An Efficient Fault-Tolerant Routing Scheme for Two Dimensional
Meshes

Vara Varavithya, Jatin Upadhyay, and Prasant Mohapatra
Department of Electrical and Computer Engineering
lowa State University

Ames, [A 50011

E-mail: prasant@iastate.edu

Abstract

Most of the previously proposed fault-tolerant
wormhole routing algorithms for direct networks are
extensions of the existing adaptive routing algorithms.
These extensions are usually done by adding extra vir-
tual channels to the network. Since these additional
virtual channels are used for the fault tolerance pur-
poses, they are not efficiently utilized when there are
no faults in the network. In this paper, we propose
a new fault-tolerant routing scheme for 2-dimensional
mesh networks. It provides alternate physical paths
to a message until it reaches the last dimension. While
routing in the last dimension, if the message encoun-
ters a faulty node, it is stored completely at the ad-
jacent node and is retransmitted. Using this routing
scheme no adaptivity is sacrificed when there are no
faults in the network and no additional virtual chan-
nels are required for fault tolerance. The performance
of the proposed scheme is better than the previously
proposed fcube algorithm which uses the same num-
ber of virtual channels. The effect of number and
location of faults on the latency and the utilization is
also studied.

1 Introduction

Message passing in multicomputers is imple-
mented based on a switching technique coupled with
a routing algorithm. Due to low latency and small
buffer requirements, wormhole routing is preferred
over virtual cut through and is widely used in re-
cent multicomputers. The routing algorithm deter-
mines the path from a source to its destination. If the
path between every pair of source and destination is
predetermined, the algorithm is called a deterministic
routing algorithm. For better system performance, it

is however preferable that the algorithm adapts itself
to the network traffic conditions and allows alternate
paths. A plethora of adaptive routing algorithms have
been proposed in the literature [7]. A good routing
algorithm should not only reduce network congestion
but should also be able to route in the presence of
faulty nodes and channels. This necessitates develop-
ment of adaptive fault-tolerant routing algorithms.

The objective of a fault-tolerant routing algorithm
is to maximize the ability of the operational nodes
to communicate with each other in presence of faults.
This ability should be incorporated with the use of
minimum redundancy. Issues in the design of fault-
tolerant routing algorithmsinclude avoidance of dead-
lock and livelock, low latency message delivery, high
throughput, graceful performance degradation, and
adaptation to a variety of traffic and fault patterns.

Previous work on fault-tolerant routing has been
concentrated on augmenting the existing adaptive
routing algorithms with fault tolerant capabilities. In
[5], Ni has extended the partially adaptive turn model
algorithm - negative first; to tolerate n — 1 faults in
n-dimensional meshes without using any virtual chan-
nels. For the low dimensional networks, the number
of faults tolerated are very small. Dally and Akoi have
presented an adaptive, non-minimal fault-tolerant al-
gorithm based on dimensional reversal scheme [3]. Us-
ing their scheme, a message can tolerate any number
of faults as long as it is in adaptive routing mode.
However, once in deterministic mode, it cannot tol-
erate any faults. Linder and Harden have presented
a fully adaptive routing algorithm that can tolerate
at least one fault at the cost of 2"~! virtual chan-
nels per physical channel in an n-dimensional mesh
[6]. Planar adaptive scheme, proposed by Chien and
Kim [2], limits the adaptivity to only two dimensions
at a time and thereby reduces the number of virtual
channels required to only 3. Boppana and Chalasani

have proposed a scheme called f-cube routing which
adds fault tolerance to the widely used deterministic
e-cube routing [1]. The scheme uses 4 virtual channels
and tolerates any number of faults in the network as
long as the source and the destination nodes are con-
nected.

The primary disadvantage of all the above schemes
is that they use additional virtual channels to make
the existing algorithms fault-tolerant. Since the extra
virtual channels are added from a fault tolerance point
of view, they are not used at all when there are no
faults in the network.

In this paper, we present a new scheme for fault-
tolerant routing in two dimensional meshes using
only two virtual channels. Message routing is done
positive-first (PF) in one network layer and negative-
first (NF) in the other. The two virtual channels are
used for adaptivity as well as for fault tolerance. In
the last dimension, the algorithm allows only one path
to the destination. If there is a fault while routing in
the last dimension, the message is completely con-
sumed at one of the adjacent nodes and then retrans-
mitted. The main advantage of the proposed scheme
is that it tolerates multiple faults using only two vir-
tual channels which is less than most of the existing
fault-tolerant algorithms. In terms of network latency
and throughput, the proposed scheme is observed to
perform significantly better than the fcube algorithm
[1] which also uses the same number of virtual chan-
nels. The effect of number and location of faults on
the system performance is also discussed.

The rest of the paper is organized as follows. Sec-
tion 2 discusses the fault model. Section 3 presents
the proposed routing scheme for two dimensional
meshes. Simulation results are presented in Section
5. Section 6 concludes the paper.

2 Preliminaries

For simplicity, we have made the following as-
sumptions:

1. Faulty nodes are detectable by their neighbors.
Since flits in wormhole routing are transferred
between adjacent nodes through hardware hand-
shaking, it is reasonable to assume that a node
would know about its faulty neighbors.

2. The source node is notified if any of its messages
are aborted. Most of the multicomputer systems
have a scheme for acknowledging the successful
transmission of messages. If the acknowledgment

[J Faulty Nodes

@ NodesMarked Non-functional

Figure 1: Reconfiguration of faulty regions.

does not arrive, the source node may time out
and retransmit the message.

3. A message arriving at its destination node is
eventually consumed. This assumption made by
many previous researchers [2, 4, 6] is based on
the fact that the destination node does not block
any incoming messages.

In absence of any faults, a minimal routing
algorithm would always route the message closer to
its destination. If blocked by a fault, the message
may sidetrack or backtrack and change its path. In
our scheme, since we assume only local information
about faults and since only two virtual channels are
used, the message is not allowed to backtrack. Thus,
there should not be any concave faulty regions in
the network where the message may get trapped. If
faulty regions are concave, they are extended so as
to make them convex. The extension of the faulty
region boundaries can be accomplished by marking
some of the fully functional nodes in the network as a
“non-functional” and routing messages to these nodes
only if they are destined for them. Reconfiguration of
the network so as to make the faulty region convex
can be carried out distributedly at each node. Fig-
ure 1 shows an example of faults in the network and
the reconfiguration of the faulty region to make them
convex.

3 The Routing Scheme - Modified
PFNF algorithm

The fault-tolerant routing scheme we propose
is based on the Positive-First Negative-First (PFNF)
algorithm presented in [8] for 2-dimensional mesh net-
works. Since the proposed scheme adds fault handling
capability to the basic PFNF algorithm, we call it the
modified PFNF algorithm.

3.1 The Modified PFNF Routing Algo-
rithm

The modified PFNF routing scheme proposed
is composed of mainly three components - the routing
algorithm, the selection function and the fault han-
dling steps. The routing algorithm provides a set of
channels the message can take as its next hop and is
responsible for deadlock avoidance. Depending upon
the network traffic and faults, the selection function
chooses one of these channels and routes the message
along it. In case all the channels provided by the
routing algorithm are blocked by faulty nodes, the se-
lection function calls the fault handling routine which
stores the entire message at one of its adjacent nodes.
The message is subsequently retransmitted from that
node.

The overall structure of the routing scheme is as
shown below. Here, routing_tag refers to the vector
of length n, the network dimension, where each ele-
ment i in routing tag is equal to

routing tagli] = des_addr[i]—curr node_addr[i]. (1)

Route(routing_tag) {
virtual_channel_set V C,
virtual_channel vc;
VC = Routing_Algorithm(routing_tag);
ve = Selection_Function(V C)
Route along channel ve.

The Routing_Algorithm is the PFNF algorithm as
shown in Figure 2. The algorithm uses the positive-
first routing scheme in one virtual network and the
negative-first scheme in the other virtual network. At
each intermediate node, the algorithm always pro-
vides more than one virtual channels for the message
to take as its next hop. The algorithm is proven to
be more efficient than most of the existing adaptive
routing algorithms [8].

Figure 3 (a) shows the Selection_Function algo-
rithm. From the set of virtual channels provided by
the Routing_Algorithm, it discards those which lead
to the faulty nodes. From the remaining channels, one
is chosen at random to route the message. If there are
no such fault free channels available, it calls the Han-
dle_Fault routine.

In the Handle_Fault routine shown in Figure 3 (b)
the entire message in consumed at one of the adjacent
nodes from where it is subsequently retransmitted.
The adjacent node where the message is consumed
should be farther away from the source node than the
current node. This requirement is to avoid livelock
situations as described later.

The fault handling steps using the proposed scheme
can be illustrated as shown in Figure 4. Figure 4(a)
shows the case where the message encounters a faulty
node, while it still has to route in both the directions.
The path it takes is the one not blocked by the fault.
Figure 4(b) shows the case where the fault is in the
last dimension of routing. As shown in the figure, the
message is completely stored in the adjacent node and
is subsequently retransmitted. The possible alternate
paths the message may take after retransmission are
also shown in the figure.

Routing-Algorithm(routing_tag)

{
virtual_channel_set VC
In virtual network V Ny, /* PF Algorithm */
If (3 routing_tag[i] > 0){
For all dimension 1
If (routing_tag[t] > 0) add vc
in + direction of dimension 2 to VC
}
else{
For all dimension 1
If(routing_tag[i] < 0) add vc
in — direction of dimension 2 to VC
}
In virtual network V N,, /* NF Algorithm */
If (3 routing_tag[i] < 0){
For all dimension 1
If (routing_tag[t] < 0) add vc
in — direction of dimension 2 to VC
}
else{
For all dimension 1
If(routing_tag[t] # 0) add vc
in + direction of dimension : to VC
}
return(V C)
}

Figure 2: The PFNF Routing Algorithm.

As mentioned earlier, if blocked by a faulty node in
the last dimension, the routing scheme consumes the
entire message in one of the adjacent nodes. Since
every node acts as an infinite sink for incoming mes-
sages, once the head flit moves to the adjacent node,
the entire message is absorbed completely and it does
not create an indefinite blocking for any other message
in the network. Hence, the fault handling strategy in
the modified PFNF routing scheme does not create
any additional dependencies.

Theorem 1: The modified PFNF algorithm is dead-

lock free.
Proof:
Lemma 1: The basic PFNF algorithm is deadlock free.

The proof of this lemma can be found in [8].

Lemma 2: The Fault handling in the algorithm does
not create any additional dependency.

Thus, using Duato’s theorem [4] and based on
Lemma 1 and Lemma 2, the modified PFNF algo-
rithm is deadlock free. A detailed proof is reported in
[9].]

Selection Function(virtual_channel set V' C) {
virtual_channel_set next_channels;
For each channels jin VC {
if (sink_node(y) != faulty)
add j to the set next_channels;

}

if(set next_channels == empty)
call Handle_Fault() ;

else

return a channel from the set next_channels

(a)

Handle_Fault() {
if(3 a neighbor node such that it is farther than
the message source than the current node) {
route and consume the message at that node.

}
else {

The destination is unreachable from this node.
Abort the message.

(b)

Figure 3: (a) The Selection Function (b) Fault han-
dling Routine.

Theorem 2: The modified PFNF routing algorithm
is livelock free.
Proof:

The basic PFNF algorithm is minimal and hence
livelock free. In the fault handling steps, the message
is consumed in the adjacent node only if by doing so,
the message moves farther away from the source than
its current position. If that is not possible, the mes-
sage is aborted. Thus, at each step, whether it is a
normal minimal routing or a fault handling step, the

message always moves farther away from its source
node. Since, the distances in the network are fi-
nite, the message always reaches its destination or
is aborted. Thus, the modified PFNF algorithm is

livelock free. O
DOO0000 000000
GO9000 0G®H 000
50000 080000
0 OO0 0O@O00O0
00GO00 O 00O
000000 000000

@ (o)

— Path already taken so far
— Message Storing
--- Alternate paths available

Figure 4: Fault-tolerant routing in modified PFNF
algorithm.

4 Simulation Study

We have compared the performance results
of our algorithm with that of the previously pro-
posed fcube scheme [1]. Only the fcube algorithm
is compared since it also uses the same number of
virtual channels (two) for 2-dimensional meshes. All
the other reported schemes that can tolerate multiple
faults require more number of virtual channels.

4.1 Simulation Environment

The simulations were conducted on a 16 x 16
mesh with fixed message length of 20 flits. Packet
generation rate is assumed to be Poisson in nature
with an exponential distribution of inter-arrival time.
The length of generation queue at each node is kept
16 packet buffers, i.e., a node can have at most 16
messages pending to be transmitted before it blocks
any further generation of packets. The number of
flit buffers associated with each virtual channel is as-
sumed to be one. The simulations were carried out
for 150,000 packets. The first 40,000 to 60,000 pack-
ets were discarded from statistics to reduce the tran-
sient effects. Since the main purpose of the simula-
tions was to study the effects of the network faults,
we have considered only the uniform traffic pattern.
Under uniform traffic, a node sends messages to every
other node in the mesh with equal probability.

4501 -0~ modified PFNF
~. fcube routing algorithm

Latency (unit time)

0 0.1 0.2 0.3 0.4 0.5
Traffic

(a)

450 -0~ modified PFNF
~. feube routing algorithm

Latency (unit time)

0 0.1 0.2 0.3 0.4 0.5
Traffic

(b)

Figure 5: Comparison between the fcube algorithm
and the modified PFNF algorithm for (a) One faulty
node (b) Three faulty nodes in the network.

The performance of the proposed fault-tolerant
scheme was studied in terms of the average communi-
cation latency and the average throughput of the net-
work. The communication latency is the mean time
from the message generation to the time when the tail
reaches the destination. The throughput is defined as
the average number of messages routed per unit time.
To understand how the proposed scheme affects the
traffic distribution in the network, we also measure
the average flit buffer utilization at each node. All
the above parameters are studied against the offered
network traffic and various fault patterns and loca-
tions. The network traffic is defined as the ratio of
the average traffic generated by a node to the aver-
age bandwidth available per node. Faults in the net-
work are injected randomly and in case of faulty nodes
forming a concave region, additional nodes are marked
non-functional according to the algorithm presented
in Section 2 to make the faulty regions convex.

4.2 Results and Discussion

Figures 5(a) and (b) show the comparison be-
tween the modified PFNF scheme and the fcube al-

gorithm for one and three faulty nodes in the net-
works. It is observed from the graphs that the mod-
ified PFNF algorithm outperforms fcube scheme for
all traffic loads. The fcube routing routing results
in around 30-50% higher latency than the proposed
modified PFNF scheme. The traffic at which the
modified PFNF scheme saturates is also around 0.45%
compared to only 0.3% of the fcube scheme. The rea-
son for the poor performance of the fcube algorithm
is that even though it uses two virtual channels, it
is deterministic in nature. Modified PFNF algorithm
provides more adaptivity for the same hardware used
and this adaptivity compensates for the additional de-
lay of storing the message at the intermediate nodes.

4501 X. nofault

-0~ node (4.4) fault
400F - two faulty nodes
~. three faulty nodes
350F —* four faulty nodes
~x five faulty nodes
300 .. sixfaulty nodes

Latency (unit time)
N
b
3

0 0.1 0.2 0.4 0.5

18 x. nofaulty node
-0~ one faulty node x

16 - Twofaulty nodes X

-. Three faulty nodes

14+ —* four faulty nodes N T ——
—x five faulty nodes]
12t . six faulty nodes

Throughput
-

(b) |
Figure 6: Latency and Throughput results for various
number of faults.

The network latency and throughput results of
the modified PFNF algorithm for different number
of faults in the network are shown in Figure 6. The
average latency increases with increase in number of
faults. For the first few faults, the increase in la-
tency is significant, however as the number of faults
increases, the network connectivity decreases and the
performance degradation is minimal. The same trend
is observed in the network throughput results.

Figure 7 plots the average buffer utilization at each
node when there are two faults in the network. The

Buffer Utilization Distribution for 16x16 MESH

Traffic = 0.400000

0.8

°
>

°
=

Average Buffer Utilization
p
S

A %“\‘}3‘ S

Y dimension

Latency (unit time)

5
Fault location

(b)

Figure 7: (a) Buffer Utilization near the faulty nodes.
(b) Effect of location of faults on the network latency.

faulty nodes are at the location < 4,4 > and < 8,8 >
in the 16 x 16 mesh, i.e.; at the center of the mesh
and at the center of one of the quadrants. The graphs
represents the network traffic produced by the routing
scheme when the actual traffic generated is uniform
across all the nodes. Since the messages blocked by
the faulty nodes are either routed around it or are
completely stored in its adjacent nodes, the neighbor-
ing nodes of the faulty nodes are becoming hot spots.
Thus, there are four spikes each around the two nodes
< 8,8 > and < 4,4 > as is seen in Figure 7(a).

Figure 7(b) studies the effect of the location of
faulty nodes on the network latency and the through-
put. As is evident from the figure, fault at the center
of the mesh results in much higher increase in the
network latency than a fault in one of the quadrants.
Since mesh network is not symmetric at its edges,
there are more number of messages passing through
the center of the mesh than through the edges and
corners. Faults near the center of the mesh affect
more number of messages and hence results in more
degradation in performance. The effect of faults on
the system performance goes on reducing as the fault
moves away from the center.

5 Conclusions

A new strategy for fault-tolerant routing in
two dimensional meshes is proposed by incorporat-
ing fault-tolerance in the PFNF routing algorithm.
The modified PENF scheme performs better than the
previously proposed fcube scheme which also uses the
same number of virtual channels. Several other fac-
tors, such as the effect of faults on the buffer utiliza-
tion, effect of fault location and the number of faults
on the system performance are also analyzed in this

paper.

References

[1] R. V. Boppana and S. Chalasani, “Fault-tolerant
routing with non-adaptive wormhole algorithms in
mesh networks,” Intl. Conference of Supercomputing,
pp- 693-702, Dec. 1994.

[2] A. A.Chien and J. H. Kim, “Planar adaptive routing:
low-cost adaptive networks for multiprocessors,” Intl.
symposium on Computer Architecture, pp. 268-277,
May 1992.

[3] W. J. Dally and H. Akoi, “Deadlock-free adap-
tive routing in multicomputer networks using virtual
channels,” IEFE Trans. on Parallel and Distributed
Systems, pp. 466-475, April 1993.

[4] J. Duato, “A new theory of deadlock-free adaptive
routing in wormhole network,” IEEE Trans. on Par-
allel and Distributed Systems, Dec. 1993.

[5] C. J. Glass and L. M. Ni, “Fault-Tolerant Worm-
hole Routing in Meshes,” Intl. Symposium on Fault-
Tolerant Computing, pp. 240-249, 1993.

[6] D. H. Linder and J. C. Harden, “An Adaptive and
fault tolerant wormhole routing strategy for k-ary n
cubes,” IEFFE Trans. on Computers, vol. 40, pp. 2-12,
Jan. 1991.

[7] P. Mohapatra, “Wormhole Routing Techniques in
Multicomputer Networks,” Technical Report, De-
partment of Electrical and Computer Engineering,
Towa State University, 1995.

[8] J. Upadhyay, V. Varavithya, and P. Mohapatra, “Ef-
ficient and Balanced Routing in Two-Dimensional
Meshes,” Intl. Symposium on High Performance
Computer Architecture, pp. 112-122, Jan. 1995.

[9] V. Varavithya, “Wormhole Routing Algorithms for

Master’s Thesis,

Dept. of Electrical and Computer Engineering, lowa
State University, 1994.

Mesh Interconnection Networks,”

