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Abstract—The exponential growth of mobile devices has raised
concerns about sensitive data leakage. In this paper, we make
the first attempt to identify suspicious location-related HTTP
transmission flows from the user’s perspective, by answering
the question: Is the transmission user-intended? In contrast to
previous network-level detection schemes that mainly rely on
a given set of suspicious hostnames, our approach can better
adapt to the fast growth of app market and the constantly
evolving leakage patterns. On the other hand, compared to
existing system-level detection schemes built upon program taint
analysis, where all sensitive transmissions as treated as illegal,
our approach better meets the user needs and is easier to deploy.
In particular, our proof-of-concept implementation (FlowIntent)
captures sensitive transmissions missed by TaintDroid, the state-
of-the-art dynamic taint analysis system on Android platforms.
Evaluation using 1002 location sharing instances collected from
more than 20,000 apps shows that our approach achieves about
91% accuracy in detecting illegitimate location transmissions.

I. INTRODUCTION

Smart phones are becoming indispensable to many of us,
thanks to the rich functionalities provided by a large number
of mobile applications (or apps, for short). For instance, more
than 1,500,000 apps can be downloaded from Google Play,
the major Android application market in the U.S. [9]. The
sheer number of these apps, however, makes it challenging
to understand their behavior and control their quality before
publishing. Given that many of these apps can access sensitive
user data, such as location, contact information and media
files, they can potentially share these data in an unintended
way, which compromises the user’s privacy. Therefore, it is
important to design an automatic framework to detect privacy
leakage caused by mobile apps.

In this paper, we focus on detecting privacy leaking trans-
missions from authentic apps in popular Android markets.
Compared to malware, authentic apps still perform their
proposed functionality. However, they may also put users at
risk by behaving in a user-unexpected way, such as stealthily
sending user’s private information out for purposes such as
analytics, advertising, cross-application profiling, and social-
computing [31]. To address this critical problem, we take into
account user intention and define illegal flows as follows:
a transmission flow is illegitimate if given the app-level
context, the user considers the transmission is not required
for its functionalities. The app-level context includes both
static features that can be obtained without launching the
app such as app name and app description, and dynamic
features acquired during runtime such as the user interface
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Fig. 1: Two UI windows of running alarm clock apps

(UI) that a user is interacting with. Static features provide
the general information about the main functionality of an
app to help label its transmissions. For example, a location-
sharing flow generated from an alarm clock app is likely illegal
since alarm apps typically do not need location information to
fulfill their functionality. Dynamic features are also necessary
to distinguish between apps of similar functionality, and the
different contexts of the same app. Figure 1 illustrates two UI
windows of running alarm clock apps. The location-sharing
flows generated under the first window have a higher chance
of being legitimate due to the weather forecast related symbols.

Our work is the first attempt to identify the above mentioned
illegal transmissions with network traffic monitoring. Com-
pared with system-level solutions, our approach is easier to
deploy and incurs less overhead at the user side. For instance,
we can deploy it at an Intrusion Detection System (IDS) or
an access point, and utilize existing network infrastructures
to monitor a large number of traffic flows generated by
different apps and devices, therefore removes the user-side
overhead [27]. Moreover, as we show later in the paper,
through a proper modeling of user intention, our approach
can potentially capture illegal transmissions missed by system-
level approaches.

The state-of-the-art network traffic based approach [29]
relies on existing lists of malicious hostnames, such as
VirusTotal [8]. However, generating such lists often requires
significant human effort, which is especially challenging for
mobile platforms since a large number of apps are normal apps
that only leak private data occasionally. Moreover, manually



generated lists of ad, analytic and malicious hostnames can
barely keep pace with the fast growth of app market, where
new hostnames are continuously mushrooming. Further, it is
often difficult to tell even for humans whether a flow is tar-
geting an unexpected destination, simply from the hostname.
This is especially true when the illegal flows share the same
hostnames with the legal flows. Through a proper modeling
of user intention, our approach largely relaxes the dependence
on human intervention, which can potentially lead to fast
generation of signatures for new traffic patterns.

In this paper, we present FlowIntent, a proof-of-concept sys-
tem that generates signatures for identifying user-unintended
leakage in HTTP flows. FlowIntent focuses on location related
leakage currently, but our approach can potentially be extended
to detect other types of privacy leakage as well. Our general
approach works as follows. From the set of apps crawled from
app markets, we first identify the subset of apps that share
locations. Those apps are then automatically launched and
executed for a short period of time, with corresponding user
interface and data traffic recorded. Each 〈app, window〉 pair
is then treated as an app-level context of a running instance,
and is labeled as either “expected” or “unexpected” in terms
of location transmission, based on the visible app meta-data
including app name, description and the UI for the running
period. These data are used to train a user intention model,
which helps to classify new running instances automatically.
All the location-sharing HTTP flows generated by “unexpect-
ed” instances are then labeled as illegal flows, while all the
location sharing flows from “expected” instances are labeled
as legal flows.

We note that some flows from “expected” instances may
actually target a malicious receiver, and should be classified
as illegal transmissions, even if the type of sensitive data
they carry does not violate the context. We leverage existing
hostname lists of ad and analytics servers to identify (a part
of) illegal flows from the “expected” instances, so that our
approach can be easily made automatic. We get the ground
truth for all the flows manually in the testing stage. Our
testing results show that even if the training data may contain
some mislabelled flows, supervised learning can still achieve
accurate results through user intention modeling and existing
hostname lists, which indicates that the mislabelled traffic is
limited and does not have a significant impact on the classi-
fication result. We have further implemented an unsupervised
learning approach that only relies on the illegitimate traffic
generated by “unexpected” instances, which is less accurate
than the supervised approach as expected, but incurs less
labeling overhead. FlowIntent implements both approaches,
which enables the administrators to switch between them
to meet their specific requirements. The network signatures
generated by FlowIntent can then be deployed at IDS to detect
user-unintended location-sharing HTTP flows and warn the
corresponding users.

We emphasize that the objective of FlowIntent is to identify
privacy leaking flows instead of leaking apps. The app-level
information is only used to train the user intention model,

and the network-level signatures generated by FlowIntent are
purely based on the characteristics of HTTP flows. Therefore,
IDS does not need to know which app has generated a flow
in order to identify privacy leakage in the flow. Our work
is orthogonal to existing works that focus on learning app
identity from network traffic such as NetworkProfiler [14].

We have evaluated FlowIntent on location sharing flows
from 1002 instances extracted from more than 20,000 apps
crawled from Android app markets. Our main contributions
can be summarized as follows.

• We propose a more accurate definition of privacy leakage
in mobile platforms that combines both app level behavior
(e.g, does the user intend to share the location informa-
tion) and flow level behavior (e.g., where the location
information is sent to).

• We develop a lightweight approach for detecting privacy
leakage in mobile platforms from network traffic data.
Our approach is easy to deploy and can adapt to the
constantly evolving leakage patterns.

• Our approach achieves about 91% accuracy on the 1002
location leaking instances. Moreover, our learning model
is able to identify location sharing flows that are missed
by TaintDroid [17], the state-of-the-art dynamic taint
analysis tool for Android platforms, which indicates the
benefit of considering traffic level features.

The rest of the paper is organized as follows. We present
related work in Section II, followed by an overview of the
system in Section III . We discuss our user intention modeling
and traffic learning schemes in Sections IV and V, respectively.
After presenting the evaluation results in Section VI, we
conclude our paper in Section VII.

II. RELATED WORK

Program taint analysis: Static and dynamic program taint
analysis of apps focus on identifying whether sensitive data
leaves the user device. TaintDroid [17] tries to resolve privacy
leaking by modeling the behavior of app through a dynamic
analysis system, whereas FlowDroid [10] and IccTA [24]
adopt static approach to model the app behavior through byte
code inspection. They treat all sensitive transmission as illegal,
so that suffer from high false positive rate.
User intention modeling: AppIntent [33] first proposes the
problem of the mismatch between user intention and ap-
p behavior by integrating symbolic execution, static taint
analysis and dynamic analysis. However, this work is not
fully automatic since they require users to manually specify
their expectations. Whyper [26] and AotuCog [28] model
user expectation through app’s description and check it with
permissions and API. Gorla et al. follows the same idea
but replaces permissions to API calls [19]. We argue that
both permissions and API calls are coarse grained and do
not reflect real run-time behaviors. AsDroid [21] examines
mismatch between keywords on limited visible buttons and
underlying codes. Their static analysis lacks enough contextual
information to present more accurate results and the high
analysis overhead makes it impossible to be deployed at



Fig. 2: FlowIntent System Architecture

devices. Such drawbacks render it impractical for use from
the user’s perspective.
Network traffic based approaches: Another research thread
that is relevant to our work is internet traffic monitoring,
which is used for network traffic classification and determining
different protocols and applications being used by the users. As
discussed in [23] (and references therein), traffic monitoring
and classification methods can be used for anomaly detec-
tion [20], location categorization [15] and also for malware
detection. A number of research works have focused on
detection of malicious traffic from network data (or specifically
HTTP traces and URLs). These works have used a number
of different approaches, like clustering [27] or keyword-based
lexical features [25], [29]. However, in our work, we are
focused on automatically identifying privacy disclosure caused
by the authentic apps with the help of user intention modeling,
instead of identifying malicious traffic generated from certain
malware families.

III. SYSTEM OVERVIEW

In this section, we present a high-level overview of our
approach for detecting user unintended sensitive data transmis-
sions. We focus on location transmissions since it is one of the
most common types of privacy leakage on mobile platforms
[32]. However, we expect that our general approach can be
extended to other types of privacy leakage.

Figure 2 gives an overview of our approach, which works
as follows:

• Data Collection: From the set of apps crawled from
Android app markets, we identify the subset of apps that
share locations with the help of dynamic taint analysis,
and collect running instances from them. For each run-
ning instance, we store its app-level contextual data, along
with the captured location-sharing traffic flows.

• User Intention Modeling: We build an user intention
model for location sharing instances using supervised
learning (Section IV). A location sharing instance is
labeled “unexpected” if it is not supposed to send location
data according to its app-level context, and is labeled
“expected” otherwise. The purpose of user intention
modeling is to help in identifying sets of legitimate and

illegitimate flows to build the traffic models in the next
step.

• Traffic Classification: We then apply machine learn-
ing to build traffic models for location sharing trans-
missions, using both statistical and lexical features in
traffic data (Section V). Two learning approaches are
considered. First, we use supervised learning to classify
each flow into legitimate location transmissions, illegal
location transmissions, and non-location transmissions.
Supervised learning provides high accuracy and a good
characterization of location sharing behavior of mobile
apps, but also incurs high overhead as it requires more
human intervention to label the flows in the training stage.
Second, we use unsupervised learning to build a model
purely based on illegitimate flows, and treat both benign
location transmission and non-location transmissions as
outliers. Although its prediction results are less accurate
compared with the supervised approach, unsupervised
learning only requires a set of illegitimate flows, reducing
human intervention.

It is important to note that for traffic modeling, only network
traffic data is used in the testing stage, while user intention
modeling and app-level information are only applied in the
training stage. Therefore, our approach can be implemented at
IDS to remove user-side overhead, while still achieving good
performance by taking advantage of user intentions modeling.

IV. USER INTENTION MODELING

As we discussed before, it is important to understand
user intention to distinguish between benign and illegitimate
location sharing behavior. A proper modeling of user intention,
however, is challenging. Intuitively, a user’s intention for a spe-
cific transmission of sensitive data can be faithfully captured
by his/her knowledge about the app’s general functionality,
and the sequence of windows and input/output right before
the transmission. It is therefore reasonable to model user
intention regarding a sensitive transmission from the app-level
context when the transmission is generated, including both
static features that are fixed to the app and can be acquired
without launching the app and dynamic features that vary over
time/input and can be only obtained during runtime. As a



Fig. 3: User Intention Modeling

first step towards this general model, we narrow the problem
scope and consider a simplified approach in this paper. We
define a running instance as a snapshot of a running app that
involves a single window, and ignore user interactions. Each
running instance is then associated with an app-level context
that is represented by an 〈app, window〉 pair, where the app
component denotes the static features of the app including app
name and description, and the window component denotes the
corresponding window of the specific running instance. We
note that an app component may be associated with several
different window components. Extension of our modeling to
consider multiple correlated windows and user interactions is
part of our future work.

We focus on text related features, and utilize text classifica-
tion, which is commonly used in Natural Language Processing
(NLP) and spam-detection [18], to distinguish between the
legal and illegal location transmissions. The overall archi-
tecture of the user-intention modeling module is shown in
Figure 3. The output of this step is a classification model that
can distinguish between “expected” and “unexpected” sharing
instances.

A. Text Preprocessing and Feature Extraction

In this subsection, we discuss in detail each type of features
derived from text-based metadata of apps that we use for
modeling user intentions.
Static Contextual Features: Static features provide general
information about the main functionality of an app that can
help label its transmissions. In this work, we consider both
app descriptions and app names as static features.

For app description, we follow the approach in [19] to
map app descriptions into topics, which provides a concise
representation of the apps’ main functionalities. The approach
works as follows.

• We first utilize the Natural Language Toolkit [1] in
python to tokenize English sentences in a description into
words. The words are then fed to the stemmer, where
they are reduced to their root forms. We also remove all
the stop words. We do the similar things for apps with
Chinese descriptions by using Jieba [2].

• We then apply text mining to get the most related topics.
Since detailed topic modeling is beyond the scope of
this paper, we directly leverage the set of keywords for

TABLE I: Sample Topics

personalize, games and cheat sheets, music,
Topics from [19] navigation and travel, language, share, health,

kids, ringtones and sound, search and browse
sports, social, shopping, productivity,tools,

Google Play photography, personalization, medical, lifestyle,
finance, libraries and demo, music and audio
social and communication, system and tools,

Baidu App Market finance and shopping, themes, photography,
video and audio, lifestyle, office, books

TABLE II: Example topics with relevant keywords [19]

“navigation and travel” map, inform, track, gps, naving, travel, citi
“weather and stars” weather, forecast, locate, temperatur, city, light
“health” weight, bodi, exercise, diet, workout, medic

each corresponding topic given in [19]. For a description
that includes keywords belonging to different topics, we
choose the topic that is hit by the maximum number of
different keywords.

• It is possible that a description does not fall into any
topics generated by [19]. We assign such an app a coarse
topic given by the corresponding app market.

Each topic is treated as a single feature in our learning
model. Table I gives some examples of topics given in [19],
Google Play, and Baidu App Market. Table II shows the
keywords associated with some topics.

We also consider app names as our static contextual fea-
tures. The intuition is that it is likely that developers will
give their apps names to match their functionalities. This is
especially true for apps in the “tools” category, which are
usually named based on their core functionalities. For instance,
we expect that the app “LocalWeather” to be a weather app
and “SuperLed” to be a flashlight app. We do not directly use
an app name as a feature. Instead, we extract popular words
that frequently appear in app names with the help of existing
word list [3]. For instance, for “LocalWeather”, “Local” and
“Weather” are extracted. We also add some new words such
as “tech” and “nav”. We have generated 260 binary features
from app names in total.
Dynamic Contextual Features: Dynamic contextual features
such as the UI provide hints of the runtime behavior of an
app. For instance, run-time windows not only help distinguish
between similar apps, but also help differentiate running in-



city name weather locate pm nearby time
0

20

40

60

80

100

120

140

160

180

200

Keywords

Co
un
t

 

 

Fig. 4: Popular keywords of UI in 634 legal local-sharing
instances

stances of the same app. Unlike a description that is generally
constructed with complete sentences, the text content of a
UI component is often presented by phrases or short incom-
plete sentences. Therefore, it is possible to achieve accurate
classification without using sophisticated NLP techniques that
is needed to preserve the order of the tokens. In this work,
we utilize the simple yet powerful bag-of-words technique
that is commonly used in spam detection by treating each
distinct word appeared in the window of a running instance
as a separate (binary) feature. We extract the text content in
the UI components dumped by UiAutomator [5], a standard
tool supported by Google to extract UI features. However,
UiAutomator may miss some text information, especially those
related to the web content. When this happens, we manually
extract the relevant text content from the screen shot of the
window. In addition to pure text content, we have added
a binary feature “city-clickable” to represent a special type
of clickable widgets. Some user-expected instances have a
single checkable button named with a city name shown in the
window. Those instances take user’s location to deliver region
related news or services. Users can change their regions by
clicking that button. On the other hand, we seldom observe
such implementation on “unexpected” cases.

Figure 4 shows the set of most popular tokens that appear
in the UI of legal location-sharing applications, where “city
name” includes all the concrete city names, and “pm” indicates
either particulate matter or post meridiem. We observe that
these keywords closely match our intuition about location
related instances. In particular, “city name”, “locate” and
“nearby” are directly related to locations, while “weather”
and “pm” appear in weather reporting instances, which are
typically location sensitive. Moreover, many location related
services have a small widget that shows the current time,
which explains why “time” is also a popular keyword. We
have generated 4808 binary features for UI in total.

B. Learning Method

As a first order approximation of app behavior, we consider
one running instance per app that corresponds to the front-page
window of the app (see Section VI for details). Although this is
a simple approach, it can actually capture a significant amount
of suspicious behavior. As observed in [13], unintended ad

and analytics behaviors often happen once an app starts.
Our approach can be readily extended to consider multiple
instances from the same app, where each instance may contain
multiple windows. The main challenge, however, is to make
this process automatic and representative of the usage patterns
of real users, which largely remains open and is part of our
future research.

The ultimate purpose of user-intention modeling is to gen-
erate (part of) the training data for our traffic classification
model to be discussed in the next section. In particular, in
the training stage of our traffic modeling, all the location-
sharing HTTP flows generated by “unexpected” instances are
labeled as illegal, while all the location sharing flows from
“expected” instances are initially labeled as legal. Therefore,
it is important to ensure a high accuracy at this stage. To get
more precise results, we consider three learning algorithms,
random forest, naive Bayes and logistic regression, and adopt
a commonly used consensus voting approach [11] to filter po-
tential misclassified instances. That is, only the set of instances
where all the three algorithms give the same classification
results are retained. We provide the evaluation results of our
user intention model in Section VI-B.

V. TRAFFIC FLOW LEARNING

In this section, we describe our traffic level features and
learning models for detecting illegal traffic flows. We consider
two learning models: (i) Supervised learning model that gener-
ates signatures for legal location flows, illegal location flows,
and non-location flows; (ii) Unsupervised approach that builds
a model for illegal flows only. As discussed later, the two
approaches provide a different accuracy vs. labeling overhead
tradeoff.

A. Flow-Level Features

To build traffic learning models that can predict illegitimate
location sharing from network-level signatures, we consider
both statistical features and lexical features.
Statistical features For each HTTP flow that forms a session
and is identifiable by a 4-tuple <source IP, source port, desti-
nation IP, destination port>, the following statistical features
are calculated:

• Total number of TCP packets
• Total number of uplink TCP packets
• Total number of HTTP packets (Packets with HTTP

application layer present)
• Packet size of all TCP packets
• Packet size of uplink TCP packets
• Packet size of downlink TCP packets
• Time interval between two consecutive TCP packets
The first three attributes hold single numerical values for

the count, while the rest four attributes represent a distribution
which is represented using 7 statistical features, namely, mini-
mum, maximum, median, mean, standard deviation, skewness
and kurtosis. While extracting the features from the traffic,
no prior information about the shape of the distributions
(Gaussian or not) are known. Since our primary concern is
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Fig. 5: CDFs of Statistical Features

the accurate representation and description of distributions
obtained from the data, similar to the network features used
in [23], we consider the first four moments (mean, variance,
skewness and kurtosis) in addition to maxima, median and
minima. The total number of statistical features is 31.

To understand how these statistical features contribute to-
wards distinguishing between non-location flows, legal lo-
cation usage and illegal usage flows, three representative
characteristics are shown in Fig. 5. Fig. 5(a) shows that
the non-location flows have a significantly higher number of
TCP packets as compared to the location flows, which is
expected, while illegal location flows have a slightly lower
packet count than legal flows. Fig. 5(b) shows that non-
location flows have larger downlink packet sizes compared
location flows, mainly contributed by data-intensive apps. On
the other hand, illegitimate flows are typically ad flows that
are usually responded with an advertisement, which makes the
maximum packet size in the downlink traffic larger than those
for legal flows, where the response is mainly control packets
denoting that the location has been received. Fig. 5(c) shows
that the legal flows have higher average packet inter-arrival
time, since the benign servers need more time to handle users’
specific location-related requests and generate corresponding
responses.

Lexical features In addition to statistical features, we
also consider lexical features derived from the textual
properties of URLs, which often contains useful patterns
to distinguish benign and malicious traffic [25]. The
intuition is that location-sharing URLs may contain
words that can be used to differentiate the purposes
of location requests. As an example, consider an
illegitimate location sharing with the following URL:
ads.appsgeyser.com/?&guid=a5141e1d&tlat=38.53203&tlon=-
121.759603&p=android&test=1. We can see that the
domain name ads.appsgeyser.com has a prefix of “ads”,
which indicates the advertisement purpose of the request.
As another example, consider a location-sharing flow
generated by a weather forecast application with the URL
v.juhe.cn/weather/geo?&lon=-121.750683&lat=38.540323.

The path portion of the URL weather/geo?&lon=-
121.750683&lat=38.540323 includes the word “weather”,
indicating that the server behind the URL is a weather
information provider. Moreover, both URLs contain exact
longitude and latitude values in the plain text, which can used
to identify location-sharing flows from all outgoing traffic
traces. We follow the “bag-of-words” approach used in [25]
and treat each token inside a URL as a binary feature. Below
is a list of lexical features considered.

• Binary feature for each token in the host name and in the
path URL

• Length of the host name and entire URL
• Number of dots in the URL

B. Flow Dataset

As we discussed earlier, all location sharing flows from
the “unexpected” instances are labeled as illegitimate. How-
ever, we cannot treat all the flows generated by “expected”
instances as legitimate. In particular, although for these in-
stances, location sharing is allowed in the current context,
the data may be sent to an malicious receiver. To address
this problem, we leverage existing hostname lists of ad and
analytics servers [13] to identify (a part of) illegal flows from
the “expected” instances. We note that some of these flows
are possibly mislabelled due to (1) the inaccuracy of the user
intention model, and (2) some of the illegal flows from the
“expected” running instances are missed as they do not match
the existing hostname lists. We allow these noise in the training
data, but manually obtain the ground truth of all the flows in
the testing stage as discussed below.

To get the ground truth of each flow in the testing stage,
the following steps are applied: (1) We first query the ground
truth of each running instance and label all the flows generated
by the true “unexpected” instances as illegal; (2) For each
flow generated by the true “expected” instances, we first
exam the destination hostname of the flow. If it belongs to
an advertisement or analytics company, the flow is labeled
as illegitimate; (3) We then check the plain text content in
the response, and the flow is labeled as illegitimate if the



response is unrelated to the location sent; (4) For the rest
of flows that cannot be determined by above approaches, we
have implemented a blocking approach as follows. For each of
these flows, we first set firewall rules (based on the TaintDroid
reports) to block the flow. We then clean the cache on the
device, rerun the app, and observe the front-page window.
The flow is labeled as illegal if nothing unusual is observed,
indicating that the app’s functionality is not affected.

C. Learning Methods

We apply random forest as the supervised learning classifier
of FlowIntent since it is commonly used in traffic classification
[29]. Supervised learning provides promising performance as
we show in Section VI-C, but it also incurs extra overhead
as it requires human efforts to filter potential illegal flows
generated from expected running instances at the training stage
as we discussed above. Off-the-shell hostname lists of ad or
analytics servers may help to identify partial such illegal flows.

In practice, however, IDS may not have the up-to-date
hostname list of suspicious servers, and may potentially
misclassify illegal location flows generated by “expected”
location-sharing instances. An alternative approach is to build
a model on illegal sharing flows purely from unexpected
running instances to generate network-level signature only for
privacy leaking flows. We conduct an initial study on the
feasibility of unsupervised learning in detecting privacy leak-
age, by using one-class Support Vector Machine (OCSVM) to
derive signatures from the illegal traffic flow found by our
user-intention modeling. OCSVM has been widely applied
to anomaly detection recently [16], [22], [30], under the
assumption that the majority of the instances in the dataset
belong to one class. The evaluation of unsupervised traffic
learning is given in Section VI-D.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of FlowIntent,
including both the user intention model and the traffic learning
models. We note that although we mainly care about the
the accuracy of the traffic models in this work, a separate
evaluation of user intention modeling is interesting by itself.

A. Experimental Setup

We have crawled 10718 Android apps from Google Play [7]
and 12480 apps from Baidu App Market [6]. Since we focus
on location transmissions through the Internet, we only keep
those apps that require both location and network related
permissions. We have obtained 9055 target apps in total - out
of which 6669 apps are from Baidu App Market and 2386
apps are from Google Play. To collect the dynamic app-level
contextual information and the location-sharing HTTP traffic
generated by running instances, we run each app inside Taint-
Droid [17] for one minute without intervening the app. During
that period, the UI of the front-page window is recorded
using UiAutomator, which is served as the dynamic contextual
data of the corresponding instance, and all the incoming
and outgoing TCP packets are captured with tcpdump [4].

TABLE III: Text Classification Results and Voting with 10
Fold Cross-validation

(a) Random Forest

Predicted as illegal Predicted as legal
Illegal instances 625 (98.6%) 9 (1.4%)
Legal instances 53 (8.4%) 581 (91.6%)

(b) Naive Bayes

Predicted as illegal Predicted as legal
Illegal instances 596 (94%) 38 (6%)
Legal instances 74 (11.7%) 560 (88.3%)

(c) Logistic Regression

Predicted as illegal Predicted as legal
Illegal instances 596 (94%) 38 (6%)
Legal instances 70 (11%) 564 (89%)

(d) Voting

Predicted as illegal Predicted as legal
Illegal instances 506 (98.7%) 7 (1.3%)
Legal instances 29 (6%) 460 (94.0%)

TaintDroid is used to identify the location-sharing traffic flows
automatically (using dynamic taint analysis). We have acquired
2803 HTTP location-sharing flows, along with their app-level
contexts, from 1626 running instances.

B. User Intention Modeling

With the three types of features discussed in Section IV, we
apply text classification to build our user intention model for
predicting expected and unexpected location sharing behavior
at the running instance level. To get the ground truth of the
running instances, we manually label each running instance
as either “expected” or “unexpected” regarding sending the
location data out of the device based on our understanding
of the app functionality after reading its associated app-level
context. We have manually selected 634 “expected” instances
and 634 “unexpected” instances from 1626 running instances,
and use 10 fold cross-validation on these instances.

Tables III(a) to III(c) give the classification results for each
of the three classifiers, and Table III(d) gives the final result
after voting is applied. Overall, our model predicts 966 out of
the 1002 instances correctly giving a prediction rate of 96.4%.

TABLE V: Traffic classification results with true instance label

Features TP Rate FP Rate Precision F-measure
Statistical 0.856 0.072 0.857 0.856
Lexical 0.921 0.039 0.923 0.921

Both 0.926 0.037 0.928 0.926

C. Supervised Traffic Learning

Given the labeled running instances, we then identify (a
part of) illegal flows from the “expected” instances using the
lists of ad and analytics servers given in [13]. We have thus
obtained 896 flows from 467 “expected” running instances,



TABLE IV: Traffic classification results with user intention learning

Features TP Rate FP Rate Precision F-measure Attributes with highest information gain

Statistical 0.847 0.076 0.848 0.844
Downlink packet size: mean, max, std. devn,
Interval between packets: mean, TCP packet
count

Lexical 0.901 0.049 0.903 0.909 ‘map’, ‘loc’, ‘baidu’, ‘jpg’, ‘ads’, ‘weather’,
‘lat’, ‘lng’

Both 0.911 0.045 0.913 0.911

TABLE VI: Prediction Results: TP and FP rate is calculated
for one class against all other classes

App Class TP Rate FP Rate Precision F-measure
Non-loc 0.96 0.067 0.88 0.92

Illegal-loc 0.89 0.052 0.89 0.89
Iegal-loc 0.88 0.018 0.96 0.92

TABLE VII: Prediction results on non-location flows reported
by TaintDroid

Legal loc flows Illegal loc flows Non-loc flows Unknown
Predicted as legal 311 23 16 38

Predicted as illegal 17 185 11 21

and 817 flows from 535 “unexpected” running instances, with
319 different server hostnames in total. As we discussed in
Section V-B, some of the flows in the former set may actually
be illegal, and we allow this noise in the training dataset. For
the testing purpose, however, we have manually identified 43
illegal flows from the 896 location sharing flows generated
by the “expected” instances, using the approach discussed in
Section V-B. We have also collected 850 non-location flows
from apps that do not ask for location permission. We then
apply the random forest method on these traffic flows to
construct our supervised learning model.

Given TP = number of true positives, FN = number of false
negatives, FP = number of false positives and TN = number
of true negatives, the efficiency of prediction of the model is
measured based on the following characteristics:
TP Rate = TP

TP+FN , FP Rate = FP
FP+TN ,

Precision = TP
TP+FP , F-measure = 2TP

2TP+FP+FN .
The results of our model with 10-fold cross-validation are

given in Tables IV-VI. Table IV shows the prediction result
when the instances are labeled using our user intention model,
while Table V gives the result when true instance labels are
used in the training of the traffic model. Table VI gives the
prediction result for each type of flows that correspond to
Table IV. We make the following observations.

• First, the traffic classification model achieves 91.1% F-
measure by using both statistical and lexical features,
even when some running instances are potentially misla-
beled due to the inaccuracy of the user intention model.
When the true running instance classes are used, the F-
measure increases to 92.6%. The fact that the amount of
illegal flows from expected instances is relatively small
compared to the legal flows also contributes to the high
precision. Therefore, our user intention modeling only
incurs a slight loss in accuracy, while saving the effort of

manually labeling a large number of instances.
• Second, lexical features alone can provide relatively good

predication accuracy, which can be further improved by
including statistical features. Among the set of most
useful lexical features shown in Table IV, ‘loc’, ‘jpg’,
‘lat’, ‘lng’ are useful in distinguishing location and non-
location flows, while the rest can be used to distinguish all
the three types of traffic. In particular, ‘baidu’ is a good
indicator of legal flows because most benign instances in
China use the map service provided by Baidu.

• Third, we observe that the F-measure results of using
statistical features only are also good. This indicates that
our approach can be potentially extended to HTTPS flows
as well, even though the lexical features cannot be applied
to HTTPS traffic. The set of statistical features with
the highest information gain as shown in Table IV is
consistent with our observation in Section V-A.

Improved Location Flow Detection: In addition to achieving
a promising detection accuracy, our learning model is able
to detect new location sharing flows that are undetectable by
TaintDroid, which highlights the advantage of having network
level signatures. To confirm this, we randomly select 5510
flows generated by 670 running instances that TaintDroid does
not report location sharing. Among these flows, our model
detected 622 of them to be location related, and 388 of
them are classified as legitimate, and the rest are classified
as illegal. We then check the ground truth for each of these
flows manually. The result is shown in the Table VII. In the
table, the ‘Unknown’ column indicates the cases where we
cannot identify the ground truth, when the traffic is encrypted
and the URLs are not familiar. Our model is able to detect
311 legal location flows and 185 illegal flows correctly, all
of which are missed by TaintDroid. The result shows that
our learning model is able to identify location sharing flows
that are missed by host-based taint analysis, which strongly
indicates the benefit of considering network-level features.

D. Unsupervised Traffic Learning

To reduce human intervention in identifying true legal flows,
unsupervised learning model is built on illegal sharing flows
purely from unexpected running instances to generate network-
level signature. From 817 flows generated by 535 “unexpect-
ed” instances, we randomly sample 654 of them as the training
data. We apply the Support Vector Data Description [12] to
identify a minimum boundary of the dataset.

We use 160 true illegitimate flows that are unused during the
training stage as one testing dataset. We also randomly sample



TABLE VIII: Prediction results of OC-SVM Model

Illegal loc flows Others
Predicted as illegal 151 30
Predicted as others 9 130

160 other flows from the pool of legal location transmissions
and non-location transmissions to build another testing dataset.
The results are shown in Table VIII. The model achieves high
true positive rate (94.4%) at the cost of the precision (83.4%).
We finally acquire F-measure of 88.6%. As we expect, the
overall performance of unsupervised learning model is a bit
lower compared to the supervised model shown in the last
subsection. However, the advantage of less human intervention
makes the unsupervised model to be easier to deploy in some
practical scenarios.

VII. CONCLUSION

In this paper, we develop FlowIntent, a proof-of-concept
system that makes the first attempt to identify the location-
leaking traffic flows from the mismatch between user intention
and network behavior. Compared to system-level detection
approaches, our network-level signatures are easier to deploy
at Intrusion Detection Systems to monitor a large number of
devices simultaneously, while introducing zero overhead at the
end hosts. FlowIntent also captures the sensitive transmissions
missed by the state-of-the-art dynamic taint analysis systems.
In contrast to previous network-level detection techniques that
rely on a given set of malicious domain names, FlowIntent
can better adapt to the fast growth of app market and new
leakage patterns through user-intention modeling. We have
built our learning models using 1002 location sharing instances
identified from more than 20,000 apps crawled from Android
app markets. Our approach achieves about 91% accuracy
in distinguishing between legitimate and illegitimate location
transmissions.
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