
Providing Differentiated Service from an Internet Server

Xiangping Chen and Prasant Mohapatra
Dept. of Computer Science and Engineering

Michigan State University, East Lansing, MI 48824

Abstract
Differentiated service has been proposed as a potential

solution for bandwidth allocation and expected to be
supported in the next generation Internet. However, a service
differentiating Internet with best-effort servers may not meet
the overall goals of the differentiated service. In this paper,
approaches and performance issues on providing differentiated
services from an Internet server are studied. Experimental
study and analyses prove that under near-saturation of server
utilization, differentiating service provides significantly better
performance to high priority tasks compared to a traditional
service mode. Quantitative performance estimation of different
priority levels of tasks is presented. It is also observed that an
enhanced shortest queue first task assignment scheme helps in
decreasing the average response time of the server system.

I. INTRODUCTION

The Internet and the World Wide Web (WWW) provide a
global publishing and information access infrastructure at low
costs. Thousands of companies set up web sites for marketing
and interactions with customers. Although some companies
are highly successful in using the Web as their market routes,
most companies are still reluctant to use it for core business
transactions due to the problem of unguaranteed services in
contemporary WWW servers.

Using high performance servers and broader network
bandwidth is one solution to provide better Internet services,
but the “bursty” nature of the Internet traffic and the rapid
growth in the Internet user community makes it not only hard
but also inefficient to scale up network bandwidth and server
power to provide predictable Quality of Service (QoS).

Differentiated service, known as diffserv in the IETF
community, has been proposed as an efficient and scalable
solution to provide better service for next generation Internet
(NGI) communication [1], which creates an “express-way”
to some crucial flows through prioritized transmission. We
believe that both the network as well as Internet servers must
support differentiated services. Our objective is to design
a prioritized Internet server system which can provide fast
response to high priority tasks, minimize the performance
penalty on low priority tasks without degrading the overall
system throughput.

The remainder of this paper is organized as follows. Section
2 presents the web server model, admission control and
scheduling issues. The simulation environment and results are
discussed in Sections 3 and 4 respectively. Section 5 provides
analysis of the results, followed by the concluding remarks in
Section 6.

II. DISTRIBUTED SERVER MODEL

Figure 1 shows a distributed server system with centralized
task routing. A server consists of four logical components, an
initiator

���
, a scheduler � , N task servers

�����	��

�����������
, and

a communication channel
���

. Incoming requests are queued
awaiting admission from the initiator. Each accepted request is
assigned a task, and each task is granted an appropriate priority
level by the scheduler. The scheduler assigns tasks to each
task server, and those task servers schedule and process tasks
according to their priorities. Responses are sent back to clients
through the communication channel. The capacity of the
communication channel is determined by the Internet access
point of both the clients and the server, and the backbone
bandwidth.

S

S

S

S

NS

1

A’q2

N
A’qN

2
I

nf

C

Client

A
S

Q
A’

A’

A’q1A’

A (1-d)A = A’

A’Internet

Distributed Web Server

dA

sf

Figure 1: Queuing Network Model for Distributed Web Servers.

In a general queuing network, the response time of a task
is the sum of response times from each component. Most
components are sensitive to system overload [2]. If the request
access rate and system resource consumption exceed certain
thresholds, the system becomes unstable and response time
for each task increases drastically. QoS can be assured by
maintaining the system load within the thresholds, which can
be achieved by admission control, scheduling, and efficient
task assignment schemes (if multiple servers are available).

Admission control and scheduling is implemented in the
initiator and the scheduler. Incoming requests are rejected by
the initiator when access rate exceeding the system capacity. sf
provides feedback of system load to the initiator. The scheduler
schedules different priority level tasks to assure the system
works in acceptable load condition. nf provides feedback of
network load to the scheduler. In case of network overload, low
priority multimedia tasks are discarded. Available bandwidth is
used as a metric of channel load.

III. SIMULATION

We have implemented an event driven simulator for the
experimental study of the model proposed in Section 2. In
this study, we propose to generate workload from real trace
files. Traces of ClarkNet [3] are chosen as raw data set, whose
distribution is shown in Table 1.

Table 1
ClarkNet Data Distribution.

Item HTM IMG AUD VDO DYN OTH
Req. Rat. (%) 19.9 78.0 0.2 0.007 1.2 0.693
Acc. Rat. (%) 15.0 76.6 2.4 2.4 0.8 2.80
Tran. Sz (KB) 7.43 9.67 135.1 3,514.8 6.63 37.12
Tran. CoV 2.14 1.66 1.24 0.35 3.31 3.89

The “raw” traces are overlapped on a time base to generate
different level of workload and preserve “bursty” nature of
request flow. The traces of ClarkNet contains 3,328,587
requests in two weeks period. Timestamps have 1 second
resolution, and logs with same timestamps are assumed to
distributed uniformly in a 1 second time period. There are
two reasons for choosing ClarkNet traces. First, it represents
workload for a typical commercial Internet content provider.
Second, the web documents access distribution are still popular
in current Internet servers, which is indicated in [4].

For each web task, service time is the time spent in URL
parsing, user authentication, file location and transmission, and
logging. The parameters for task processing were obtained
from [5]. For a cache hit or a CGI request, the service time is
dominated by CPU computation time; and for a large sized file
request, it is dominated by I/O processing time.

The effectiveness of a scheduling scheme is measured in
terms of mean response time and mean slowdown [6]. Mean
response time is defined as the time between the acceptance of
the request and the completion of the service. It indicates the
actual time needed to finish a task. On the other hand, task
slowdown is a metric of user tolerance. A user is often willing
to wait longer time for a big task. The slowdown of a task is the
ratio of its response time to its service time.

IV. RESULTS

A. Effectiveness of Priority Based Scheduling
In the Internet environment, both access interval and service

time distribution are significantly different from widely used
synthetic workloads. Therefore, we have used real traces for
performance evaluation. The high variance of the inter-arrival
time and service rate deteriorates system performance. As
we can see from Figures 2 and 3, with the increase in server
utilization, response time increases much faster under high
utilization. Curve (c) in Figure 2 is the slowdown curve of
requests of our model without priority distinction. Curve (d)
is the slowdown curve of a general M/M/1 queuing system.
The disparity between curve (c) and (d) indicates the impact of
self-similar traffic on the system utilization. The utilization of
0.5 in the simulator leads to about the same level of delays as
utilization of 0.8 in a Poisson distribution.

Performance degradation of high priority tasks with
priority-based scheduling happens at a much higher utilization
compared to the non-priority-based model. Curves (a) and
(b) in Figure 2 are the slowdown curves of low priority
requests and high priority requests, respectively. The ratio of
high priority is 0.5 and is uniformly distributed in the whole
arrival sequence. The introduction of priority queuing causes
a steep rise of low priority requests response time at a system
utilization of 0.4. High priority requests incur low delay even
when the system approaches full utilization.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200

Server Util

M
ea

n
S

lo
w

do
w

n

low_pri (a)
high_pri (b)
non_pri (c)
general (d)

Figure 2: Task slowdown.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Server Util

M
ea

n
R

es
po

ns
e

T
im

e
(s

)

low_pri (a)
high_pri (b)
non_pri (c)
general (d)

Figure 3: Task response time.

B. Maximum High Priority Ratio
Our next experiment explores ratio, the relationship between

the increase in high priority ratio and the region of the “knee of
the curves” in the system. Figures 4 and 5 show the delay curves
of high priority tasks with high priority ratio varying from 0.5 to
0.9. With the increase in high priority ratio, the curve gets closer
to the original non-prioritized system curve, and the margin of
benefit obtained from differentiating service diminishes.

Figure 5 shows the mean response time of high priority
tasks with 95% confidence interval. The “performance knee”
of the mean response time of high priority tasks are primarily
determined by effective utilization of high priority tasks. The
relationship between the whole system utilization and the
performance degradation point of high priority tasks is not
obvious.

Figures 6 and 7 show the mean slowdown and response time
curves of low priority tasks with the high priority ratio ranging

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200

Server Utilization

M
ea

n
S

lo
w

do
w

n
of

 H
ig

h
P

ri.
 ta

sk
s

high_pri 0.5
high_pri 0.6
high_pri 0.7
high_pri 0.8
high_pri 0.9

Figure 4: High priority ratio.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

Server Utilization

M
ea

n
R

es
p.

 T
im

e
of

 H
ig

h
P

ri.
 ta

sk
s

(s
)

Response Time with 0.95 of confidence interval

high_pri 0.5
high_pri 0.6
high_pri 0.7
high_pri 0.8
high_pri 0.9

Figure 5: High priority ratio.

from 0.5 to 0.9. With the increase in the high priority ratio,
the system utilization that causes the steep rise of response time
decreases. On the other hand, the spectrum of the occurrence
of the “performance knee” is relatively narrow for low priority
tasks, which reflects the decreased impact of low priority tasks
with low percentage of access rate.

C. Task Assignment Schemes
In a distributed server environment, an appropriate task

assignment scheme decreases the waiting time variance and
thereby improves the system performance on the whole.
We compare the three types of task assignment schemes
experimentally. The first one is based on load balancing
techniques, such as Round Robin or Shortest Queue First
schemes. The second type is resource reservation based, which
decreases waiting time of a high priority task. The third one is
preemption based, i.e., higher priority tasks can preempt lower
priority tasks.

In load balancing type of task assignment schemes,
Round Robin (RR) assigns tasks in rotation order of servers
without considering the priority of tasks. Shortest Queue First
(SQF) is proven to be optimal in previous studies, and
assigns a new task to the server with least number of waiting
tasks. To adapt to the differentiated service environment, an
Enhanced SQF (E SQF) scheme is introduced in which a new
task is assigned to the server with least number of waiting tasks
with equal or higher priority tasks than the new task. Figures 8
and 9 compares the performance of the above three schemes.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200

M
ea

n
S

lo
w

do
w

n
of

 L
ow

 P
ri.

 ta
sk

s

Server Utilization

high_pri 0.5
high_pri 0.6
high_pri 0.7
high_pri 0.8
high_pri 0.9

Figure 6: Low priority task slowdown.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Server Utilization

M
ea

n
R

es
p.

 T
im

e
of

 L
ow

 P
ri.

 ta
sk

s
(s

)

high_pri 0.5
high_pri 0.6
high_pri 0.7
high_pri 0.8
high_pri 0.9

Figure 7: Low priority task resp. time.

Compared to the RR scheduling, SQF helps to decrease the
variance of waiting queue length, thus the response time.
E SQF outperforms SQF when the high priority access rate
is acceptable, and decreases the mean response time of high
priority tasks, but there is no significant difference in these two
schemes under high load.

In a non-preemptive environment, preserving some
resources for high priority tasks decreases the chance of high
priority tasks waiting for lower priority tasks in service. With
the increase in reserved resources, the performance of the
scheme by preserving resources gets close to the preemptive
priority scheduling.

V. ANALYSIS

In this section, we try to derive a guideline for performance
of high priority requests in such systems. Some notations used
in the study are listed in Table 2.

A task’s waiting time is decomposed into three parts: delay
it encounters due to the task being in serviced upon its arrival;
delay it experiences due to tasks enqueued upon its arrival; and
delay due to higher priority tasks arriving after its arrival. For
high priority tasks, the third part of waiting time does not exist.

���
 ���������
(1)

In a non-preemptive system, from the viewpoint of a newly
arrived task, the first part of the delay is due to the task found
in service upon arrival. This delay is equal to the other tasks’

10 20 30 40 50 60 70 80 90 100 110 120
0

10

20

30

40

50

60

70

H Requests Access Rate

M
ea

n
S

lo
w

do
w

n
of

 H
 T

as
ks

rnd_rob
short_q
pri_sq

Figure 8: High priority task slowdown.

10 20 30 40 50 60 70 80 90 100 110 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

H Requests Access Rate

M
ea

n
R

es
p

T
im

e
of

 H
 T

as
ks

 (
s)

rnd_rob
short_q
pri_sq

Figure 9: High priority task response time.

Table 2
Notations used in the study.

���
Mean waiting time for tasks in high priority group.���
Residual life of a task in service.���
Sum of execution time of queued tasks.� �
Probability of high priority tasks.� �
Arrival interval of high priority tasks.	
Mean service time for tasks.

	�
�	 �
�	�

� �

Mean system time for tasks in high priority group.��� �
The number of queued high priority tasks.��

Probability of low priority tasks in service.��

Mean waiting time for tasks in low priority group.�

Mean system time for low priority tasks.

residual life, and determined by the whole system utilization,
see Equation 3. In the worst case, when each task enters the
system, there is always a task in service, and the task in service
is just beginning to execute. The average delay of the worst case
is equal to mean service time.

���
�� ����� � � ��� ��� �
(2)

In the worst case, when each task enters the system, there
is always a task in service, and the task it finds in service just
begins its processing. Mean waiting time to the residual life of
a service equals its service time, i.e.,

� ���
 �
The second part is the execution time of queued tasks with

equal or higher priority when a task enters the system. High

priority tasks need not care about the waiting lower priority
tasks. The time for waiting for the queued tasks only depends
on the number of high priority tasks in the system.

� �
 ��� � � �
(3)� � �
 ! � � � �
(4)

� �
 � � � � �

 ��� ! � � � � � � �

 ���
�#" ��� ! �

 � � ��� � ��� ���
�#" ��� ! � (5)

$
�

�#" ��� ! � (6)

The upper bound of
� �

is
�

. The “shape of the curve”
is mainly decided by

! �
. To obtain a stable system response

and throughput states, the high priority system utilization,! �%���
, shall not exceed the “knee” of the whole system

utilization curve. The whole system utilization determines the� �
and

���
. When the arrival rate of high priority requests is

bounded, reserving system resources decreases
� �

, thus
� �

. In
a preemptive scheduling case,

� �
equals to zero.

VI. CONCLUSION

The next generation Internet will demand differentiated
services from web servers, which can be achieved through
priority-based service. Servers need to provide high quality
of service to high priority tasks even under high system
utilization. In this study, we prove that under near-saturation
of web server utilization, differentiated services provide
significantly better services to high priority tasks compared
to a traditional web server. We also present quantitative
performance estimation of different levels of tasks.

VII. REFERENCES

[1] S. Blake, D. Black, M. Carlson, E. Davies, Z.Wang, and
W. Weiss, “An architecture for differentiated services,”
RFC 2475. December 1998.

[2] L. P. Slothouber, “A model of web server performance,” in
the Fifth International World Wide Web Conference, (Paris,
France), May 1996.

[3] http://ita.ee.lbl.gov/html/contrib/clarknet-http.html.
[4] X. Chen and P. Mohapatra, “Lifetime behavior and its

impact on Web caching,” in IEEE Workshop on Internet
Applications (WIAPP’99) , (San Jose, CA), July 1999.

[5] Y. Hu, A. Nanda, and Q. Yang, “Measurement, analysis
and performance improvement of the apache web server,”
in 18th IEEE International Performance, Computing and
Communications Conference (IPCCC’99), February 1999.

[6] J. L. Hellerstein, “An approach to selecting metrics for
detecting performance problems in information systems,”
in Proceedings of the ACM SIGMETRICS conference on
Measurement & modeling of computer systems, May 1996.

