QoS-Aware Multicasting in DiffServ Domains

Zhi Li and Prasant Mohapatra
Department of Computer Science
University of California at Davis

Davis, 95616, CA

Abstract— Although many QoS-based multicast routing
protocols have been proposed in recent years, most of them
are based on per-flow resource reservation, which cannot be
deployed within differentiated services(DiffServ) domains.
In this paper, we propose a new QoS-aware multicast rout-
ing protocol called QMD, which is designed for DiffServ en-
vironments. QMD can provide scalable QoS-aware multicast
services while greatly alleviating the core routers’ multi-
cast routing burden. In QMD, we separate the control and
data forwarding functions. The edge routers are involved
in multicast control plane functions: processing joining and
leaving events, searching QoS-satisfied branch, and making
resource reservation. Only a set of on-tree routers (key
nodes) maintain multicast routing states and forward mul-
ticast data traffic. The key nodes of one multicast group are
a subset of all the on-tree routers, which uniquely identify a
QoS-satisfied multicast tree connecting the group members.
Though the other on-tree routers between any two key nodes
do not keep any multicast routing states and QoS reserva-
tion information, the multicast traffic still can get guaran-
teed QoS when transmitted from one key node to another.
In addition, QMD can provide higher QoS-satisfaction rate
while incurring less message overhead compared to other
protocols.

I. INTRODUCTION

The main idea of IP multicasting[8] is to construct a
tree that connects all the group members and then the
data travels along the multicast tree. Packets to a large
number of hosts traverse only once through the common
parts of the network, effectively saving network resources.
Applications that benefit from multicasting include video
conferences, large-scale content delivery, distance educa-
tion, etc. Most of these applications are QoS-sensitive.
However, the current Internet infrastructure only supports
best-effort service, which is inadequate for these classes of
evolving applications. To meet this requirements, many
efforts have been dedicated to QoS provisioning in the In-
ternet [16]. Among them, the Internet Engineering Task
Forces (IETF) has proposed two different techniques to
enhance QoS support in the Internet: Integrated Services
(IntServ) and Differentiated Services (DiffServ).

IntServ is based on per-flow resource reservation to
achieve QoS-aware communication[4]. To solve the scal-
ability problem of IntServ, DiffServ was proposed, which
provides aggregated QoS support in the Internet[2]. The
packets are marked with different levels of services at the
edge routers, and the core routers provide services based
on the codepoints carried by the packets. Using this ap-
proach, DiffServ releases the core routers from maintaining
per-flow QoS reservation states. This idea of scalable QoS-
support has attracted many researchers’ attention since it
was proposed. However, most efforts have been directed to

This research was supported in part by the National Science Foun-
dation through the grants CCR-0296070 and ANI-0296034.

the unicast support while only a few attempts have been re-
ported on supporting multicast operations within DiffServ
domains.

Though some QoS-based multicast routing proto-
cols[14][10][11] have been proposed, almost all of these
methods are based on per-flow reservation. All the on-tree
routers have to maintain the resource reservation states
of multicast groups, which make the protocols impractical
to be deployed in DiffServ domains. Many other factors
also prevent multicast to be deployed within the DiffServ
domain. In QoS-aware multicasting, every on-tree router
needs to maintain per-group data forwarding state, which
conflicts with the idea of DiffServ. QoS-based multicast re-
quires core routers to maintain forwarding states, process
multicast control messages and make resource reservation
for the groups, while the DiffServ requires only edge routers
to make admission control and maintain resource reserva-
tion information. In addition, when regular IP multicast-
ing is employed within the DiffServ domains, the Neglected
Reservation Subtree problems(NRS)[3] also becomes an is-
sue.

In this paper, we propose a scalable technique called
QoS-aware Multicasting in DiffServ domain (QMD) to ad-
dress the problems discussed above. When a multicast
group passes through a DiffServ domain, it usually takes
the form of multicasting between edge routers. So, our
goal is to construct a scalable QoS-satisfied multicast tree
within one DiffServ domain that can connect all these edge
routers (one sender and multiple receivers). In QMD, we
separate the control plane functions from data plane func-
tions: edge routers will process most of the multicast con-
trol messages (join or leave events) and maintain the con-
trol state. The core routers only keep the minimal data
forwarding state. To achieve this goal, the new member’s
(one edge router) join request is forwarded to an ingress
edge router!.

We assume that edge routers have the knowledge of do-
main topology and make admission control decision inde-
pendently based on the current domain’s available QoS re-
source. Using the proposed QMD-DIJKSTRA algorithm,
the ingress router can compute a QoS-satisfied branch con-
necting the new member to the least number of key nodes(a
small part of on-tree nodes). Then, the ingress edge route
sends a construct message to these key nodes to set up the
new branch. The multicast traffic can be recursively trans-
mitted between the key nodes. Though the other on-tree

1The ingress and egress routers are named according to the direc-
tion of a multicast group’s traffic passing through a domain. The
ingress router is multicast source for the other egress routers within
the domain.



A F N
°
\
B ®
c D E
Fig. 1. Example of service degradation.

nodes do not maintain any multicast routing states and
the QoS resource reservation status, the multicast traffic
can still obtain predictable QoS according to the DiffServ
codepoints. This protocol relieves the core routers from
processing control messages and QoS reservation messages
while maintaining much less routing states.

The rest of the papers is organized as follows. In the
Section II, we will introduce the basic idea of QMD. The
key algorithm - QMD-DIJKSTRA is introduced in Section
III. We will evaluate the performance of QMD in Section
1V, followed by the concluding remarks in Section V.

IT. QMD APPROACH

DiffServ concentrates the complex control plane func-
tionalities at the edge routers facilitating scalable QoS pro-
visioning. QMD follows this idea: it concentrates all the
control functions at the edge routers while trying to aggre-
gate the multicast forwarding states at the core routers. In
QMD, we require all the control messages to be processed
at the edge routers. Although branchings could occur at
the core routers, the control messages are not processed
by them. As the edge routers have the domain topology
information, they can find new branches and add the data
forwarding states to the corresponding on-tree nodes.

A. Providing Predictable QoS within DiffServ Domain

DiffServ provides QoS by conditioning packets at the
edge routers and using a differentiated forwarding mech-
anism based on codepoints associated with the packets.
By aggregating the traffic, DiffServ achieves good scala-
bility. However, when the same service class is overloaded
at some link, all the flows of that class will suffer serious
service degradation.

Consider the topology shown Figure 1. Suppose the
links’ capacity is 5 Mbps. Consider two flows passing this
topology: from A to D, and from B to E. Suppose the
traffic from A to D is 3 Mbps and marked with AF1, and
the traffic from B to E is 4 Mbps and marked with AF1.
Since current Internet uses least-cost based routing proto-
cols, both the flows will pass through link C-D. Since the
link C-D’s capacity is 5 Mbps, some traffic marked with
AF1 will be dropped suffering service degradation. How-
ever, both of them will get predictable QoS if one of them
takes the path C-F-G-H-D instead of C-D.

Suppose flow A-D knows that the path C-G-D is lightly-
loaded and takes this path. The traffic from A to D will get
predictable service if we can make sure that they can be
first sent to G using the least-cost path, then to C following
the least-cost path. We call this kind of nodes (node G)
that one flow must pass through to get predictable services
as milestone nodes.?

2Here, we do not mean to do per-flow management within Diff-
Serv domain. The milestone nodes searching will be combined with
searching new multicast branch as discussed in the following sections.

B. Recursive Unicast

S S
MFT: S: N1 MFT: S: N1 (AF1)
MCT: S:N1
N1 MCT: S: N2 N1
MFT: S:R1, R2 MFT: S: R1 (AF1), R2 (AF2)

MCT: S:R1, R2

MCT: S:R2

RL R2 R1 R2
(a) REUNITE (b) QMD
Fig. 2. Comparison of REUNITE and QMD.

“Recursive unicast” is proposed in [13]to achieve scal-
able multicast based on current unicast routing mecha-
nism. Figure 2 (a) shows an enhanced version of recur-
sive unicast [7]. As shown in Figure 2 (a), there is one
multicast group in this domain (S, R1 and R2 are group
members, S is the sender of this group). For regular mul-
ticast protocols, all on-tree nodes’ of this multicast group,
N1, N2 and N3 should have the multicast routing informa-
tion for this group. When multiple groups coexist in the
domain, the multicast routing table lookup will become a
huge burden. In “recursive unicast”, the multicast infor-
mation is separated into two parts: multicast control table
(MCT) and multicast forwarding table (MFT). All the on-
tree nodes have the MCTs to process the join events while
only branching nodes (those on-tree nodes have more than
one children nodes) have MFTs. Then the multicast traf-
fic is recursively unicasted between the branching nodes
according to the MFTs till it arrives at the receivers.

In contrast to REUNITE [13], QMD only requires the
ingress edge routers (S in Figure 2(b)) to process the con-
trol messages and maintain the control states while the core
routers only keep the necessary data forwarding states. Be-
cause all the control states are kept at the edge routers, our
approach releases the core routers from maintaining the
necessary control states and processing control messages.

When join requests arrive at an ingress router, the
ingress router computes the multicast branches and iden-
tifies the key nodes. Key nodes of one multicast group
comprise of a sub-set of the on-tree nodes, and it includes
two types of nodes: branching nodes, which can uniquely
identify a multicast tree; milestone nodes, which can guar-
antee the QoS service on the paths from the ingress router
to all the group members. The key nodes can determine
a QoS-guaranteed multicast tree within one domain. In
QMD, only the key nodes of one multicast group need to
maintain its multicast data forwarding state.

C. QMD multicast tree maintenance

This section shows the necessary control messages and
data structures that QMD needs to support QoS-based
multicast routing.

As discussed in previous section, to support scalable
QoS-based multicast, there are two kinds of nodes: mile-
stone nodes and branch nodes. We call them together as
key nodes. For one multicast group, only the key nodes of



the multicast routing tree need to keep MFTs. Each of the
MFTs is composed of the group id, the children key nodes,
and the DiffServ codepoint for the following branches. It
has the following fields: <group address>, <<child key
node IP1, service levell >, <child key node IP2, service
level 2>,...>. Figure 2 (b) depicts the information that the
on-tree nodes should maintain when using QMD for the
same multicast group shown in Figure 2 (a).

Besides the MFT, the ingress edge router also needs
to maintain Multicast group table(MGT). An MGT en-
try records the a multicast group information within this
domain. An MGT has the following fields: <group
address>, <<Multicast receiver IP1, TTL1>,<multicast
receiver IP2, TTL2>, ...>, <<key node IP1,service levell,
IP1’s MFT entry for this group>, <key node IP2, service
level2, IP2’s MF'T entry for this group >,...>. The second
field of an MGT table is the list of the group members and
their TTLs (time to live). When the ingress edge router
cannot get a receiver’s refresh message after TTL, the re-
ceiver will be removed from the list of group members. The
third field of an MGT table is the list of all the key nodes
for this group and their corresponding information: IP ad-
dress; the service level for the traffic from the source to this
key node; and its MFT entry for this group.

If an edge router wants to join a multicast group, it first
gets the ingress router’s IP address. Then, it sends a JOIN
message to the ingress router, which includes its own IP
address and service level requirement.

When an ingress routers receives the JOIN request, af-
ter admission control, it first uses the QMD-DIJKSTRA
algorithm (Section III) to identify the key nodes along
the path to transmit QoS-satisfied multicast data to the
new receiver. Then, it updates the MGT entry and sends
out CONSTRUCT messages. CONSTRUCT messages are
used to set up corresponding MFTs at the key nodes. The
messages carry the MFT entries for the key nodes along
this path. When a node receives a CONSTRUCT mes-
sage, it looks up the corresponding entry for itself, removes
it from the CONSTRUCT message and updates the entry
to its MFT table. Then, it finds its children key nodes,
duplicates the CONSTRUCT message and sends to them.

The MFT entries at the key nodes are maintained in soft-
state. So, the ingress routers need to send CONSTRUCT
messages periodically to refresh the corresponding MFT
entries at the key nodes. The membership of a multicast
group is also maintained in soft-state, which means that the
edge routers must refresh their membership status periodi-
cally (by sending JOIN messages). When a group member
wants to leave, it stops sending refresh messages. If the
ingress router finds that a group member’s TTL becomes
0, it removes the receiver from the group member list and
releases the reserved resources. If some key nodes need to
be deleted, the corresponding entries are removed from the
key nodes list. It then sends a new copy of CONSTRUCT
message to refresh the routing states at the key nodes.

D. Data Forwarding
The multicast traffic is carried by DATA type message

which includes the group information and real data. When

a key node retrieves a DATA type message, it first gets the
group information and obtains the corresponding MFT en-
try. If the entry only has one child key node, it sends the
same copy of DATA message to its child key node with the
service level codepoint. Otherwise, it duplicates the DATA
message and sends to its children key nodes with the corre-
sponding service level codepoints. Thus, key-node-by-key-
node, the multicast traffic is forwarded to the receivers.
The intermediate nodes between any two key nodes do
not maintain any QoS reservation states for the multicast
group.
III. QMD-DIJKSTRA ALGORITHM

When a new JOIN request arrives at the ingress edge
router, it needs to find a series of key nodes to form a
new QoS satisfied branch connecting the new member to
the multicast tree. The number of key nodes indicates how
many core routers will maintain the MFT entry for the new
branch. In QMD, we use a revised version of DIJKSTRA
algorithm (QMD-DIJKSTRA) to find the minimum key
nodes that can connect the new member to the available
multicast tree.

A domain can be modeled as a connected directed graph
G(V, E), while V is the set of nodes and E is the set of
edges. An edge from v; to v; is represented as (v;, vj).
The available QoS resource between nodes i and j is Q(i,j).
If Q@i,j)> SLg, it means that the available QoS resource
from i to j can meet the QoS requirement SLy. Vg is the
set of edge routers while Vi is the set of core routers (V =
Ve U Vo). Suppose group M has ingress edge router Vg; at
this domain and Vi yg € V is its set of key nodes. There
is another set K Ng depicts the current service levels for
the multicast traffic from the ingress router to these key
nodes. Each element of K N¢ is a 2-tuple <vy, SLg>. By
default, KNg = {<Vgi, co>}.

We assume that the edge router Vg; has the knowledge
of the domain’s topology G(V, E) and the available QoS
resources on all e € E. We also assume that the Vg; can
compute the shortest paths between any two nodes in V
(for example, using FLOYD algorithm[6]).

Algorithm 1 QMD-DIJKSTRA-1(G,Vkng,KNg, vj, SLj)
1 W<V

2 Q«— {<w;, <>, 0>}

/* Q is the set of 3-tuples. The first field is the node id. The second
is the list of the key node between the node and v;. The third is the
number of key nodes.*/

3 while Q #0

4 Extract u = <uj, <ui,u2,...>,n > from Q that has the least
number of key nodes (least value of n) to v;, remove u; from W.

5 If u; € VK NG and SLyj > SL;

6 return <ui,u2,...>

7 Else

8 For each v € u;’s neighbors and v € W

9 IfQ(v, uj)> SL;

10 If wu; is in the least cost path from v to u1
11 Add <v,<ui,ug,...>n > to Q

12 Else

13 If vevVg

14 Add <v,<uj,u1,uz,...>n> to Q

15 Else

16 Add <v,<uj,u1,uz,...>,n + 1> to Q




N .

®o---@&- 7
U Vi J

Fig. 3. Explanation of QMD-DIJSKTRA algorithm

When an edge router Vg; wants to join group M with
service level requirement SL;, Algorithm 1 depicts how the
ingress router Vg; can find a new branch that meets the
new member’s QoS requirement with the least number of
key nodes. The algorithm can be explained using Figure
3. Suppose we have obtained the path from U to J that
has the least number of key nodes, and V1 is the neighbor
key node to U along the path. X is U’s neighbor node. If
U already belongs to the multicast tree, our task is done.
Otherwise, if U is on the least-cost path from X to V1, the
key nodes from X to J should be the same as from U to J. If
U is not on the least-cost path from X to V1, the key nodes
from X to J should include U and the key nodes from U to
J. In this situation (as shown in line 13 of Algorithm 1), if
X is an edge router, the key nodes on the path from X to
J are the same as from U to J. The goal of obtaining the
least number of key nodes is to minimize the core routers’
routing states.

IV. SIMULATION & ANALYSIS

In this section, we carry a series of simulations to study
and compare the performance of QMD with some other
multicast routing protocols. Four algorithms are simu-
lated: shorted path tree (SPT), M-QOSPF, QMRP-2[5]
and QMD.

In CBT (Core-Based tree)[1] and PIM (Protocol Inde-
pendent Multicast)[9], the new member is connected to
the multicast tree via unicast least-cost path, and the mul-
ticast tree is a shortest path tree (SPT). These routing
algorithms can be categorized as "SPT” algorithm. M-
QOSPF is based on the QoS routing extensions to OSPF
proposed by [12]. It assumes that all the routers know the
domain’s topology as well as the QoS status. When a new
router wants to join a multicast group, it computes a QoS-
satisfied path toward the source (or core router) and sends
join request to the source along the path[14]. QMRP is
a distributed QoS-aware multicast routing algorithm pro-
posed in [5]. From the simulation results as shown in [5],
QMRP-2 can achieve higher success ratio with lower mes-
sage overhead.

In the simulation, we evaluate the following performance
metrics: average routing states, success ratio, average mes-
sage overhead, and average routers involved processing
multicast control messages.

total number of routing states

Average routlng states = total number of multicast groups
__ number of QoS satisfied branch
~ total number of join requests

Average message overhead= number of messages sent out
total number of join requests

Average number of core routers involved
__ number of control messages
" total number of join requests
For the message overheads, if a message passes through

m hops, it is counted as m messages. If we can not find
a QoS satisfied branch for a new member, we will connect

Average success ratio

it to the multicast tree using least-cost path. Because the
overhead of processing the multicast control messages and
regular unicast messages is different, we use Average num-
ber of core routers involved to evaluate this measure.

The simulations are based on the Waxman network
topology[15]. We use the following approach to gener-
ate a DiffServ domain topology: network nodes are ran-
domly chosen in a square (axa) grid. A link exists be-
tween the nodes u and v with the probability P(u,v) =
a*e*d(u’”)/(b*a%, where d(u,v) is geometric distance be-
tween u and v, a and b are constants that are less than
1. In the simulation, ¢ = 0.2,b = 0.3, and a = 100. Using
this parameters, we generate a random topology with 100
nodes. Then, we randomly pick 25 nodes out the 100 as
the edge routers. Others are used as core routers. For each
simulation, a multicast source and a group of multicast re-
ceivers are randomly selected out of the edge routers. The
receivers join the multicast group in sequence with some
random QoS requirement. Each link of the domain meets
the receivers’ QoS requirement with the probability of 0.5.

We simulate five different sizes of multicast groups: 2
receivers, 5 receivers, 10 receivers, 15 receivers and 20 re-
ceivers. For each group size and algorithm, we run the
simulation 1000 times.

03

0.2

0.1

Average routing states(entries/group*router)
°
2
&

0 5 10 15 20
Group Size

Fig. 4. Comparison of multicast routing states.

Figure 4 shows the average routing states a core router
needs to keep for a multicast group under different group
sizes situation. From the figure, we can see that when
using QMD, the core routers only need to maintain half
the amount of routing states compared with other multicast
routing protocols. That means that QMD can decrease half
the multicast routing burden of forwarding multicast data
traffic (which is forwarded as regular unicast traffic). Thus,
QMD only requires the key nodes of multicast group to
keep multicast routing states. The other on-tree nodes do
not maintain routing states even when there are multicast
traffic passing through them.

Figure 5 shows the receivers’ QoS success ratios using the
four multicast protocols. As we have mentioned earlier,
each link has 50% chance to meet the receivers’ QoS re-
quirement. When using QMD, the average success ratio is
around 50%. Because M-QOSPF also uses centralized rout-
ing method, it can achieve the same success rate as QMD.
However, for SPT multicast, because its branch searching



0.7

06

05 ' . m——

0.4

QoS sucess ratio

03 f

02 ff

/ /\
01 1

0 5 10 15 20
Group Size

Fig. 5. Comparison of QoS success ratio.

is based on least-cost path search, it cannot achieve high
QoS satisfaction ratio as QMD.

14

SPT —+—

N QMD. -
M-QOSPF -3+
12 QMRP-2 @

10

Message overhead per join request (# of message)

0 5 10 15 20
Group Size

Fig. 6. Comparison of message overhead of searching new branch.

Figure 6 compares the average message overhead (num-
ber of messages per join request) for the four different rout-
ing protocols. QMRP-2 has the highest message overhead
because it uses distributed feasible branch search methods.
For each new branch, it will try many paths. QMD and M-
QOSPF use centralized methods to find feasible branches
and thus incur low message overhead. SPT has the lowest
overhead because it always takes the least-cost path.

14

SPT —+—

a QMD. ==~
M-QOSPF -3

12 QMRP-2 @

10

Average num of core routers involved in processing multicast control messages

0 5 10 15 20
Group Size

Fig. 7. Comparison of core routers involved new branch setup.

In Figure 7, we shows the average number of core routers
involved in processing multicast control messages for one
join request. QMD has the lowest impact because the join
requests are sent directly to the ingress routers (multicast

source within the domain). Only the key nodes of the new
branch will process CONSTRUCT messages. The other
on-tree nodes are not involved in processing the multicast
control messages.

From Figures 4-7 we observe that, QMD requires less
core routers to maintain routing states compared to other
multicast routing protocols. It uses QMD-DIJKSTRA al-
gorithm to locate the key nodes to achieve higher success
rate. Besides, it also puts lower burden on the core routers
by processing multicast control messages and data mes-
sages separately.

V. CONCLUSIONS

In this paper, we introduce QMD as a scalable QoS-based
multicast routing method for DiffServ domains. Based on
the basic idea of DiffServ, we separate control plane and
data plane functions in QMD. The edge routers process
joining and leaving events, find QoS-satisfied path with
least number of key nodes (using QMD-DIJSKTRA al-
gorithm we proposed) and other control functions. The
key nodes only need to keep the necessary data forward-
ing states. The merit of QMD is that it can provide QoS
guarantee to multicast group members without requesting
the on-tree routers to do resource reservation and maintain
QoS-routing states. Simulation results show that QMD can
achieve higher success ratio with less multicast control bur-
den on the core routers.

REFERENCES

[1] T. Ballardie. Core Based Tree (CBT) Multicast — Architecture
Overview and Specification. IETF Draft, 1995.

[2] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and
W. Weiss. An Architecture for Differentiated Services. IETF
RFC 2475, Decemeber 1998.

[3] R.Bless and K. Wehrle. Group Communication in Differentiated
Serivces Networks. IETF draft.

[4] R. Braden, D. Clark, and S. Shenker. Integrated Services in the
Internet Architecture: an Overview. RFC 1633, 1994.

[5] S. Chen, K. Nahrstedt, and Y. Shavitt. A QoS-Aware Multicast
Routing Protocol. In IEEE INFOCOM, May 2000.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. In-
troduction to Algorithm. Mc¢ Graw Hill Higher Education, 2001.

[71 L.HM.K. Costa, S. Fdida, and O. C. M.B. Duarte. Hop-by-
hop multicast routing protocol. ACM SIGCOMM’ 2001, pages
249-259, August 2001.

[8] S. Deering. Multicast Routing in Internetworks and Extended
LANs. SIGCOMM’88, Aug. 1988.

[9] S. Deering, D. L. Estrin, D. Farinacci, C. Liu V. Jacobson, and
L. Wei. The PIM Architecture for Wide-area Multicast Routing.
IEEE/ACM Transcations on Networking, 4(2), 1996.

[10] M. Faloutsos, A. Banerrjea, and R.Pankaj. QoSMIC: Quality
of Service Sensitive Multicast Internet Protocol. In ACM SIG-
COMM, Sep. 1998.

[11] Z. Li and P. Mohapatra. QoS-aware Multicast Protocol Using
Bounded Flooding (QMBF) Technique. In ICC, May 2002.

[12] R.Guerin, A.Orda, and D. Williams. Qos Routing Mechanisms
and OSPF Extensions. IETF Draft, Nov. 1996.

[13] I. Stoica, T.S. Ng, and H. Zhang. REUNITE: A Recursive Uni-
cast Approach for Multicast. Proceedings of IEEE INFOCOM,
1999.

[14] B. Wang and C. Hou. A Survey on Multicast Routing and its
QoS Extension: Problems, Algorithms, and Protocols. IFEE
Network, Vol.14, No.1, Jan./Feb. 2000.

[15] B. M. Waxman. Routing of Multipoint Connections. IEEE Jor-
nal on Selected Areas in Communications, Dec. 1988.

[16] X. Xiao and L. M. Ni. Internet QoS: the Big Picture. IEEE
Network, Mar. 1999.



