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Abstract—Bluetooth low energy (BLE) based devices are al-
ready deployed in massive quantity as Internet-of-things (IoT)
becomes prominent in the last two decades. In order to lower
the energy consumption, BLE devices have to compromise with
security and privacy problems. Existing research work shows that
BLE devices can be easily spoofed and leveraged to gain access to
a networking system. In this paper, we propose BF-IoT, the first
IoT secure communication framework for BLE-based networks
that guards against device spoofing via monitoring the work-
life cycles of devices. We dig into the BLE protocol stack and
extract the unique network-flow features from the link layer and
ATT/GATT service layer so as to generate the fingerprints for
device authentication. BF-IoT provides two-phase defense against
malicious entities: continuously authenticating device identity
before the connection setup and during session establishment.
We build a customized system to validate the effectiveness of
our mechanism. We extensively evaluate BF-IoT with a dozen of
different off-the-shelf commodity IoT devices which shows that
the devices can be accurately authenticated via only sniffing the
transmission characteristics.

Index Terms—Internet of Things (IoT), Bluetooth Lower
Energy (BLE), Device authentication, Fingerprinting, Network
security

I. INTRODUCTION

IoT has become a household name during the last few years

due to the rapid growth of smart devices. We are surrounded

by many IoT devices throughout the day which is changing

our lifestyle. International Data Corporation forecasts that in

the year 2018, the worldwide spending of IoT devices will be

around 772 billion [1]. By the year 2020, 24 billion devices

will be connected worldwide, and by 2022, on average 500

devices will be connected per household [2]. It is expected

that a more significant portion of these devices will be used for

monitoring the activity of daily life (ADL), such as sleeping,

exercise, eating habits, etc. ADL monitoring will be critical

in evaluating our health status, predicting long-term chronic

disease and providing medical advice for elderly people.

With its rapid growth, IoT brings unprecedented security

and privacy challenges due to its unique characteristics and

widespread deployment [3], [4]. Due to its attachment to our

life, the security of these devices become very crucial to

our daily living. However, IoT devices are constrained by its

power and compromised with its security. Most IoT devices

are connected to the Internet through short-range wireless

communication protocols. IEEE published a few standards

specifically for low power device communications [5]. Blue-

tooth low energy (BLE) [6] dominates in the IoT world due

to its low energy consumption which increases the lifetime

of the service provision [7]. It is used in almost every smart

device we can think of, ranging from smart light-bulb, health

tracker to intelligent vehicle, smart city, etc. In the year 2017,

4.4 billion BLE enabled devices had been purchased over the

world. BLE is becoming indispensable parts of the wireless

communication protocol in IoT.

However, BLE differs from conventional wireless commu-

nications such as WiFi, Zigbee, Bluetooth, etc. The stringent

low energy transmission pushes the BLE devices to compro-

mise with security, especially, BLE is vulnerable to identity

spoofing-based attacks [8], [9]. For instance, by forging the

MAC address of a temperature sensor, a malicious entity can

send counterfeit temperature report to the smart home con-

troller. The smart home controller guides the air conditioner

and may mistakenly adjust the room temperature. This poses

an imminent threat to the assistive living. In another case,

a malicious agent can forge the same beacon advertisement

messages of a wireless headset, which enables the agent to

eavesdrop on conversations and sniffs all the conversation

with that victim smartphone. Thus, authenticating an intended

device is of utmost importance in smart living.

Fingerprint-based identification and authentication mecha-

nisms had been used in our society for a long time because

no two entities can pose the same fingerprint. Similarly, in

cybersecurity, the term fingerprinting represents a process by

which a device or an active agent can be distinguished by

observing some external characteristics. There exist some re-

search works about fingerprinting in wireless communications.

For example, packet inter-arrival time [10] and the frames’

duration field in 802.11 [11] can be utilized for identifying

WiFi devices as the observed characteristics that are dependent

on the particular device driver. However, these approaches

targeting the 802.11 cannot be applied to BLE due to the

distinct protocol characteristics.

Hardware-based characteristics, such as clock skew [12]

or radio frequency signature [13], are also used to uniquely

identify a network device. However, these works require

sophisticated signal processing with additional hardware and

also usually take an extended period to fingerprint devices,

which are not applicable in the real-time BLE communica-

tion. [14] uses the inter-arrival time of packets sent by a

device for a specific type of traffic (e.g., SCP, ICMP, etc.) to

implement device-type identification. But the particular type

of traffic cannot be obtained in BLE communication thereby
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impeding usage of such an approach. The gap in research

on fingerprinting-based authentication in BLE motivates us to

design a secure communication framework that utilizes the

unique protocol features in BLE to authenticate the devices

irrespective of the location or environment.

In this paper, we propose BF-IoT , the first secure communi-

cation framework in BLE-based IoT networks via fingerprint-

ing technique. In summary, our contributions break down into

the following aspects:

• We dig into the BLE protocol stack and explore the

unique features set from the link layer and ATT/GATT

service layer in BLE. Based on the cross-layer transmis-

sion characteristics, BF-IoT is able to fingerprint the IoT

devices and implement the device authentication.

• BF-IoT provides two-phase defense mechanisms across

devices’ work lifecycle: before connection establishment

and during connection establishment, which enhances the

accuracy of authentication and further secure the IoT

networks. Compared to the existing approaches, BF-IoT
can efficiently fingerprint and authenticate devices in a

relatively short time.

• We utilize a machine learning based model to differentiate

and authenticate IoT devices in a real-time way. We build

a customized system and work around with a dozen of

typical BLE-based IoT commodity devices. The extensive

evaluation shows that our fingerprinting technique can

reach approximately 100% accuracy thereby validating

the effectiveness of our mechanism.

II. ADVERSARY MODEL

In this work, the system in consideration is deployed in

typical BLE-based IoT network (such as a smart home, smart

city, industrial plant, forest fire monitory service, etc.) where

the BLE devices are connected to the outside world through

a common IoT gateway. The open and broadcast nature of

wireless communication enables an adversary to observe the

data transfer of other devices in the connected network. The

weak common security mechanism used in these gateways

exposes the network to different malicious attacks [15], [16].

These devices may leak the common security credential such

as PIN code during connection establishment [17], [18]. We

assume that IoT devices may be benign or malicious when

they initially connect to the system. An adversary can attack

specific service at a precise point, or they can be corrupted

by malicious software to target common vulnerabilities in the

connected network devices. Some existing work can be found

that demonstrates how to spoof a BLE device [19]–[21].

Device spoofing can have serious implications for network

security. Also, by getting control of one device, an adversary

can exploit the weak security requirements of the network

behind the firewall and attack other devices. The malicious

device may have intentions such as sniffing data or security

credentials from other devices, compromising other devices in

the network by probing them with well-known vulnerabilities

or injecting false information into the system. A malicious

device can spoof the identity of another trusted device inside

a network to get access to secured data connection that other

untrusted devices cannot have.

Our goal is to design a wireless communication framework

to restrict the unauthenticated devices from connecting to

the network via IoT gateway so that an adversary is unable

to connect to a secured application or communicate with

other devices by exploiting a spoofed ID of a trusted device.

Continuously monitoring cross-layer data transmission is to

be performed in order to detect malicious activities before

and during connection establishment. In the next section,

we present how devices can be identified based on their

transmission signature.

III. SYSTEM ARCHITECTURE

The BF-IoT works by continuously sniffing transmission

characteristics of devices from multiple protocol layers in

BLE. The BF-IoT employs two-phase authentication mecha-

nisms: before connection establishment and during connection

establishment. Before discussing the actual implementation,

this section provides the overview of the BF-IoT system

components and its characteristics.

A. System components

1) IoT gateway: IoT gateway is the entity that both connects

to the cloud and the peripheral devices. The major function

of IoT gateway is to establish links with peripheral devices

for collecting data and then send to the cloud for the usage of

applications. IoT gateway can be a smartphone, smart router

or a hub like the Samsung SmartThings at a smart-home.

2) Gatekeeper: Gatekeeper is a software running and de-

ployed inside IoT gateway. It monitors all the packets from

multiple protocol layers in BLE and sends the required and

compressed data to the cloud in a specific format after pre-

processing. Gatekeeper also receives the authenticate decision

from the cloud and blacklist or whitelist devices and grants

network access permissions to devices.

3) Fingerprinting engine: Fingerprinting engine is the key

component in BF-IoT and deployed in the cloud. It analyzes

the received transmission fingerprints to determine the authen-

ticity of the source device. The decision process is based on the

recorded fingerprints in the whitelist and blacklist databases.

The ultimate decision is then delivered to the corresponding

IoT gateway to execute.

4) Whitelist and blacklist database: In BF-IoT , we create a

database to store the fingerprints of whitelisted and blacklisted

devices which are generated by the fingerprinting engine. In

our framework, whitelisted devices are the comparably small

list of trusted and secured devices that a network frequently

connects. A device is enlisted as a blacklisted device when it

does not show any fingerprint matching with the whitelisted

devices. Note that, blacklisted devices are not known, and we

build their fingerprints database online/runtime. We use this

fingerprints database of blacklisted devices for avoiding later

spoofing attack by the known compromised devices and refrain

any connection with those devices.

255



Fig. 1: BF-IoT system architecture

B. System design

The architecture of BF-IoT is illustrated in Figure 1. The

fingerprinting procedures are described as following:

(1) Preliminary fingerprints generated: For each newly in-

stalled device, the BF-IoT trusts the device that has

been granted access by the network operator. BF-IoT
keeps sniffing the link layer and service layers packets

and extracts the corresponding features to generate the

fingerprints for the trusted device. Then the device is

added to the whitelist and its fingerprints are also stored

in the cloud. The fingerprints are subsequently leveraged

to authenticate the device for the future connection.

(2) First phase authentication: BF-IoT provides two-phase

procedure to enhance the authentication mechanism. The

first phase is executed before link establishment. The Gate-

keeper at the gateway keeps monitoring the advertisement

packets from the link layer and obtains the first phase

fingerprints of the device. Fingerprinting engine checks

the fingerprints with the whitelist database. If it finds a

match with an entry in the whitelist, the Gatekeeper allows

the device to advance to the second phase for further

authentication. Otherwise, the Gatekeeper forestalls all

the connections with that device and adds the device’s

fingerprints to the blacklist if it is not on the blacklist yet.

(3) Second phase authentication: In the second phase, the

Gatekeeper attempts to establish a connection with the

peripheral device. It monitors all the service layer packets

received during the procedure. Fingerprinting engine com-

putes the service layer fingerprints and compares with the

whitelist database for further authentication. If the finger-

prints of the device match with an entry in the whitelist,

the device is authenticated and allowed to establish a

connection with the IoT gateway for data transmission.

Otherwise, the device is blocked and refrained from any

further connection with IoT gateway. Meanwhile, the de-

vice is added to the blacklist. The fingerprints of devices in

the blacklist are utilized for identifying the untrustworthy

devices that frequently attempt to establish the link with

the IoT gateway in the future. The abnormal behavior

of blacklisted devices could be reported to the network

operator.

(4) Spoofing attacks: If a malicious device imitates the be-

haviors of trusted devices and attempts to connect to the

IoT gateway and makes malicious activities to the IoT

networks, it has to bypass dual authentication procedures.

The extracted features set from multiple layer packets in

BLE are unique and hard for an attacker to mimic all the

behaviors that the trusted devices perform before. If any

malicious behavior is detected, an appropriate alert is sent

to the IoT gateway and cloud. IoT gateway will prevent the

device from connecting the networks, and the connections

with the corresponding applications will be terminated off

immediately. The device’s fingerprints will be recorded in

the blacklist for future authentication.

C. System characteristics

In summary, BF-IoT poses the following characteristics:

i) It guarantees the authenticity of a device in a two-phase

mechanism: before link establishment and during the

connection establishment.

ii) It uses cross-layer traffic characteristics in BLE to en-

hance the accuracy of fingerprinting devices, and then

detect insecure or compromised devices in the network.

iii) The authentication mechanism can be easily integrated

into any existing IoT framework and allows vendors to

blacklist and whitelist devices from particular actions or

network permissions.

iv) The network-flow based approach can authenticate de-

vices in a fast and real-time manner with lower overhead.

IV. BLE DEVICE AUTHENTICATION

In this section, we study the BLE protocol stack and

investigate the unique cross-layer features set in BLE. A

machine learning based classifier is used for fingerprinting and

therefore authenticating the devices. The proposed approach

can distinguish between different devices (e.g., a smart bulb

and a Fitbit) and between same devices from two different

manufacturers, but it is somewhat difficult to distinguish two

devices of the same type from the same manufacturer.

Actually, the adversary model we are considering is that

attacker attempts to use the customized hardware to imitate

the behaviors of trusted devices and bypass the two-phase

authenticate mechanism to gain trust from the IoT networks.

The proposed approach may not be able to detect the attacker

who purchases the same type of device from the same manu-

facturer and use exactly the same device hardware to execute

spoofing attack. In our scenario, the attacker can learn and

imitate the behavior of trusted devices. But it is challenging for

the attacker to guess and infer what the exact device hardware

it is among billions of IoT devices in the world. Our goal is to

find the unique fingerprinting features that are hard to mimic

for the attacker, which is more practical in the real world. In

the future, we will incorporate the application layer data into
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Fig. 2: Advertising event with only advertising PDUs

our framework to distinguish two devices of the same type

from the same manufacturer.

A. BLE overview
BLE is a wireless technology specially designed for low

power devices that operate in the 2.4GHz ISM band [5]. In

this band, BLE has 40 channels, where each channel is 2

MHz wide, and they are numbered from 0 to 39. BLE uses

3 channels (37, 38 and 39) for advertisement, where BLE

peripheral devices transmit advertisement packets to announce

their presence and establish connections with the central

devices. The rest of the channels are used for data transmission

between peripheral and central devices. Note that, BLE uses

frequency hopping mechanism to transmit data packets at

different channels by using a pseudo-random sequence that

is known to both peripheral and central devices. BLE is a

connection-oriented peer-to-peer communication technology

where peripheral and central devices communicate in a peer-

to-peer fashion. BLE protocol stack is designed to support such

peer-to-peer communication. In the following subsections, we

present transmission feature extraction from multiple layers in

BLE protocol stack.

B. Link layer feature
Peripheral devices may stay in sleep mode in the most time

so as to save energy. But they must periodically broadcast

advertisement packets for being able to discover once data

transmission is required. IoT devices send the advertising

packets with distinct patterns. Upon discovering a peripheral

device, a central device decides whether to initiate a connec-

tion for data transmission.
The advertisement event is the smallest unit that is used for

transmitting advertising packets. In Figure 2, three PDUs are

sent on three advertising channels within one advertisement

event. The advertising event could be terminated after the

last advertising PDU is sent or the advertiser may close an

event earlier to accommodate other functionality. The time

(T advEvent) between the start of two consecutive advertising

events is computed as follows for each advertising event:

T advEvent = adv Interval + adv Delay

The adv Interval is an integer multiple of 0.625 ms in the

range of 20 ms to 10.24 s. The adv Delay is a pseudo-random

value with a range of 0 ms to 10 ms generated by the link

layer for each advertising event.
Feature extraction: The advertising patterns from IoT de-

vices are distinct and accommodate to hardware and software-

based characteristics. 1) Advertising event interval: devices are

required to transmit data in different frequency based on their

hardware and functionalities characteristics. Small advertising

event interval means the central device can fast discover them

once the data transmission is requested. Some devices that

synchronize data with central device few times a day may need

relatively large advertising event interval so as to save energy.

2) Advertising channel sequence: Advertising PDUs are sent

via three advertising channels within each advertising event.

There are total six possible combinations of channel sequence:

(37, 38, 39), (37, 39, 38), etc. IoT devices select one of the

combinations to transmit advertising packets in round-robin

fashion which decreases the probability of packet transmission

collision from multiple devices in the meantime. 3) Advertising
delay distribution: In the typical IoT environment, there are

many IoT devices that periodically send advertising packets

in the meantime. In order to minimize the possibilities of

transmission collision in the same channel, the advertising

events are perturbed in time using the adv Delay. The random

adv Delay can be generated by using different probability

distributions that IoT devices select.

The adverting event interval, channel sequence, and random

delay distribution constitute the unique advertising pattern

for different IoT devices. Such pattern can be utilized as

the fingerprints of the first phase device authentication. The

first phase authentication is not a one-off but a continuous

procedure. BF-IoT keeps monitoring the link layer packets of

ambient devices and compares their advertising patterns with

the fingerprints recorded in the database. If the device passes

the preliminary first phase authentication, it is allowed to enter

into the second phase authentication procedures in order to

establish a trusted data transmission link with central device.

C. ATT/GATT layer feature

In BLE protocol stack, the ATT layer allows a device to

expose certain pieces of data or attributes to another peer

device or central device. In typical IoT networks, peripheral

devices usually sense data and send to the central device to

provide associated services and functionalities. The state or

data is exposed as one or more values called attributes. All

attributes have handles, which are used to address an individual

attribute. The attributes also have a type described by a

universally unique identifier (UUID). The UUID determines

what the attribute value means. The length of attributes varies

from 0 to 512 bytes.

The ATT layer protocol manages discovering, reading, and

writing attributes on a peer device. The ATT defines the

communication protocol between two devices playing the roles

of server and client respectively on top of a dedicated L2CAP

channel. The server, usually a peripheral device, maintains the

data as one or more attributes and exposes them to a client.

The client, usually a central device, fetches the attributes using

the handle from one or more servers. The client can access the

server’s attributes by sending requests, which trigger response

messages from the server.

The GATT defines a framework that uses the ATT for

the discovery of services, and the exchange of characteristics
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TABLE I: Attribute Protocol PDUs

Function
Category

Related Operation
Attribute
Opcode

Find Information: Find Information Request/Response 0x04/0x05
Find By Type Value Request/Response 0x06/0x07

Read Attributes: Read By Type Request/Response 0x08/0x09
Read Request/Response 0x0A/0x0B
Read Multiple Request/Response 0x0E/0x0F
Read by Group Type Request/Response 0x10/0x11

Write Attributes: Write Request/Response 0x12/0x13
Write command 0x52

Server Initiated: Handle Value Notification 0x1B
Handle Value Indication/Confirmation 0x1D/0x13

Error Handling: Error Response 0x01

between peripheral and central devices. A characteristic is a set

of data which includes a value and properties. Characteristics

are used to expose and exchange data between paired devices.

Control information can also be formatted as a characteristic

passing from central device to peripheral device.

IoT devices may provide different services based on their

functionalities. During link establishment, the central device

sends requests to probe the services list of device. We use

{S1(C1, ..., Ci), S2(C1, ..., Cj), ..., Sm(C1, ..., Ck)} to denote

the services list with corresponding characteristics. For in-

stance, a smart watch can provide multiple services, such as

temperature service and time service.

Feature extraction: After investigating the ATT/GATT layer

protocol, we determine the unique features set for the fin-

gerprinting. During connection establishment, the peripheral

device has to communicate with the central device to ex-

change the device state and link parameters. The transmitted

ATT/GATT packets also contain distinctive attributes and

services list depending on the functionalities of peripheral

devices. Assume the exchanged packets sequence Υ is de-

noted by {P 1
μ , P

2
ν , P

3
μ , P

4
ν , ..., P

i
μ, P

i+1
ν }, where Pμ denotes

the packet sent by the central device and Pν represents the

packet sent by the peripheral device. Pμ and Pν can be a

request packet or response packet, and both of them are exactly

timestamped. Table I provides the PDU type pairs used in

ATT/GATT layer protocol. Our goal is to extract the features

that are related to peripheral devices and can be used for

fingerprinting.

Due to the differences in hardware, driver, and application

software, the transmitted packets sequences for link establish-

ment are different among IoT devices. The packet size, packet
type, total packets transmitted, number of packets transmitted
for different type of function, burst rate, burst time point,
etc. in exchanged packets sequence Υ pose unique session-

level pattern for different IoT devices. Moreover, we filter the

packets that is requested by peripheral device and responded

by central device and build the response time sequence

{R1
t1, R

2
t1, R

3
t2, R

4
t2, ..., R

i
tj , R

i+1
tj }, where Ritj represents the

response time of ith packet pair (Pμ, Pν) requested by central

device and responded by peripheral device, and tj represent

one of the request/response type pair in Table I. The response

time varies with request type, device processing power, and

other device-specific characteristics. Therefore, IoT device has

the unique pattern for response time sequence which could be

utilized to fingerprint the devices.

During link establishment, some peripheral devices peri-

odically send packets back to central devices in a proactive

way without the request of central devices. According to the

BLE specification, a peripheral device can send two types

of unsolicited messages that contain attributes: notifications,

which are unconfirmed; and indications, which require the

client to send a confirmation. The unsolicited packets sequence

can be denoted as (P 1
ψ, P

2
ψ, ..., P

i
ψ). Some peripheral devices

may send one unsolicited packet at every interval. The interval

of sending such packets also differs with devices. Other

peripheral devices may periodically send consecutive packets

in a burst way. These characteristics also constitute the unique

pattern of unsolicited packets sequence which can also be used

for fingerprinting devices.

D. Classifier for device fingerprinting

After exploring the features, we design a machine learning

based model to implement our fingerprinting mechanism. We

use {f1, f2, .., fn} to denote the features we extract from

BLE-based IoT devices. {E1, E2, ..., Em} represents a set of

authorized IoT devices in the whitelist database. We have two

data sets: training data set Dtrain: {d1, d2, ..., dp} and test

data set Dtest: {d′1, d′2, ..., d′q}. Each date subset di or d′i is

generated only by one device that contains all the n features.

In training data set Dtrain, we know that each data subset is

generated from which device. Our machine learning task is to

map any data subset d′i in Dtest to a specific device Ej that

most probably generates it. We treat this as a classic multi-

class classification problem in machine learning.

We use Random Forest [22], [23] supervised machine learn-

ing algorithm for model training. Random Forest is a classical

classification algorithm that combines decision tree induction

with ensemble learning. We use the dataset Dtrain to train

a classifier C, which can capture the characteristics of every

authorized device type. Then we use the classifier C to classify

the new unlabeled data in Dtest. Classifier C can output a

vector of posterior probabilities Pd′i = {pE1
, pE2

, ..., pEm
}.

Each probability pEi
denotes the likelihood that the data is

produced by device Ei. If there exits any pEi is larger than

the predefined classification threshold θ, then we think the data

is produced from authorized device Ei. Otherwise, the data set

is considered as an ‘unknown’ device, which may be added

to the blacklist. The classifier C can be continuously applied

to new unlabeled data for device fingerprinting.

E. Two-phase device authentication

In the first-phase, BF-IoT continuously monitors the sniffed

packets sequence in the environment and computes their

advertising patterns {PT1, ..., PTi} for devices {D1, ..., Di}
respectively in the whitelist. By matching the patterns that

are stored in the database, BF-IoT can detect if the device

is deviating from the right path, and then can determine if

the device is in a healthy state or is being compromised.

Assume the adversary sniffs the advertising packets sequence
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from device Di and learns the advertising pattern. Then the

adversary forges the same MAC address of the device and

attempts to bypass the first-phase authentication via mimicking

the device’s behavior and sending the advertising packets using

the same pattern. Actually, it is arduous for the adversary

to exactly mimic the advertising pattern even if it learns the

pattern. Usually, the device has its own clock drift pattern due

to the hardware difference of crystal oscillator. Even for the

identical devices from the same manufacturer, there is still a

subtle change in the manufacturing procedure. Therefore, the

adversary may unwittingly stray from the primitive advertising

pattern. On the other hand, BF-IoT monitors the devices’ state

in a real-time way, if two devices almost behave the same

way, BF-IoT can effectively detect them and stop the attacks.

Furthermore, the first-phase is pre-connection authentication.

As an auxiliary authentication of the second-phase, it makes

no difference if the adversary ultimately bypasses the first-

phase authentication. Then the adversary has to think how to

pass the second-phase authentication.

The adversary cannot do any malicious activities although it

passes the first-phase authentication. It has to continue to pass

the second-phase thereby establishing a real link with a central

device. We cannot prevent the adversary from sniffing the

ATT/GATT service layer packets, and the adversary can also

learn the pattern that how the trusted peripheral communicates

with the central device. Here the communication scheme is

not a secret. But even if the adversary knows the secret, it is

hard to imitate the time series based packets sequence. For

the read/write requests, the peripheral devices have different

response time pattern due to both the hardware and driver

based characteristics. The request handle way and process

power are diverse among different devices, which constitutes

the unique pattern of time-stamped packets sequence. The

adversary has to figure out the detailed hardware and driver

information and also exactly clone the way that requests are

processed if it wants to generate the same fingerprints. But it

is challenging in the real world.

The only way that can bypass the second-phase authentica-

tion is that the adversary exactly uses the same device from

the same manufacturer, which could generate the same pattern.

Then the adversary transmits the identical packet sequence

following the same time series but injects the malicious content

inside the packet. However, there are millions of IoT devices

deployed in the world. By sniffing the packets, the adversary

cannot exactly infer the device information and purchase the

same device in the market. Therefore, we do not seek to

identify two devices from the same type and manufacturer

in this paper. Ultimately, if the device passes the two-phase

authentication, it is allowed to establish a trusted link with

central device and begins to transmit the real data. Otherwise,

it will be prevented from connection and added to the blacklist.

V. EVALUATION

A. System implementation

In order to validate the effectiveness of our secure IoT

communication framework, we build a customized system

Fig. 3: BF-IoT system platform

that consists of a Raspberry Pi 3 and two Ubertooths [24].

Raspberry Pi 3 is built on the latest Broadcom 2837 ARMv8

64 bit processor. Raspberry Pi 3 supports more powerful

external USB devices and comes with built-in WiFi and BLE

connectivity. Ubertooth is an open source wireless platform

suitable for BLE development. Ubertooth is equipped with

CC2400, a single-chip 2.4 GHz RF transceiver. Ubertooth has

a capable BLE sniffer and can sniff data traffic from multiple

layers in BLE.
The Raspberry Pi 3 works as an IoT gateway that communi-

cates with the cloud and peripheral devices. Two Ubertooths

are connected to the gateway via USB, which is displayed

in Figure 3. The processor (LPC175x) in Ubertooth decodes

the raw data received from the CC2400 RF transceiver and

sends to the queue in USB buffer. Then Raspberry Pi 3 reads

packets from the queue in the USB buffer. In order to exactly

capture the time that Ubertooth receives packets, we modify

the Ubertooth firmware code [25] to time-stamp the packet

with 100 ns resolution once the preamble of the packet is

detected.
We implement the functionalities of IoT gateway in the

Raspberry Pi 3. The IoT gateway collects the data from

peripheral devices and extracts and compresses the required

data and delivers them to the cloud. IoT gateway also works

as the Gatekeeper to control the network access permission

of the devices. The IoT gateway is connected with a variety

of commercial IoT devices. The devices are comprised of

different types of devices, such as smart bulb, smart watch,

heart rate monitor, etc, and also the same type of devices from

different manufacturers, such as smart bulbs from Avea and

iLink companies. We usually have two for each device type.

This diversity of devices can help us thoroughly examine the

performance of our fingerprinting mechanism.

B. Performance analysis of cross-layers features
1) Link layer: We use Ubertooth to capture BLE advertising

packets in the link layer. The Ubertooth is responsible for

capturing BLE advertising packets from the link layer. The

Ubertooth sniffs the advertising packets on channel 37, 38

and 39. The link layer packets are sniffed for the ambient

IoT devices and used to constitute their advertising patterns.

An advertising event can be one of the following types:

connectable undirected event, connectable directed event, non-

connectable undirected event and scannable undirected event.

For each device, we run our system for five days and collect
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(b) Fitbit Alta
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(c) Smart bulb Avea

Fig. 4: Traffic pattern for duplicated session establishments.
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Fig. 5: Features from the packets sequence of session establishments in ATT/GATT layers.

TABLE II: Advertisement interval for different devices

Device name
Advertising event

interval (s)
Standard deviation

Fitbit Alta 1: 1.29002800418 0.00104526798899
Fitbit Alta 2: 1.28996685678 0.00103673292851
Smart bulb Avea: 0.104050761475 0.00218257087699
Smart bulb iLink: 0.0814239081008 2.55710826474e-05
Smart bulb LightStory: 0.497569043441 6.36738129605e-05
Smart plug 1: 0.103930876001 0.00217028685053
Smart plug 2: 0.104025252545 0.00215880616127
Garmin: 1.28997122261 0.00294536429203
Ambient device 1: 0.183192135081 5.53702230595e-06
Ambient device 2: 0.0315230156198 0.00289863032782

a large number of experimental data about advertising pack-

ets. By observing the advertising packets, most IoT devices

adopt connectable undirected advertising event type, and they

transmit advertising packets ADV IND PDU.

Table II exhibits the measured advertising event interval

from different devices. According to the table, we can distin-

guish different types of devices via observing the adverting

interval, such as sports bracelet (Fitbit Alta and Garmin)

with smart bulb (Avea, iLink, and Lighstory). Concerning the

same type of devices, it is still able to show the recognizable

difference, which can be observed for three smart bulbs from

different manufacturers Avea, iLink, and LightStory. Even for

the two devices of the same model, there is still a subtle

difference that we can leverage to distinguish them, which

is exposed from two Fitbit Altas and Smart Plugs. Therefore,

the feature in the advertising pattern can be regarded as part

of fingerprints for the first phase authentication.

2) ATT/GATT layer: Based on the features extracted from

the ATT/GATT service layer, we have to precisely collect

all the transmitted data packets type and exactly record their

timestamps. Applications are written and installed in the IoT

gateway to communicate with the targeted BLE devices. We

principally collect the session-level network traffic from link

establishment stage to authenticate the IoT devices in the

second phase. The reason is that all types of IoT devices may

have different functionalities but must have the same session

establishment activity. For instance, smart bulbs usually have

the on-off action that we can operate, but smartwatches do not

have such function. We seek to adopt the common activities

across all IoT devices to extract the featured data to do fin-

gerprinting. For each peripheral device, the central device(IoT

gateway) establishes a connection with it via the corresponding

installed the application, waits for approximately 20s and does

not do any additional action, and disconnects the connection

with the peripheral device. We repeat this process 50 times

and collect all the packets transmitted. After collecting the

data for all IoT devices, we use the extracted featured data

and implement and validate our fingerprinting mechanism.

Figure 4 exposes the traffic patterns of Heart Rate Monitor,

Fitbit Alta, and Smart Bulb Avea which are extracted from

the exchanged packets sequence. As shown in the figure, the

traffic patterns are obviously distinct from each other. The

number of packets sent, average throughput and burst rate

in Figure 5 demonstrate that different devices have unique

transmitted packet sequence, which can be proved as a good

feature of fingerprinting. After analyzing the response time

sequence of requests, we find that the IoT devices have the
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Fig. 6: Distribution of response time for read and write operations: (a) Read by group type request (Opcode: 0x10), (b) Read

by type request (Opcode: 0x08), (c) Find information request (Opcode: 0x04), (d) Read request (Opcode: 0x0A), (e) Write

request (Opcode: 0x12).
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Fig. 7: Response time pattern for read and write requests.

diverse response time of requests due to the different request

handle way and device processing power, which is manifested

in Figure 6. Even for the same type of requests from the

same device, the response time is also showed to be different

due to the varying content of response request. Compared to

read requests, the response time of write requests can better

reflect the device characteristics. Figure 7 shows that CDF of

response time for overall read and write requests. The obvious

different distributions of request response time can be observed

in the figure, which can constitute the unique response time

sequence of requests used for the fingerprinting of devices.

C. Fingerprinting performance

Conclusively, we combine all the mentioned features in

the link and ATT/GATT service layers and use the machine

learning model proposed in Section IV-D to fingerprint the

IoT devices we have. The BF-IoT system was running for

several days and collected enough data to train the model and

generated the fingerprints for the trusted devices. Then we
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Fig. 8: (a) Time cost for the second phase authentication. (b)

Success rate of device fingerprinting.

added 80% of the devices and their corresponding fingerprints

to the whitelist and added the rest of 20% devices and

their fingerprints to the blacklist. Whereafter, we deployed

the IoT devices to the environment and let them attempt to

establish data links with the IoT gateway. The IoT gateway

sniffed the cross-layer traffic in a real-time way and tried

to authenticate the devices. Figure 8(b) shows the accuracy

that we successfully authenticated the devices in the whitelist

and blocked the devices in the blacklist. BF-IoT can achieve

approximately 100% fingerprinting accuracy for all current

IoT devices, which demonstrates the efficiency of our finger-

printing mechanism. Figure 8(a) shows the time cost of our

authentication mechanism, which is mostly controlled within

6 seconds. Furthermore, our authentication is a real network-

flow based mechanism which does not request additional cost.

VI. RELATED WORKS

The security issues are major challenges in IoT networks

due to its massive deployment. The IoT networks are much

261



vulnerable to spoofing attacks. A malicious device can forge

the MAC or other network identities of a trusted device to

either compromise IoT device or injects false or tampered

information into the network. So the technique to identify IoT

devices based on network identifiers such as MAC address

is impractical. Some researchers investigated the transmission

characteristics as a unique identification for wireless devices.

Radio frequency identification (RFID) is one of the earliest use

cases of using wireless transmission characteristics to finger-

print devices. [26] exploits the fact that an RFID tag presents a

unique frequency response for different frequencies. Physical

properties of these tags can be used to do fingerprinting

with minimum power response. But it requires sophisticated

hardware and massive digital signal processing which can not

be done by commodity devices. [10] uses the link layer data

transmission characteristic to fingerprint for WiFi devices. This

approach statistically analyzes the usual packet transmission

characteristics of different devices. But these WiFi-related

approaches do not target on BLE transmission characteristics

and may not be applicable for BLE device fingerprinting.

Hardware-based fingerprinting mechanisms is also investi-

gated in IoT networks. Physical unclonable function [27] can

be used to uniquely identify a device. The time skew induced

by chip characteristics is another approach to identify different

types of devices. BlueID [28] uses internal clock skew to

classify devices Since the internal clock of each device is

hard to forge, devices can not spoof this identity. Actually,

these approaches mostly cost massive time to fingerprint the

devices. This constraint prevents these techniques to be used in

cases where fingerprinting is needed in a timely manner such

as authenticating with a new device. In our work, we aim

at using cross-layer feature based fingerprinting scheme that

attains higher accuracy while requiring significantly smaller

dataset obtained in a relatively small amount of time.

VII. CONCLUSION

This paper proposes BF-IoT , a novel defense framework

against spoofing attacks in IoT networks. Unlike the conven-

tional device ID based security framework, BF-IoT augments

the authentication and device identification using unclonable

transmission characteristics. It identifies IoT devices using

their observable cross-layer transmission characteristics. The

devices are screened in a twofold manner when connecting a

secured application. Before establishing a connection, BF-IoT
observes link layer transmission signatures and checks them

with a global blacklist database for possible spoofing attacks.

During data connection, BF-IoT monitors service layer data

transmissions to find anomalies and intrusive behaviors. To

evaluate the performance, we gathered data from some BLE

based IoT devices in multiple network layers and trained the

multi-class classifier. The experiments show that BF-IoT is

able to fingerprint each device uniquely and detect identity

spoofing. In the future, we plan to extend our framework to

fingerprint devices in any of 6LoWPAN standards such as

ZigBee, WiFi, and conventional Bluetooth.
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