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Abstract—In the past few years, the computer vision commu-
nity has developed numerous novel technologies of 3D vision (e.g.,
3D object detection and classification and 3D scene segmentation).
In this work, we explore the opportunities brought by these
innovations for enabling real-time 3D vision on mobile devices.
Mobile 3D vision finds various use cases for emerging applications
such as autonomous driving, drone navigation, and augmented
reality (AR). The key differences between 3D vision and 2D vision
mainly stem from the input data format (i.e., point clouds or 3D
meshes vs. 2D images). Hence, the key challenge of 3D vision
is that it is could be more computation intensive and memory
hungry than 2D vision, due to the additional dimension of input
data. For example, our preliminary measurement study of several
state-of-the-art machine learning models for 3D vision shows that
none of them can execute faster than one frame per second on
smartphones. Motivated by these challenges, we present in this
position paper a research agenda on offering systems support for
real-time mobile 3D vision, focusing on improving its computation
efficiency and memory utilization.

Index Terms—3D vision, point cloud, 3D feature extraction,
mobile systems, augmented reality, deep learning

I. INTRODUCTION

There are numerous innovations in the mobile computing

community on leveraging 2D vision that takes an image as

input for creative applications [1], [2], [3]. For instance, mobile

continuous vision is a key building block for augmented reality

(AR) [4], [5], [6] and cognitive assistance [7]. Due to the hard-

ware constraints, continuous vision for mobile devices should

be lightweight, memory efficient, and energy friendly [8].

Meanwhile, with the recent advance of 3D capturing devices,

such as Microsoft Azure Kinect [9], Intel RealSense [10],

and various LiDAR scanners, the computer vision community

has developed novel machine learning models for 3D vision

that takes a point cloud or 3D mesh as input. Among them,

Deep Neural Network (DNN) models achieve the state-of-

the-art accuracy for tasks such as 3D object detection and

classification and 3D scene segmentation [11], [12], [13], [14].

In this position paper, we argue that mobile devices are

becoming increasingly powerful and thus it may be feasible

for enabling continuous 3D vision on mobile devices such as

smartphones, tablets, and headsets. Actually, both Microsoft

HoloLens [15] and Magic Leap One [16] can generate 3D

scans of surrounding environments. Newly released smart-

phones (e.g., Huawei Mate 30 Pro [17]) are equipped with

3D Time-of-Flight (ToF) cameras that can resolve distance

between the camera and nearby objects. AR software devel-

opment kits such as ARCore from Google [18] and ARKit

Fig. 1: Illustration of 3D object detection and scene segmenta-

tion. The input is a 3D scan of a scene that includes multiple

objects. Object detection localizes the objects of interest, while

scene segmentation classifies each point.

from Apple [19] already utilized point cloud, a popular repre-

sentation of 3D objects, for plane detection on mobile devices.

3D vision exploits depth information, which is crucial for

many applications that may not be efficiently supported by 2D

vision, such as AR, autonomous driving, and field inspection.

AR may heavily involve interactions between human beings

and virtual creations in 3D space [20], [21]. Autonomous

cars use depth information for avoiding collisions [22], [23],

[24]. Field inspection of network operators benefits from depth

information for checking the alignment of antennas on cellular

towers and the bend radius of a fiber cable. Take autonomous

driving as an example. Although it can detect, via 2D images,

the objects (e.g., pedestrians and cars), in front of a vehicle, it

is difficult to know the distance between these objects and the

vehicle through 2D vision, which is essential for safe driving.

We explore whether we can smoothly execute 3D vision in

real time on mobile devices. We use object detection and scene

segmentation illustrated in Figure 1 as examples, because they

are key components for 3D vision systems and applications. In

object detection [12], each 3D object of interest is localized,

whereas in scene segmentation [25], each point of the input

point cloud is classified with a label (e.g., a chair or a table).

From the application perspective, scene segmentation can be

used for object detection, which in turn can be used for



object classification, but not vice versa. This paper focuses

on 3D object detection and scene segmentation, rather than

the classification of 3D objects, as a camera usually captures

a scene rather than a single object.

To gain a deeper understanding of 3D vision, we examine

several exemplary DNN models for object detection and

scene segmentation, i.e., ComplexYolo [26], VoxelNet [12],

PointPillars [27], and submanifold SparseConvNet [25] (Sec-

tion III). These models all use point clouds as their input.

They apply different methods to extract features from the

input 3D data, ranging from conversion to 2D images, vox-

elization and pillarization, to direct consumption of points. To

understand the performance of these models, we measure their

computation and memory overhead on commodity servers and

smartphones (Section IV). Our preliminary results show that

it is challenging to support real-time 3D vision on mobile

devices. For example, none of these models can execute faster

than one frame per second on smartphones.

Hence, we present a research agenda for improving the

efficiency of mobile 3D vision (Section V). We explore

several acceleration techniques, including down-sampling in-

put, offloading to cloud, adaptive model selection, locality

in continuous vision, and hardware parallelism, and identify

several research challenges and opportunities of mobile 3D

vision. Note that although some of the technologies have been

leveraged to accelerate 2D vision on mobile devices, we cannot

directly apply them to 3D vision. For example, since a mobile

system may not be able to effectively determine the complexity

of a point cloud due to the non-uniform distribution of sampled

points in 3D space, it is difficult to partition the point cloud

based on the estimated computation overhead and process each

part on multiple hardware engines in parallel.

This paper is structured as follows. We present preliminaries

of 3D vision in Section II. We categorize existing DNN models

for 3D vision based on their feature extraction in Section

III and measure their performance in Section IV. We discuss

the challenges and possible solutions for mobile 3D vision in

Section V. Finally, we conclude this paper in Section VI.

II. 3D VISION: A PRIMER

In this section, we offer a background introduction of 3D

vision, focusing on the data representation.

A. 3D Vision is Essential

The most significant difference between 2D vision and 3D

vision is that 3D vision can benefit from depth information,

which is crucial for many applications. (1) An autonomous

car not only needs to detect objects (e.g., other cars and

pedestrians), but also determines the distance between the

objects and itself [22], [23], [24]. (2) Moving robots and flying

drones need to understand their surrounding 3D environment

to plan routes intelligently and avoid colliding with nearby

objects [28], [29]. (3) Co-present avatars for those who are at

different locations [30] can benefit from 3D vision for better

understanding of the surrounding environment. (4) 3D data

(a) (X, Y, Z, I) Point Cloud

(b) (X, Y, Z, R, G, B) Point Cloud

Fig. 2: Illustration of point clouds. (a) A (X, Y, Z, I) point

cloud from the KITTI autonomous driving dataset; (b) A (X,

Y, Z, R, G, B) point cloud from the ScanNet indoor scene

segmentation dataset.

are also widely used in the medical sector to detect abnormal

organs such as liver and kidney [31].

B. 3D Data Representation

3D mesh and point cloud are two common representations

for modeling 3D objects.

1) 3D Mesh: 3D polygonal mesh approximates the surface

of 3D objects via a set of 2D polygons in 3D space [32]. The

mesh provides an efficient and non-uniform representation of

the shape of an object. It has several advantages including

that (1) only a small number of polygons are required to

capture a large surface; and (2) the high resolution of 3D mesh

allows a faithful reconstruction and portrayal of shapes that are

geometrically intricate. However, DNN models for processing

3D meshes are currently constrained on manifold meshes such

as organic objects and it is not obvious how to extend existing

models to a scene that includes multiple non-isometric objects

such as furniture [11].

2) Point Cloud: A point cloud is an unordered set of points.

Each point has its coordinate (X,Y, Z) and a property P .

Point cloud is a simple and unified structure that avoids the

combinatorial irregularities and complexities of 3D mesh, and

thus it is easier for DNN models to learn from [11]. For

different applications, P has different formats, such as ∅

(empty) in the ShapeNet dataset1, I (reflectance value) in the

1ShapeNet part segmentation datset. https://www.shapenet.org/



KITTI dataset2, and (R,G,B) in the ScanNet dataset3. Figure

2 illustrates a (X, Y, Z, I) point cloud from the KITTI dataset

and a (X, Y, Z, R, G, B) point cloud from the ScanNet dataset.

Point clouds have different characteristics from 2D images

and 3D meshes. First, point clouds are usually sparse, while

images are dense. For example, more than 90% grid cells

are empty for the ScanNet dataset and almost 100% cells

are empty for the KITTI dataset when a point cloud is

voxelized/partitioned into gird cells of 10cm× 10cm× 10cm.

Therefore, the voxelization representation of point clouds leads

to severe computation and memory waste by spending re-

sources on empty cells. On the other hand, although increasing

cell size can reduce the number of empty cells, it degrades data

granularity as more points are dropped during voxelization.

Second, points in a point cloud are structureless. This property

of point cloud is in contrast with 3D mesh in which vertices

form edges and edges form faces.

This paper focuses on point cloud due to its high flexibil-

ity for modification. Besides capturing and generating point

clouds from a RGB-D camera (D for depth) such as Intel

RealSense [33], a point cloud can be created using SLAM

(simultaneous localization and mapping) on mobile devices.

Direct methods such as LSD-SLAM [34] can reconstruct the

environment as a point cloud using only a monocular camera.

III. FEATURE EXTRACTION FROM POINT CLOUDS

Existing DNN models for computer vision problems gen-

erate various feature vectors from the input 2D images or

point clouds. Different methods of feature extraction result

in different degrees of data dimensionality, which in turn

determines the model complexity [35]. For example, in the

2D space about 30% inference time is reduced for the same

type of model structure if the image resolution (hence, the

number of feature vectors) is reduced by a factor of two [36].

In this section, we categorize the mainstream methods of 3D

feature extraction for point clouds, and investigate an example

DNN model for each category.

A. Converting to 2D Feature Vectors

A point cloud can be represented by images generated

from different viewpoints and viewing angles, and then a

2D DNN model is applied to these images for the vision

task. ComplexYolo [26] is a simple case in that it generates

only one image for a point cloud. In ComplexYolo, a point

cloud is mapped to a RGB image of 1024 × 512 pixels,

and a feature vector of length 3 is generated for each pixel.

Therefore, the inference of ComplexYolo is based on 1.6M

(1024 × 512 × 3) features. Finally, the results of 2D object

detection are projected back to the point cloud.

This method has the following merits: (1) It can leverage

widely available models for 2D vision; and (2) Its compu-

tation and memory overheads are small because these DNN

models are generally much more lightweight than ones for

3D. However, models of this category have the drawback that

2KITTI autonomous driving dataset. http://www.cvlibs.net/datasets/kitti/
3ScanNet indoor scene segmentation dataset. http://www.scan-net.org/

their accuracy is low because feature vectors for 2D data

cannot completely represent 3D information, and thus detailed

relationship among 3D points may be lost during feature vector

generation. In addition, it is difficult to apply this type of

model structure to 3D semantic segmentation in which each

point needs to be classified.

B. A Feature Vector for Each Grid Cell

A point cloud could be voxelized/partitioned into grid cells

and then a feature vector is generated for each cell. At most

one point is remained in each grid cell, either by randomly

selecting a point or selecting the nearest point to the center of

that cell. A representative work is VoxelNet [12]. In VoxelNet,

a feature vector is generated for each cell no matter it is empty

or not. With this feature representation, a 3D convolutional

network is built for detecting objects. Specifically, VoxelNet

adopts a grid cell size of 0.4m × 0.2m × 0.2m for the point

cloud of 4m×80m×70.4m, and a feature vector length of 128

is used for each grid cell. Therefore, the inference of VoxelNet

is based on 180.2M features.

This method provides the flexibility that one can adjust

the grid cell size for different accuracy targets. The smaller

the grid cell size, the less information loss the voxelized

point cloud has. However, reducing the grid cell size increases

the computation and memory overhead dramatically because

it significantly increases the number of cells. Furthermore,

models with voxelized point clouds are challenging to train

as the total size of feature vectors is enormous [11], [35].

C. A Feature Vector for Each Pillar

Different methods have been proposed to reduce the number

of grid cells. An example work is PointPillars [27], which

partitions a point cloud into pillars and then generates feature

vectors for only non-empty pillars that have points. In other

words, only a grid cell is used for all points from the bottom

to the top within a given region. Specifically, PointPillars

generates an average of 5719 non-empty pillars for a point

cloud from the KITTI dataset and uses a feature length of 64

for each pillar. Therefore, the inference of PointPillars is based

on ∼0.4M features.

This method has the advantage of reducing the computation

and memory overhead compared to traditional voxelization.

However, the data granularity is worsened as only a single

feature vector is generated for a pillar that may include many

points. In addition, a pillar may include points from multi-

ple objects for complicated scenes, which makes 3D object

detection and scene segmentation challenging. Furthermore, it

does not generalize well to object layouts (e.g., paintings on

wall may prefer horizontal pillarization but cars on street may

prefer vertical pillarization).

D. A Feature Vector For Each Point

There are DNN models that have been proposed to consum-

ing points directly and thus avoid voxelization/partitioning,

which has the tug-of-war between resource overhead and

accuracy. An example is submanifold SparseConvNet [25].



Model ComplexYolo VoxelNet PointPillars SparseConvNet

Application Detection Detection Detection Segmentation
Dataset KITTI KITTI KITTI ScanNet
#Points 17.7K 18.4K 18.9K 158.8K

Accuracy 64.9% AP 66.8% AP 74.1% AP 72.5% IoU

#Features 1.6M 180.2M 0.4M 1.0M

TABLE I: Comparison of the selected DNN models. During

inference, the models make predictions based on different

numbers of input features.

SparseConvNet takes the raw point cloud data as feature

vectors. In other words, a point has a feature vector of (X, Y,

Z, R, G, B), which has a length of 6. For a point cloud from

the ScanNet dataset that has an average of 158.8K points in

a point cloud, the inference of submanifold SparseConvNet is

based on ∼1.0M features.

This method is efficient with regards to computation and

memory because a point cloud is highly sparse. However, for

very dense point clouds, the computation overhead of this type

of DNN models may be higher than others, as there is no pre-

processing of the input data.

E. Model Comparisons

Table I tabulates details of the selected DNN models.

ComplexYolo, VoxelNet, and PointPillars are 3D object de-

tection models. They preprocess the point clouds and thus

the numbers of input points are slightly different for the

same KITTI dataset. Submanifold SparseConvNet is a 3D

scene segmentation model. The table also shows the accuracy

reported by these papers. As expected, ComplexYolo has the

lowest Average Precision (AP) in detecting cars as it relies

on 2D features. SparseConvNet achieves a high Intersection

over Union (IoU) and is one of the most accurate models for

the ScanNet segmentation competition. During inference, these

models make predictions based on different sizes of features,

from 0.4M in PointPillars to 180.2M in VoxelNet.

IV. PRELIMINARY RESULTS

To understand the performance of ComplexYolo, VoxelNet,

PointPillars, and submanifold SparseConvNet, we implement

them4 and measure their computation and memory overhead

on a server (Dell PowerEdge T640 with 40 2.2GHz CPU

cores) and two smartphone models (Huawei Mate 20 and

Google Pixel 2). We use Tensorflow for ComplexYolo, Vox-

elNet and PointPillars, and Pytorch for submanifold SparseC-

onvNet for the implementation on the commodity server. We

use Tensorflow Lite on phones for the first three models as it

provides optimized acceleration for executing DNN models

on mobile devices, e.g., removing operators that are not

used in inference. We leave it as future work to implement

SparseConvNet on smartphones. Unless otherwise stated, we

conduct experiments on CPUs.

Table II tabulates the execution time per point cloud and

the memory consumption for these models on the server.

4We re-implement the model structures of ComplexYolo, VoxelNet, and
PointPillars in Tensorflow.

Model ComplexYolo VoxelNet PointPillars SparseConvNet

Memory 0.4GB 76.0GB 0.6GB 1.9GB
Time 0.3s 27.1s 1.3s 1.8s

TABLE II: Memory usage and execution time of selected DNN

models on a commodity server.

We can see that different categories of models have dramatic

performance difference: 90× in speed and 190× in memory

overhead when comparing the heaviest model VoxelNet with

the lightest model ComplexYolo. In addition, we have the

following observations for each model: (1) ComplexYolo is

lightweight because it converts a point cloud to 2D feature

vectors and is based on a model for 2D images. However,

its accuracy is low (Table I); (2) VoxelNet is extremely slow

and requires tremendous memory because the model generates

a large number of grid cells and features; (3) PointPillars

dramatically reduces the computation and memory overhead

compared to VoxelNet thanks to the reduced number of grid

cells. Although PointPillars has a fewer number of input fea-

tures than ComplexYolo, it adopts a more complicated model

structure because the problem of 3D object detection is more

challenging than the 2D one; (4) Submanifold SparseConvNet

is efficient. Even though it takes a significantly larger number

of points as input and is designed for scene segmentation

which is more challenging than object detection, it requires

only 1.9GB memory and on average processes a point cloud

every 1.8 seconds.

We compare the execution time of the models running on the

Huawei Mate 20 phone versus on the server. Figure 3a shows

the execution time of ComplexYolo for 100 runs. On average,

Huawei Mate 20 takes 1.3 seconds per point cloud, which is

3.9 times slower than the server. Figure 3b shows the execution

time of PointPillars for 100 runs. The phone runs 375.5 times

slower than the server. This is because the Tensorflow Lite

does not support the variable-length 1D convolutional layer5,

which is used by PointPillars to generate the feature vectors

of all the pillars. Instead, we trigger a function call to generate

a feature vector for each non-empty pillar on the mobile

device, which incurs a significant delay. We expect similar

performance comparison of PointPillars on the phone versus

the server as ComplexYolo, if Tensorflow Lite supports the

variable-length 1D convolutional layer.

An intuitive way to speed up the execution of a DNN

model is to run it on GPU. However, a practical challenge is

that if some model operators are not supported by the GPU,

Tensorflow Lite has to execute only a part of the model on

GPU and the remaining on CPU. In this case, due to the high

cost of synchronizing CPU and GPU, the model execution with

GPU may even be slower than when the model is run solely

on the CPU6. Take ComplexYolo as an example: the execution

5Tensorflow Lite compatible operations. https://www.tensorflow.org/
lite/guide/ops compatibility.

6Tensorflow Lite non-supported models and ops of GPU results in
performance slower than running on CPU alone. https://www. tensor-
flow.org/lite/performance/gpu.



(a) ComplexYolo

(b) PointPillars

Fig. 3: Comparison of execution time of models running on a

commodity server and a Huawei Mate 20 smartphone. The

phone is (a) 3.9× slower if Tensorlfow Lite supports the

model, and (b) 375.5× slower otherwise.

time increases from 1.3 second for CPU alone to 2.3 seconds

with GPU/CPU on Huawei Mate 20, and 2.6 seconds for CPU

alone to 3.4 seconds with GPU/CPU on Google Pixel 2.

Summary. From the measurement results, we can see that

it is challenging to support 3D vision in real time on mobile

devices. None of these models can execute faster than one

point cloud per second. As a continuous vision system, it

is typically preferred to be faster than a dozen Hz, and thus

there is still a gap between the current and the desired speeds.

Besides, these models require larger than 0.4GB memory,

which is demanding for smartphones since memory is shared

by many applications. In summary, there are tremendous

opportunities for significantly reducing the computation and

memory overhead of DNN models for enabling real-time 3D

vision on mobile devices.

V. RESEARCH AGENDA

Our preliminary measurement results above demonstrate the

challenges of mobile 3D vision. We identify five areas for

potentially improving the efficiency of executing 3D vision in

real time on mobile devices, by presenting the challenges and

possible solutions for point cloud based object detection and

scene segmentation.

(a) Accuracy

(b) Computation Overhead

Fig. 4: The pre-trained model performance versus the reduced

point cloud size with random simplification. The performance

at 100% point cloud size represents the model performance

without data simplification.

A. Down-sampling Input

The input size significantly affects the DNN model com-

plexity, because a more powerful DNN model is needed for

fitting a large input [35]. For example, about 30% inference

time is reduced for the same type of model structure if the im-

age resolution is reduced by a factor of two [36]. Researchers

find that down-sampling input can not only reduce the system

overhead, but may also improve the model accuracy. The

accuracy can be improved because down-sampling can avoid

unnecessary details of input and scale objects that are too

big [37]. However, deciding the down-sampling factor for

each given input is not trivial. In the literature, AdaScale [37]

trains several 2D object detection models for different image

resolutions, and designs a neural network to predict the optimal

down-sampling factor for each input image. Based on the

prediction, the input image is down-sampled and then the

corresponding model for that image resolution is used.

We found that instead of training several models for each

point cloud size, we can use a single pre-trained model for

point clouds of any size. Figure 4 shows the performance

of a pre-trained model with regards to the accuracy and

computation overhead (in Floating Point Operations, FLOPs)

using different sizes of randomly simplified point clouds. The

performance at 100% point cloud size represents the model

performance without data simplification (i.e., the pre-trained

model using full-size point clouds). We have the following

observations.

1) Model Accuracy. The IoU remains almost the same

even when only circa 60% points are used. It slightly



decreases to 60% IoU when point clouds are simplified

to 27% of the original size. The results indicate that real-

world point clouds are highly redundant for a pre-trained

3D semantic segmentation model, the SparseConvNet

model [25]. The accuracy plummets when the sizes of

simplified point clouds are small, e.g., smaller than 20%

of the original size.

2) Computation Overhead. As we can see, FLOPs are

approximately linearly correlated with the point cloud

size. That is, the smaller the point cloud size, the less

computation overhead the model has. A point cloud of

50% points takes about 2/3 FLOPs of the full-size point

cloud. Therefore, it is preferred to sparsify point clouds

as long as the accuracy does not significantly drop.

However, unlike AdaScale, it is still unknown how to predict

the optimal down-sampling factor for each point cloud, which

is part of our ongoing work.

B. Offloading

A cloud server, either at a central data center or at the

network edge, is usually equipped with much more pow-

erful hardware than mobile devices. Therefore, offloading

computation-intensive tasks to the cloud can alleviate hardware

constraints of mobile devices [38]. However, offloading raw

data is not always practical because of the large size and

privacy concerns. For example, the size of a ScanNet point

cloud is 2.4 MB (158.8K points, 32 bits for a coordinate, and

8 bits for a color). The standard of point cloud compression is

still under active development and there is no widely adopted

hardware accelerator for point cloud compression.

To reduce the upload data size, we can either offload

intermediate results of data processing or offload partial raw

data. (1) Intermediate Result Offloading. For example, Visual-

Print [39] extracts image features on a smartphone and uploads

the fingerprints of these features to a cloud for further pro-

cessing. (2) Partial Raw Data Offloading. The authors of [6]

propose to offload Regions of Interest (RoI) of images for

object detection. These RoI sub-images are likely to contain

the target objects. However, it remains an open problem on

efficiently identifying RoIs for point clouds. Moreover, the

pre-processing of raw data on mobile devices may potential

increase the end-to-end latency. Hence, an interesting research

direction is to investigate how to balance the tradeoffs between

accuracy, bandwidth, and end-to-end latency for continuous

mobile 3D vision.

C. Model Selection

There are generic techniques to reduce the complexity of

DNN models, including parameter quantization [40] and net-

work pruning [41]. Parameter quantization reduces the number

of bits to represent each weight and pruning can be applied

to remove redundant connections or neurons. However, these

standalone techniques do not consider the run-time resources

of mobile devices. For example, a smartphone that has many

background processes may prefer a fast model in order to

reduce the end-to-end latency; a smartphone that has limited

remaining battery may prefer an energy-efficient (e.g., less

memory access) model.

A possible solution is to automatically select a model from

a pool that balances various resource-accuracy tradeoffs [2],

[42]. As cameras output images of the same resolution, the

models’ computation and memory overhead can be determined

in advance to facilitate the selection. By comparison, a 3D

scanner generates point clouds with different number of points,

e.g., higher point density for furniture than walls. For example,

the point clouds of ScanNet have an average number of 158.8K

points, but with a minimum and a maximum number of 32.8K

points and 438.6K points respectively, and a high standard

deviation of 84.3K points. Therefore, different point clouds

result in different computation overhead for data processing

(e.g., feature generation) and DNN model execution, which

makes the prediction of the run-time resource overhead of

point cloud based 3D vision systems and thus the model

selection difficult.

D. Locality in Continuous Vision

One approach to reducing the computational workload of

continuous vision is to exploit the temporal locality of con-

secutive images/frames. Instead of running object detection on

each input separately, we can treat the video as a sequence.

Object detection is only performed for two frames that are

dramatically different and caching is used for frames in

between. The systems of this kind typically consist of two

components: an object detection and a tracker. The tracker

component is used to match objects in consecutive frames and

to estimate motion information.

In 2D object detection, an image is divided into several

blocks and then blocks in two consecutive frames are com-

pared for object tracking [3]. A recent advance is to apply a

neural network to predict the object locations in next frames,

which can greatly improve the tracker accuracy [43]. However,

2D tracking technologies may not be directly applied to point

clouds because of the much larger search space of 3D domain.

Recently, FlowNet3D [44] builds a DNN model for tracking

scene flow in point clouds, and shows promising results.

However, the computation overhead of FlowNet3D is too

high to be applicable for mobile systems. Hence, designing

a lightweight tracker for point clouds remains an unsolved

open problem.

E. Hardware Parallelism

Smartphones are equipped with many computation re-

sources such as CPU, GPU, and DSP. It can greatly speed

up model execution if all these resources could be used in

parallel. However, different hardware have varied computation

capability and memory size. The heterogeneity of these hard-

ware makes the parallelism difficult, and thus it is critical to

consider the capabilities of different hardware resources when

parallelizing model execution.

There are two straightforward methods of parallelizing a

DNN based system. (1) Parallilizing DNN Model. We can

partition a DNN model into three parts, and run each part on



CPU, GPU, and DSP. However, it is unclear how to optimize

the model partition. The extra inter-hardware communication

overhead should be taken into consideration and minimized.

(2) Parallelizing Input Data. MobiSR [45] partitions an im-

age into small patches, and runs these patches on multiple

hardware in parallel. Each hardware runs a model tailored to

its capability, and a scheduler is designed to determine which

patch runs on which hardware based on the complexity of the

patch. However, partitioning a point cloud is more challenging

than partitioning an image. We intend to examine how to

partition point clouds and how to evaluate the complexity of

point clouds for scheduling.

VI. CONCLUSION

In this position paper, we argue that the mobile computing

community should pay close attention to the recent advance of

3D compute vision and its applications on mobile devices, by

exploring the emerging necessity and the associated technical

challenges of real-time mobile 3D vision. Our preliminary

measurement study reveals that it is not only computation-

intensive, but also memory-inefficient for mobile devices to

execute existing DNN models for 3D vision directly. To shed

the light in this new research direction, we present a research

agenda for accelerating these DNN models and point out sev-

eral possible solutions to better support continuous 3D vision

on mobile devices, by considering the unique characteristics

of point clouds, a popular representation of 3D objects.

The discussed directions in the research agenda are by

no means exhaustive. For example, it would be interesting

to extend the work for simultaneously supporting multiple

vision applications on mobile devices [1] to the 3D space.

This paper focuses mature DNN models for 3D vision that

are designed for point clouds. When the DNN models for

3D meshes are mature, we expect the emergence of different

research challenges and opportunities.
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