
A Moving Target Defense against Adversarial Machine Learning
1Abhishek Roy

2Anshuman Chhabra
3Charles A. Kamhoua
2Prasant Mohapatra

abroy,chhabra@ucdavis.edu
charles.a.kamhoua.civ@mail.mil

pmohapatra@ucdavis.edu
1Department of Electrical and Computer Engineering, University of California, Davis

2Department of Computer Science, University of California, Davis
3Network Security Branch, U.S. Army Research Laboratory (ARL)

ABSTRACT
Adversarial Machine Learning has become the latest threat with the
ubiquitous presence of machine learning. In this paper we propose
a Moving Target Defense approach to defend against adversarial
machine learning, i.e., instead of manipulating the machine learn-
ing algorithms, we suggest a switching scheme among machine
learning algorithms to defend against adversarial attack. We model
the problem as a Stackelberg game between the attacker and the
defender. We propose a switching strategy which is the Stackelberg
equilibrium of the game. We test our method against rational, and
boundedly rational attackers. We show that designing a method
against a rational attacker is enough in most scenarios. We show
that even under very harsh constraints, e.g., no attack-cost, and
availability of attacks which can bring down the accuracy to 0, it
is possible to achieve reasonable accuracy in the context of clas-
sification. This work shows, that in addition to switching among
algorithms, one can think of introducing randomness in tuning
parameters, and model choices to achieve better defense against
adversarial machine learning.
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1 INTRODUCTION
It has been shown in [1] that an adversarial attack designed against
a classification algorithm transfers well to other classification algo-
rithms. Even an ensemble of multiple algorithms is not safe due to
transferability of attack from one algorithm to another. We know
that, in case of a white-box attack, i.e., if the attacker has full knowl-
edge and access to the neural network being used, given enough
time, highly effective adversarial attacks can be designed [2]. Even
in a back-box environment where the attacker can only observe
the output generated by a neural network for a given input but has
no control over the true deep neural network (DNN), very notori-
ous adversarial examples can be generated. It has been shows that
accuracy can be brought down to 10% by a well-designed black-box
attack [3]-[4]. Ref. [5] shows that if the attacker has limited attack
budget, one can introduce random noise in DNN models to break
the transferability of attacks without compromising accuracy. If
the transferability is low the defender may benefit from changing
the algorithm intermittently if we assume that the attacker does
not know the exact algorithm being implemented instantly. This is
a valid assumption as the attacker needs time to design adversar-
ial examples. Switching among algorithms may fail if algorithms
with high enough accuracy are unavailable. Though now-a-days
normally we have lot of highly efficient algorithms for common
machine learning jobs, e.g., classification, clustering, and prediction.
Our main goal is to develop an efficient defense strategy against
transferable adversarial attacks by switching among algorithms of
various accuracy.
In this paper we model the interaction between the attacker, and
the defender as a Stackelberg game where the defender is the leader.
The defender declares the probability vector of using different algo-
rithms next. The attacker reacts accordingly. We consider a general
setting where transferability of different attacks, and accuracy of
the available algorithms can assume any possible value. We allow
the attacker to be potent enough to bring down the accuracy to zero
if he knows exactly which algorithm is being deployed. This is not
necessarily the case all the time, but it is useful to assume this as it
is the worst case from defender's perspective. Defender incurs cost
while switching among algorithms. If this cost is high, switching
often among algorithms may not be beneficial for the defender. The
objective of this work is to optimally decide the moving strategy
taking the above trade-off into account.
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Table 1: Notation Meaning

Notation Meaning
A = {Ai }

K
i=1 Set of available algorithms

B = {Bi }
K
i=1 Set of attacks corresponding to the algorithms

ai Accuracy of algorithm Ai
Vd (att )(a) Value of accuracy a to the defender (attacker)
CM Defender’s cost of transition from Ai to Aj (i ,

j)

T =
[
τi j

]
K ..K Transferability matrix

ai |j Accuracy of Ai when attacked by Bj
Ud (π ) Defender’s expected utility with transition prob-

ability
Uatt (Bi ) Attacker’s utility of Bi
π = [πi ]K Vector of probabilities of algorithms going to

be deployed next
δ , γ Bounded rationality model parameters
w (p) Probability weighting function

We find the optimal strategies for players and characterize the op-
timal solutions under certain structures of the game. We show on
real datasets how we can mislead attacker using our approach and
achieve higher effective efficiency.
In most of the game theoretic study, the players are assumed to be
rational. But human beings rarely are rational. A defense method
designed against a rational attacker may not work well against
an attacker which does not confirm to the sense of rationality as
posed by the defender. In this work we attempt to answer the ques-
tion of how detrimental a boundedly rational attacker can be to
the defender who is using a defense mechanism designed against
a rational attacker. To the best of our knowledge, this is the first
work to show how switching among machine learning algorithms
can be used to defend against a boundedly rational adversary. Note
that our approach is similar to [6] but we extend the technique to
boundedly rational attackers.
The rest of the paper is organized as follows: Section 2 contains the
details of the game where we derive optimal strategies for players.
Section 3 presents different bounded rationality models. Section
4 presents a toy example illustrating our approach. In Section IV
contains the simulation results, and performance results of our
method on a real dataset. Section 5 concludes the paper.

2 DETAILS OF THE GAME
2.1 Preliminaries
We model the moving target defense (MTD) as a Stackelberg game
with the defender as the leader and the attacker as the follower.
First, the defender declares the vector π containing probabilities of
using different algorithms. Observing the probability, the attacker
decides on attacking. Given the accuracy a of an algorithm, we
denote the defender's (attacker's) payoff by Vd (att ) (a).
Assumption 1. We assume that the defender's (attacker's) pay-
off is an increasing (decreasing) function of accuracy, i.e., dVdda ≥

0
(
dVatt
da ≤ 0

)
.

Assumption 2. Every algorithm Ai has a corresponding best at-
tack Bi which brings down the accuracy of Ai to 0.
If ai |j is the accuracy of algorithmAi when attacked by Bj , assump-
tion 2 implies, ai |i = 0. Assumption 2 is rational as this assumption
represents the worst case for the defender.
It has been observed that an attack which is designed against a
particular algorithm may work well against another algorithm. We
introduce a performance metric called transferability to measure
the damage caused to the performance of one algorithm when at-
tacked by an attack designed for another algorithm.
Definition 1: Transferability τi j of attack Bj to algorithm Ai is
defined as τi j =

ai |j
ai .

The lower the value of τi j the better is the transferability. Note that
0 ≤ τi j ≤ 1. Let π = (π1, π2, · · · ,πK ) be the probability of using dif-
ferent algorithms as declared by the defender. The attackers utility
is given by

Uatt (Bi ,π ) = πiVa (0) +
∑
j,i

πjVatt
(
τjiaj

)
(1)

The action taken by the attacker on observing π is given by
B∗ (π ) = arдmaxBiUatt (Bi ,π ) (2)

If there B∗ is not unique, without loss of generality, we assume
that the attacker chooses the attack with smaller index. Assuming
the attacker is rational, and hence going to follow the above attack
method, the defender has to maximize its utility given as

Ud (π ) = π1CM +
∑
j
πj

[
Vd

(
τj∗aj

)
−CM

]
(3)

The defender chooses π∗ such that,
π∗ = arдmaxπUd (π )

K∑
i=1

πi = 1 (4)

πi ≥ 0 ∀i = 1, 2, · · · ,K
The solution to the above optimization problem constitutes the
Stackelberg equilibrium of the game. The feasible region of the
above optimization problem is the (K − 1)-simplex. Depending on
B∗ the coefficients of the objective function changes. For a fixed
B∗ the optimization is a Linear Program (LP) on (K − 1)-simplex
which can be solved in polynomial time in the number of variables
[10]. There are K distinct possible values of B∗; hence, the optimiza-
tion can be solved in polynomial of K time. Next, we are going to
consider more structured forms of this game to gain more insight
into how the optimal strategies vary with different parameters.
We will specifically consider two extreme cases mentioned before in
the introduction: firstly, the case where the transferability of attacks
among algorithms is constant but algorithms have different accura-
cies; secondly, the case where the attacks have different transferabil-
ity, but all the algorithms achieve a fixed accuracy. For this work,
we assumeVatt (x) = 1− x , andVd (x) = x . Moreover, without loss
of generality, we assume that the defender is usingA1 before the be-
ginning of the game, and this is known to the attacker. In the first of
the above mentioned cases τi j = τj when i , j, and τii = 0. Under
these assumptions, Uatt (Bi ,π ) = 1 − aτi + aτiπi . So the attacker
uses attack i with minimum τi (1 − πi ) value. Ud (π ) = π1CM +
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∑
j πj [τ∗a −CM ] = aτ∗ (1 − π∗)−CM (1 − π1). Let, π ′

i =
1−π
K−1 . Then

the attacker uses the attack with minimum τiπ
′
i , and the defender's

utility changes to Ud (π ) = (K − 1)
(
aτ∗π

′
∗ −CMπ ′

1
)
. For better ex-

position we assume τi j = τj when i , j , and τii = 0. These assump-
tions lead to Uatt (Bi ,π ) = 1 − τ

∑
j πjaj + τπiai , and Ud (π ) =

π1CM +
∑
j πj

[
τ(j∗)aj −CM

]
= τ

∑
j πjaj − CM (1 − π1) − τπ∗a∗.

So for a given transition probability vector and (a1, a2, · · · , aK ) , the
attacker attacks the algorithms with maximum πiai .

2.2 Characterization of the Solution
We are trying to find the solution to the above optimization on the
probability simplex. We will characterize the solution in case of
K = 3 for better exposition. The characterization is similar for any
general K .
Note that maximizing Ud (π ) can be thought of finding the maxi-
mum of the optimal points of the following optimization problems
on probability simplex : for each i = 1, 2, 3,

max
π

τ
∑
j,i

πjaj −CM (1 − π1) (5)

πiai ≥ πjaj ∀j = 1, 2, 3. (6)

As each of the above optimization problems is a linear program,
the optimal solution will be at one of the vertices of the feasible
regions. We enlist few properties of the solution of this problem in
a case where τ is constant. Very similar conclusions can be made
for a scenario where transferabilities vary with algorithms but the
accuracy is same across algorithms.

(1) If CM ≥ max (τa2,τa3), the best strategy of the defender is
not to change the current algorithm.
Let us assume w.l.o.g. a3 ≥ a2.

(2) When a2 ≤
a3

1+a3 , if a1 ≥
a2

1− a2
a3

, for 0 ≤ CM ≤ τa3, the

optimal solution is
(

a3
a1+a3 , 0,

a1
a1+a3

)
.

(3) If 1
a1 ≥ 1

a2 +
1
a3 , andCM ≤ τ

[
a2a3
a2+a3 − a1

]
, then the optimal

solution is
(
0, a3

a2+a3 ,
a2

a2+a3

)
.

(4) In all other scenarios the solution will be(
a2a3

a1a2+a2a3+a3a1 ,
a3a1

a1a2+a2a3+a3a1 ,
a1a2

a1a2+a2a3+a3a1

)
.

3 BOUNDEDLY RATIONAL ATTACKER
In this section we discuss the effects of a boundedly rational at-
tacker. It has been well studied that human begins do not tend to
interpret probability values as it is [7],[8]. To be precise, they tend to
overvalue lower probabilities and undervalue higher probabilities
as shown in Fig. 1. The interpretation of probability also depends
on how inclined an individual is towards gambling. We denote
the interpreted value of the probability asw (p). We consider two
well-known bounded rationality models given by[7]:

Model 1: w (p) =
pγ

(pγ + (1 − p)γ )
1
γ

(7)

Model 2: w (p) = exp
(
−δ (− logp)γ

)
(8)

where δ , and γ are model parameters. Figure 1(a) shows that as γ
increases the attacker becomes more rational. Figure 1(a) shows

Bouded Rationality: Model 1

(a) Weighting of Probability as γ varies from 0.4 to 1.

Bounded Rationality: Model 2

(b) Weighting of Probability for different choices of δ , and γ

Figure 1: Bounded Rationality Models

that δ indicates how optimistic the attacker is, and γ indicates
the curvature of the weighting function. We will see the effects of
bounded rationality in the next section.

4 RESULTS
4.1 Simulation Results
In all the following simulations we have chosen the accuracies of
the algorithms to be randomly between 0.6 and 1.

4.1.1 Rational Attacker. In this section we show how the defender
performance varies with moving cost, and transferability of attacks.
Figure 2 shows that for lowCM and high τ , using theMTD approach
can ensure an accuracy of up to 0.5 which is about 65% of the
average algorithm accuracy of 0.8 instead of 0 accuracy. Note that,
these results are obtained in an extreme scenario where the attacker
does not incur any cost which is unrealistic. In reality, due to cost,
if the effective utility is non-positive the attacker will abort the
attack resulting in a much higher effective accuracy for the defender.
Figure 2(b) shows an interesting trend. Adding more algorithms to
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(a) Ud against a rational attacker over τ , and CM with K = 3
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(b) Ud against a rational attacker over K with τ = 0.6, and cM = 0.03

Figure 2: Performance of the defender against a rational at-
tacker under different model parameters

the arsenal has a diminishing return property in terms of accuracy.
So having a few algorithm can be enough to achieve anymeaningful
accuracy.

4.1.2 Boundedly Rational Attacker. In this section we discuss how
a boundedly rational attacker can be more beneficial to the defender.
Figure 3(a) shows that if the attacker is boundedly rational then
the defender obtains higher effective accuracy for most values
of τ . Same behavior is observed over the range of CM . As one
can see from the figure that the accuracy can be upto 25% more
if the attacker is not fully rational. This implies that designing
defense strategies assuming the attacker is rational works best for
the defender in most situation. We leave the quantification of the
gain of the defender as a function of boundedness of rationality of
attacker to future work.
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(a) Ud against a boundedly rational attacker over τ where CM = 0.05
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(b) Ud against a boundedly rational attacker over CM where τ = 0.4

Figure 3: Performance of the defender against different
boundedly rational attacker under different model param-
eters

4.2 Real Dataset Results
To evaluate how MTD performs against real-world attacks on ma-
chine learning algorithms, we implement the following attack algo-
rithms: Carlini andWagner (CW) attack [2] against a Convolutional
Neural Network (CNN), Fast Gradient Sign Method [9] against a
Logistic Regression classifier, and the adversarial Support Vector
Machine (SVM) attack as described in [1]. All the classifiers are
trained on the MNIST dataset [10], and the CNN model is based on
the AlexNet architecture [11].

The CW attack used on the CNN architecture is an iterative L2 at-
tack that uses gradient descent to solve the following minimization
problem:

minimize : ∥x − x ′∥ + cl(x ′)
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Table 2: Transferability Results

SOURCE/TARGET Multi-class SVM Logistic Regression CNN
Multi-class SVM 1.0 0.12 0.006

Logistic Regression 0.93 1.0 0.856
CNN 0.42 0.284 1.0

where l(x ′) B max(max{Z (x ′)i,t } −Z (x ′)t ,κ), Z are the logits
of the neural network, and c,κ are parameters.

The FGSM attack uses the gradient of the cross-entropy loss
obtained from the Logistic Regression classifier (denoted as C(x))
to compute an optimal yet small perturbation ρ(x) such that C(x +
ρ(x)) , C(x). Moreover, the perturbation is computed as follows:

ρ(x) = ϵ .siдn (∇xL(x ,C(x)))

where ϵ is a threshold parameter, and L(x ,C(x)) is the loss func-
tion used to train the classifier on.

Finally, the SVM attack is a simple adversarial attack that crafts a
perturbed sample for the one-vs-the-rest multi-class SVM classifier
by moving the original input (x ) orthogonal to the decision bound-
ary hyperplane. Thus the perturbed sample (x ′) can be denoted
by x ′ = x − ϵ wk

∥wk ∥
, where wk is the weight vector normal to the

hyperplane for the kth binary SVMmaking up the multi-class SVM,
and ϵ is a threshold parameter.

We implement all the attacks and classifiers in Python, and 100
adversarial images for each source attack on the MNIST dataset.
The accuracy values obtained on the test-set for each classifier
are: Logistic Regression: 0.8975, Support Vector Machine: 0.9156,
and for Convolutional Neural Network: 0.9888. We use each of
the 100 generated images for each source, and attack the other
target classifiers. The obtained transferability values averaged over
5 runs are shown in Table 2. Figure 4 shows the performance of our
method in this dataset. It can be seen here that boundedly rational
attackers are not much of a threat compared to a rational attacker.
We observe that when the cost is low, we can achieve accuracy as
high as 0.5 instead of 0. For boundedly rational attackers the gain
is high even if the moving cost is large. As we consider the worst
case possible, that the adversary has no cost, never aborts, and the
accuracy decreases to 0 when attacked by a targetted algorithm,
this result is promising.

5 CONCLUSION
In this paper we propose a Moving Target Defense approach to
defend against adversarial machine learning. We test our method
against rational, and boundedly rational attackers. We show that
designing a method against a rational attacker is enough in most
scenarios. We show that even under very harsh constraints, e.g.,
no attack-cost, and availability of attacks which can bring down
the accuracy to 0, it is possible to achieve reasonable accuracy for
classification. In future we plan to extend this work to other vari-
eties of machine learning tasks. This also shows, that in addition
to switching among algorithms, one can think of introducing ran-
domness in tuning parameters, and model choices to achieve better
defense against adversarial machine learning.
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Figure 4: The performance of MTD against optimally de-
signed attack against classification on real dataset
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