussed in the previous section — be-
cause “applu” has virtually no floating point branches even
though “applu” contains floating point instructions. Simi-
lar to the integer benchmarks, branch frequencies of these
benchmarks represent the expected speedups because BU
relieves PU from executing these branches. The difference
between the actual speedup and the expected one is due to
the branch penalty and other branch related factors.

Since DBD processor contains two processing units that
are equivalent to one processor of base architecture, some
may argue that this is not a “fair” comparison for speedup
with the redundancy available in DBD processor. In or-
der to investigate the difference in performance between
DBD processor and base processor that is scaled to the same
resources, the data path of base processor is doubled, in-
cluding functional units and bandwidths between pipeline
stages. Nevertheless, as mentioned earlier, the enhanced
base processor actually has a resource advantage equivalent
to its BTB. The simulation results are tabulated in Table 6,
and now they are “fairly” compared with those in Table 4,
as both architectures have approximately equal resources in
terms of functional blocks and bus widths.

Floating point benchmarks in the “enhanced” base pro-
cessor have higher speedups than their counterparts in the
“floating point configured” DBD processor, where “fpppp”
benchmark with 1.15 speedup for “enhanced” base proces-
sor outperforms its 1.02 speedup for DBD processor. The
“applu” also shows observable improvement surprisingly.
Nevertheless, the “swim” benchmark still works better in
DBD processor than the “enhanced” base processor. On
the other hand, the speedups for integer benchmarks in the
“enhanced” base processor are relatively insignificant com-
pared to their speedups achieved in DBD processor, � 1.07
vs � 1.27. This proves that DBD architecture offers higher
boost in performance for integer benchmarks. This is also
explained by the relatively large number of idling cycles in
recovering from mis-prediction in Table 6.

6 Conclusions

We propose a dynamic variant of branch decoupled ar-
chitecture in this paper. Branch decoupling attempts to ben-
efit from shallower dependences of the branches compared
with the dependence depth of the other computations. The
dynamic decoupling performs the dependence analysis dy-
namically using the same set of comparators as used by the

8

issue logic in a wide-issue superscalar processor. The ad-
vantage of DBD (dynamic branch decoupled) architecture
over a superscalar with branch prediction arises from the
explicit focus on branch dependences. A static branch de-
coupled architecture is also able to ‘virtually’ expand the
issue window size through static program analysis.

We presented the architecture description. The DBD ar-
chitecture was also evaluated through simulations with 3
SPEC95 int and 3 SPEC95 FP benchmarks. The compar-
ison was made with a 2-level adaptive branch prediction
scheme. The DBD architecture outperforms the 2-level pre-
dictor by about 16%.

The DBD architecture is really a scheduling technique
with explicit priority for branches and branch determining
instructions (BDIs). There are other scheduling techniques
for this purpose. The future extensions of this work include
the following. Currently, all the instructions are executed
in the program unit processor (PP). This simplifies the syn-
chronization structure. The register file syncs need be done
only at the basic (branch) block boundaries. However, some
of these instructions need not be executed in the program
stream giving rise to some parallelism. But, then, we need
to support synchronizations on individual registers, just as
we do in static decoupling [13]. Another interesting exten-
sion would be to combine the compiler assisted static de-
coupling with DBD.

References

[1] P. Bird, “Data Dependencies in Decoupled Pipelined
Loops,” Interaction of Compilation Technology and
Computer Systems, edited by D. Lilja and P. Bird, pp.
87-118, Kluwer Academic, 1994.

[2] D. Burger and T. M. Austin, The SimpleScalar Tool
Set, ver 2.0, Computer Science Department, Univer-
sity of Wisconsin-Madison, June 1997.

[3] P. Y. Chang, E. Hao, T. Y. Yeh, and Y. N. Patt,
“Branch Classification: A New Mechanism for Im-
proving Branch Predictor Performance,” Int. Sympo-
sium on Microarchitecture, Nov. 1994.

[4] M. Evers, P. Chang and Y. N. Patt, ”Using hybrid
branch predictors to improve branch prediction accu-
racy in the presence of context switches,” Proc. 23rd
Int’l Symp. on Computer Architecture, pp. 3-11, 1996.

[5] J. R. Goodman, J. T. Hsieh, K. Liou, A. R. Pleszkun,
P. B. Schechter, and H. C. Young, “PIPE: A VLSI De-
coupled Architecture,” Int. Symp. on Computer Archi-
tecture, pp. 20-27, 1985.

[6] L. Kurian, P.T. Hulina, L. D. Coraor, “Memory
Latency Effects in Decoupled Architectures,” IEEE
Trans. on Computers, Oct. 1994.

[7] S. T. Pan, K. So and J. T. Rahmeh, ”Improving the Ac-
curacy of Dynamic Branch Prediction Using Branch
Correlation,” Proc. 5th Int’l Conf. on Architectural
Support for Programming Languages and Operating
Systems, pp. 76-84, 1992.

[8] J. E. Smith, S. Weiss and N. Y. Pang, ”A Simulation
Study of Decoupled Architecture Computers,” IEEE
Trans. on Computers, pp. 692-702, Aug. 1986.

[9] J. E. Smith, ”Decoupled Access/Execute Computer
Architectures,” ACM Trans. on Computer Systems,
pp. 289-308, 1984.

[10] A, Tyagi, “Branch Decoupled Architectures,” Proc.
of Workshop on Interaction between Compilers and
Computer Architectures at 3rd Int’l Symp. on High-
Performance Computer Architecture, 1997, A sum-
mary appears in IEEE TC on Computer Architecture
Newsletter, pp. 13-15, June 1997.

[11] A. K. Uht, V. Sindagi, and S. Somanathan, ”Branch
Effect Reduction Techniques,” Computer, pp. 71-81,
May 1997.

[12] T. Y. Yeh and Y. N. Patt, ”Two-level Adaptive Train-
ing Branch Prediction,” Proc. 24th Int’l Symp. on Mi-
croarchitecture, pp. 51-61, 1991.

[13] L. Zhang, ”A preliminary evaluation of compiler-
assisted branch decoupled architecture,” MS Thesis,
May 1999, Dept. of Computer Science, Iowa State
University, Ames, IA 50011.

9

