
Heterogeneous QoS Multicast in DiffServ-like Networks

A. Sai Sudhir and G. Manimaran Prasant Mohapatra
Dept. of Electrical and Computer Engineering Dept. of Computer Science

Iowa State University University of California
Ames, IA 50011, USA Davis, CA 95616, USA

saisud@iastate.edu, gmani@iastate.edu prasant@cs.ucdavis.edu

Abstract

Multicasting in DiffServ networks is a challenging
problem due to the architectural conflicts between them,
namely, stateful vs. stateless core. In this paper, we assume
an edge-based multicast (EBM) model wherein the multi-
cast tree is constructed such that the branching occurs only
at the edge routers. We propose an algorithm to solve the
problem of dynamic member join/leave in heterogeneous
QoS multicasting under EBM model. We formally state the
problem and propose an algorithm for it, which is optimal
when the constraint on the member join/leave requires
that there can be no service disruption for on-tree nodes.
We then evaluate the performance of our algorithm with
respect to a static multicast tree construction heuristic and
a source-based shortest path algorithm using “Tree QoS
Cost” as a primary metric. Our studies show that the
proposed algorithm achieves good performance in terms
of Tree QoS Cost, time taken for member join/leave, and
number of service disruptions with acceptable storage
overhead.

I. Introduction

The Differentiated Services (DiffServ) architecture [1]
was proposed to provide scalable QoS on an Internet-wide
scale. DiffServ is built upon a simple model of traffic
conditioning and policing at the edges of the network in
addition to classifying flows into different service classes.
The traffic is forwarded using simple differentiated treat-
ments, called per-hop behaviors (PHBs), in the core of the
network. These two main components aim to provide QoS
guarantees for the service flows. This differential treatment
results in differential pricing which is a motivating factor
for the adoption of this idea by major network providers
and ISPs. Multicasting [2] has been a popular mechanism

for supporting group-based applications, such as videocon-
ferencing and content distribution.

Though multicasting and DiffServ are complementary
technologies, there are two primary architectural conflicts
between them [3]. The first is that multicasting mandates
the maintenance of per-group state information at all
routers, while DiffServ relies on the statelessness of the
core. The second conflict is that multicasting is based
on receiver-driven QoS whereas DiffServ is based on
sender-driven QoS. To address these conflicts, an Edge-
Based Multicasting (EBM) approach was proposed in [4]
and is characterized by a multicast unaware core. Only
edge routers participate in multicast and replicate multicast
packets. EBM confirms to the DiffServ philosophy of
stateless core and is easy to deploy.

Due to the receiver-driven nature of multicasting, dif-
ferent receivers of a multicast group can request varying
levels of QoS (PHBs) as supported by the DiffServ frame-
work. The DiffServ framework provides three per hop
behaviors (PHBs) or levels of service namely Expedited
Forwarding (EF) [17], Assured Forwarding (AF) [18] and
Best Effort (BE). Although it may be acceptable if a
receiver requesting a lower level of service receives a
higher level of service, a receiver requesting a given level
of service must receive it. Due to the heterogeneity in
receiver QoS levels, different links in a multicast tree carry
different types of traffic such that the QoS requirements
of downstream receivers are satisfied. There is a QoS cost
associated with the multicast tree and the tree constructed
must be QoS cost-efficient.

In this paper, we propose a dynamic member join/leave
algorithm that adds/removes members with heterogeneous
QoS requirements to/from an existing multicast tree in
DiffServ networks. In this context, the problems are in-
formally stated as follows:� The goal of the member join algorithm is to find an

optimal on-tree attachment point for the new member
such that the increase in tree QoS cost (defined later)

is minimum.� The goal of the member leave algorithm is to find an
optimal on-tree pruning point for the leaving member
such that the decrease in tree QoS cost is maximum
and such that there is no service disruption for on-tree
nodes.

It must be noted that the fact that there can be no service
disruptions on the on-tree nodes when a member join/leave
operation occurs serves as a constraint on the problem. It
is not a feature of the problem or its solution.

The following are the key distinguishing features be-
tween the traditional member join/leave problem (e.g.,
[8], [9], [10], [12], [13], [14]) and the member join/leave
problem considered in this paper.

1) The traditional QoS join/leave algorithms aim to sat-
isfy QoS constraints such as end-to-end delay or loss
between source and a receiver, or inter-receiver delay
variation, in addition to minimizing cost. Whereas,
the algorithms for the given join/leave problem need
to satisfy “end-to-end service level constraint”, in
addition to minimizing QoS cost. The term end-to-
end service level constraint refers to finding a source-
receiver path whose constituent links must support a
service level greater or equal to that of the service
level requested by the receiver. For example, for a
receiver requesting an AF class of service, the links
of the source-receiver path must support AF or EF
level of service but not BE (assuming EF is a higher
level of service than AF, and BE is a lower level
of service than AF). Since the join/leave problem
considered in the paper has only one path constraint
(QoS cost) and one link constraint (service level),
the problem does not belong to NP-complete class
and it can be solved by a polynomial time algorithm.

2) The traditional join algorithms aim to minimize
(maximize) the tree cost between the attachment
(pruning) point and the new member. Whereas, al-
gorithms for the given join (leave) problem need to
minimize (maximize) the combined “tree QoS cost”,
which is the sum of the QoS cost of the attachment
path and the QoS cost, if any, due to upgrading
(downgrading) of on-tree links to account for higher
QoS level of the new (leaving) member.

The rest of the paper is organized as follows. In Section
2, we examine related work. In Section 3, we formulate
the problem. In Section 4, we describe the algorithm to
solve the problem. In Section 5 we prove that our method
is optimal. In section 6 we perform simulation studies and
we conclude in Section 7.

II. Related Work

Several multicast tree construction algorithms have
been proposed for both static and dynamic multicast
groups. We first examine related static tree construction
work and then discuss related work in dynamic QoS
multicast routing. For the sake of discussion we group
static tree algorithms into two categories as follows.
Algorithms for Heterogeneous QoS : The authors in
[8] build a multicast tree subject to delay and delay-
variation constraints which are QoS parameters. In [9], the
author proposes a heuristic to construct a multicast tree
that minimizes bandwidth (rate) usage. [10] constructs a
multicast routing tree taking into account the heterogeneity
of receivers in terms of bandwidth and delay, and at the
same time consumes as little resources as possible. [11]
presents an approximation algorithm to find a balance
between a minimum-cost multicast tree and a minimum-
delay multicast tree with a provably good performance
when the link delay and link cost are equal.

Algorithms for Heterogeneous QoS in a DiffServ
domain : In [4], the authors propose the concept of
Edge-Clustered Tree (ECT) in a DiffServ setting which
ensures that a receiver with a higher service level cannot
sit downstream from a receiver with a lower service level.

QoS-aware dynamic multicast routing : Based on
how the new member is connected to the tree, multicast
routing protocols can be classfied into two broad
categories: single-path routing (SPR) and multiple-path
routing (MPR). An SPR provides a single path connecting
the new member to the tree, whereas an MPR provides
multiple candidate paths. Several SPR protocols such as
DCUR and RDM [12] typically use delay and cost tables
for making routing decisions during QoS path setup.
MPR protocols provide or probe multiple candidate paths
in order to increase the chances of finding a feasible path
(i.e., a path that satisfies the QoS requirements of the
member). Spanning-join, QoSMIC, QMRP, and parallel
probing are among the recently proposed MPR protocols
[13], [14] (and the references therein). [15] addresses the
problem of member join/leave in a DiffServ setting, but
it does not assume an EBM model.

It is important to mention that our work can also be
applied to the End-system Multicast (ESM) model [16].
EBM and ESM models are somewhat similar in the sense
that, in EBM, only edge routers are multicast capable,
and in ESM, only the member end hosts are required to
be multicast capable. The problem of heterogenous QoS
dynamic multicasting, which we pose in this paper, has
neither been addressed in the context of EBM nor ESM.
Therefore, the solution for member join/leave presented

2

here can be applied to both EBM and ESM models.

III. Problem Formulation

A. Network Model

We represent the DiffServ Network by a weighted
undirected graph

� � �����	��

.
�

denotes the set of
nodes, and

�
, the set of edges corresponding to the set

of communication links connecting the nodes. We define a
function �� ������� which assigns a nonnegative weight
to each link in the network. A path from a vertex �
to a vertex � is denoted by (��� �). Since our EBM
model allows multicast tree branching to occur only at the
edge routers, we transform the given graph

������������

into another undirected graph

��� �!���"�#�	�$��

, where

�%�
denotes the set of all edge routers in the DiffServ network
(
�%�'&(�

). The edge set
���

is the set of shortest paths in�
between vertices � � �*) �+� , and the weight of an edge� � � �
) ��� is the length of the shortest path between �

and � in
�

.

B. Problem Definition

We consider the following multicasting scenario. Pack-
ets originating at some source node called the Ingress
node, ,-) � � have to be sent to a set . &/� �-021 ,"3
of destination nodes. Multicast packets are routed from
, to the members of . on the links of the multicast tree4 �!���%5��	�$56

rooted at , . The multicast tree is a subgraph
of
�7�

spanning , and the nodes of . . The following
definitions are useful in precisely defining the problem.
QoS Level: Let 8 denote the set containing all possible
levels supported by the DiffServ framework. We define a
level assignment function, 9:;. � 8 which assigns a level
of service to a multicast receiver <=)>. . Packets marked
with higher levels of service receive better treatment than
those with lower levels of service at a router.
Cost of a Level: We also define a cost assignment function,? @8 ���$� which assigns a positive cost to a particular
level. Let ACB and AED be any two service levels in 8 such
that A B#F A D , i.e. A B is a higher level service than A D . Then?=� A B
 F ?=� A D
 .
End-to-end QoS: Let

� ,$�G<
 denote the path from Ingress
node , to multicast receiver <�)H. in the tree

4
. In order

to satisfy the “end-to-end QoS requirement” of the receiver
< requesting service level A B , all links I') � ,��J<
 must
carry traffic of level A B or above.
QoS Cost of a link: The QoS cost associated with a link I
is � � I
LK@?=� AMB
 , where function � assigns a non-negative
cost to a link.

If I is on the path from , to multiple receivers, then the
level of traffic carried by I will be the highest of service

levels requested by those receivers. If any receiver has
requested a lower level of service it can still receive a
better service if it sits upstream from any higher service
level receiver. This is called Good Neighbor Effect [20].

The QoS cost of a link (more specifically the function?
) is a utility function dependent upon factors such as traf-

fic models, scheduling disciplines and network topology.
a) The Minimum QoS Cost Multicast Tree (MQMT)

problem:: Given a graph
���N� ���"�$���$�O

, a set of
multicast receivers . , a source ,>P)Q. , a level-assignment
function 9 and a cost-assignment function

?
, a QoS

Multicast Tree (QMT) is a tree
4 �R���%ST���USV

with an
assignment of levels W � I
 to every edge IX) ��S satisfying
the following conditions:� 4 is a subgraph of

� �
rooted at , .� For every receiver Y�)Q. , the path ,$�ZY satisfies

the end-to-end QoS requirement of Y .

The QoS cost of tree
4

is:[
\^]^_a` �

� I
bKc?=� W � I
d
 (1)

The minimum QoS cost multicast tree is the QoS mul-
ticast tree

4
with the smallest possible cost.

In other words, the multicast receivers should receive
the QoS they requested and at the same time the tree QoS
cost of the multicast tree must be minimum. In [21] we
proved that Problem MQMT is NP-complete.

Problem QMT-Join-Leave (QMT-JL)
Let us consider a QMT

4 ���%S	�	�USd

constructed by a static

multicast tree construction algorithm. Let cost of
4

beegfihkj � 4
 . Let us say a node < requesting service level A B
wants to join

4
. After joining the tree, lets call the resulting

tree
4ml ��� S l �	� S l
 . The cost of this tree is egfihkj � 4ml
 .

In this scenario, A join operation is one that minimizesegfihkj � 4�l
 - egfihkj � 4
 and which satisfies the end-to-end QoS
requirement of node < . Note that a join operation will not
decrease the tree QoS cost because join does not involve
tree rearrangement.

A leave operation is one that maximizes egfihkj � 4
 -egfihkj � 4�l
 but without disrupting service of any on-tree
node.

In this paper we assume that
?=����n�
 � o

,?=�qpmn�
-�sr
and
?=�qt���
-�Ru

. It must be noted that the
prioritization of QoS levels as described above is loosely
defined. In reality, they are application specific. For the
sake of simplicity and consistency throughout this paper,
we treat EF as a better QoS level than AF.

Fig. 1 shows an example of a node join operation.
Node e was only receiving BE service before v joined,
but since v has requested EF service, the link between e
and w is upgraded to EF service so that the end-to-end QoS
requirement of v is satisfied.

3

a

h

g

f

e

i c

8

1

2

10

6 2

EF

EF BE

AF

QoS Cost = 27*3 + 2*1 = 83

8

1

6 2

10

2

a

h

g

f

e

i c

d

7

QoS Cost = 36*3 = 108

EF

Fig. 1. Example of a Join Operation

Node ID
QoS Cost
from Source EF AF BE

h

g

f

e

i

c

0 0 0 0

24 0 0 0

0 0 0

0

0 0

0 0

27

33

63

45

47

0

2

0

0

0

0

4

a

Fig. 2. Information maintained at source

IV. An Algorithm for QMT Join & Leave

Our algorithm relies on maintaining certain information
about the type of traffic each link of the tree is carrying
and how the cost of that link will vary if the type of traffic
through that link changes due to member join/leave. Since
the source is informed of every join and leave operation, it
knows the entire traffic information pertaining to that tree.
So it can maintain the change in the QoS cost of a link
if the traffic through that link changes. The information
maintained for the tree in Fig. 1 is shown in Fig. 2. Each
entry consists of the node ID, the QoS cost from the source
to the node and the change in the QoS cost from the source
for each type of traffic level.
Member Join
The idea behind our algorithm is that the links on the path
from the source to the joining node will have to carry a
traffic atleast equal to that of the joining node’s service
level. Some on-tree links might have to be upgraded for
this to happen and the change in the cost due to the
upgradation is given by the table. New links will carry the
service level requested by the new receiver. The cost of
the on-tree links have to be upgraded by a value reflecting
the difference in the QoS cost between the traffic through
that link before and after the member join, and the links
that are not already part of the tree will have a QoS cost
corresponding to the traffic level of the new member.

Fig. 3 shows an example of the steps involved in
member join. Fig. 3(a) shows the auxiliary graph with
the modified edge costs. Fig. 3 shows the shortest path
between the source and the new member in the auxiliary

graph. Fig. 3(c) shows the new tree with the link costs
after node v has joined.
Time Complexity of Member Join

8

11

7

1

6

2 10

4 9

7

2

8

a

h

b

i

g f

c

e

d

G (V , E)

Ingress = a, M = {h, c, f, e, i}

4

R R R

a

h

g

f

e

i c

0

0

0

0 4

8

0

d

b
12

33

24

21
24

a

h

g

f

e

i c

d

0

0

0

24

a

h

g

f

e

i c

d

8

8

6 2
1

2

10

27
Shortest path between a and d

Auxiliary Graph showing modified
edge costs

d joins
New tree after node

 showing the link costs

(a) (b) (c)

Q(h) = EF, Q(c) = EF, Q(f) = AF, Q(e)= BE, Q(i) = BE

Fig. 3. Steps in member join

Let x be the number of edge routers and y be the
number of edges in the graph. The determination of the
attachment point for the new member by the source of
the multicast tree requires one shortest path computation
and it can be done in O(xOz A f|{ x~}Zy) using a Fibonacci
heap [19] implementation. After the join has taken place,
the table maintained at the source has to be altered (if
necessary). In the worst case, all links in the multicast tree
might have to be updated. Hence, this step takes O(x) time.

Member Leave
We consider two scenarios for members leaving the tree.� The first case is the leaving member is a leaf node

in the tree. In this case we prune the tree until we
meet another member or we meet any other node with
an out degree of more than one. We then propagate
the highest service level of its downstream receivers
towards the source.� The second case is when a non-leaf member wants
to leave the group. In this case, we do not physically
remove the node from the tree. Instead we simply
propagate the highest service level of its downstream
receivers towards the source.

Time Complexity of Member Leave
In the worst case all nodes in the existing multicast tree
have to be examined while propagating the highest level
of any downstream receiver towards the source. This
situation can occur when a receiver of the highest level
is far away from the source. Hence, the worst case time

4

complexity of member leave is O(x) where x is the
number of edge routers. The source table might have to
be updated after the member leaves. This step again takes
O(x) time.

Storage Complexity of QMT-JL
The source table contains one entry for every link in the
multicast tree. The maximum number of links in the tree
can be x 0 u where x is the number of edge routers.
The table also contains one entry for each service level
supported by that DiffServ domain. Thus, the overall
storage complexity of QMT-JL is O(x@A), where A is the
number of levels in the DiffServ domain. It must be noted
that, this information is maintained on a per-tree basis
and not on a per-domian basis. If we assume that we do
not maintain the change in the QoS cost for the least
level (which anyway would be 0), we have exactly A 0 u
service levels for which the change in QoS cost has to be
maintained. For example, if the number of edge routers
is 50, the number of distinct QoS levels is 4 and each
entry in the table occupies 4 bytes, then in the worst case,
the storage needed at the source for one multicast tree is
600 bytes (assuming we do not maintain the lowest QoS
level).

V. Optimality Proof

In this section we prove that algorithm QMT-JL
provides the minimum increase in cost of the existing
multicast tree when a new member requesting any service
level joins the multicast group.
Lemma 5.1 Let

4
be an existing QMT. Let < be the

receiver that wants to join the multicast group. Let the
resulting tree be

4ml
. Then the join operation minimizes

cost(
4�l

) - cost(
4

). In other words algorithm QMT-JL
finds the optimal attachment point for < upon every
join operation without disrupting the service of on-tree
multicast receivers.

Proof There are two cases to consider. The optimal
attachment point can have a service level greater than
or equal to the member about to join. In this case the
links of the existing tree need not be updated as they
can satisfy the QoS requirement of the new member. The
second case arises when the optimal attachment point has
a lower service level than the new member.
Case 1 is optimal- In this case, according to algorithm
QMT-JL all on-tree links from the source to the optimal
attachment point are assigned a cost of zero because the
service level of the new member can be satisfied by these
links. Let the optimal increase in QoS cost be � and the
optimal attachment point be � . Our algorithm finds the
shortest path from the source to the new member < . This

shortest path will definitely contain the node � because
all the links from the source to � have an increase in QoS
cost equal to zero. The shortest path will exit the tree at
� and has a cost of � from � to < which in turn is the
optimal increase in QoS cost when < wants to join the
group. Thus, case 1 is optimal.
Case 2 is optimal- In this case on-tree links from the
optimal point of attachment � towards the source have
to be upgraded to reflect the change in service level as
dictated by the new member. Lets call this change in
cost as � and let � be the QoS cost from � to < . Since
we are concerned only about the increase in QoS cost
when a join occurs, we add � to � and then set � to zero.
Thus, the QoS cost from � to < is now �Q}�� and the
change in QoS cost from the source to � is zero. Thus,
case 2 can now be treated as a special instance of case 1.
Thus algorithm QMT-JL will also return � as the optimal
attachment point for < . Hence, case 2 is also optimal.

Before, we proceed to simulation studies, we give a
description of algorithm Highest Level In First (HLIF), a
static QoS-aware multicast tree construction algorithm we
proposed in [21]. We compare the performance of QMT-
JL with HLIF in the next section.
Algorithm HLIF

HLIF builds a multicast tree by adding members in
decreasing order of levels as follows. HLIF first considers
receivers at the highest QoS level for addition. When all the
highest service level nodes have been added, it considers
all the nodes in the next lower service level and repeats
the addition until all members of the multicast group have
been added.

The intuition behind HLIF is that a path from the
Ingress node to a higher service level node must be
made as short as possible. Longer path lengths to higher
service level nodes will incur more QoS cost. Therefore,
we construct a static multicast tree by adding nodes in
decreasing order of their service levels. Nodes of lower
service levels will be attached to higher service level nodes
and hence the QoS cost along that path will be low. Thus,
we do not over-provision network resources along paths to
receivers with lenient QoS requirements.

VI. Simulation Studies

In our simulation studies we compare the following
three algorithms.

� QMT-JL : The member join/leave procedure we have
proposed in this paper.� HLIF (Highest Level In First) : The static multicast
tree construction algorithm we proposed in [21].

5

� SSP (Source based Shortest Path) : This method
consists of finding the shortest path (in terms of link
cost) from the new member to the source and adding
the corresponding path to form the new tree and then
updating the QoS cost along the newly added path.

The various input parameters for the simulation studies are
as follows:� Random Network topologies were generated using

“Average Degree” as the input parameter. This in
turn determines the graph density. Higher the average
degree, denser the graph.� The default parameters are (a) Total number of nodes
= 60 (b) Average number of group members = 15 (c)
Average number of edge routers = 45 (d) Number of
QoS levels = 3 (e) Link weight was varied between
25 and 80.� The per unit QoS Cost was assigned as

?=� A B
�� w .
The performance metrics used to compare the various algo-
rithms were Tree QoS cost, Number of Service Disruptions,
Storage Overhead and Running time per operation.
The effects of the Number of QoS levels and the
Join/Leave ratio were studied in our simulations.
Effect of Number of QoS Levels

2000

2500

3000

3500

4000

4500

5000

1 2 3 4 5 6

T
re

e
Q

oS
 C

os
t

Number of QoS Levels

Number of nodes = 60, Group members = 15, Graph Density = 9, 25 Operations, Join/Leave Ratio 3:1

QMT-JL
HLIF
SSP

Fig. 4. QoS Cost vs Number of QoS Levels

1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

1 2 3 4 5 6

T
re

e
Q

oS
 C

os
t

Join/Leave Ratio

Number of nodes = 60, Group members = 15, Number of Levels = 3, Graph Density = 9, 25 Operations

QMT-JL
HLIF
SSP

Fig. 5. QoS Cost vs Join/Leave Ratio

Tree QoS Cost-

Algorithm TQC SD Storage Time

HLIF Best Very Poor No Poor
QMT-JL Fair Best(0) Yes Fair

SSP Poor Best(0) No Best

TABLE I. Comparison Criteria for various
Algorithms

Fig. 4 shows the Tree QoS Cost plotted against the number
of QoS levels for algorithms HLIF, QMT-JL and SSP.
It is clear that as the number of QoS levels increases,
the Tree QoS cost increases for all the three algorithms
because a higher service level is charged more than a lower
service level. HLIF performs better than QMT-JL because
it is a static tree construction algorithm and allows for
service disruption. Again SSP performs worse than QMT-
JL reiterating the fact that a source-based shortest path
might always not be a good solution.
Effect of Join/Leave Ratio
Tree QoS Cost-
We plot the Tree QoS cost vs Join/Leave Ratio graph in
Fig. 5 for the three algorithms. As the Join/Leave ratio
increases, the Tree QoS cost increases due to increased
number of joins which contribute to an increase in QoS
cost.
Summary of Comparison of QMT-JL, HLIF and SSP
Table 1 compares the three algorithms on the basis of four

criteria.

� Tree QoS Cost (TQC)- It is clear that HLIF has the
least Tree QoS cost. QMT-JL is better than SSP but
worser than HLIF because it does not allow for any
service disruptions to occur. It is optimal when there
are no service disruptions.� Number of Service Disruptions (SD)- HLIF performs
badly because the tree is reconstructed upon every
join/leave operation. Both QMT-JL and SSP do not
allow for service disruptions.� Storage Overhead- QMT-JL is optimal when there
are no service disruptions because it maintains some
additional tree-related information at the source. SSP
and HLIF do not incur any storage overhead for a
successful join/leave operation to happen.� Running time per operation- HLIF has the worst
time complexity per operation as the entire tree is
reconstructed again. SSP is the best because it just
finds the shortest path between the source and the new
member. QMT-JL also finds only one path always,
but it has the overhead of updating the information it
maintains after every operation.

6

VII. Conclusion

In this paper, we first formulated the member prob-
lem of join/leave in heterogeneous QoS multicasting in
DiffServ networks and then proposed an optimal algo-
rithm, QMT-JL. The algorithm is based on maintaining the
change in QoS cost of an on-tree link when a new member
joins. Member leave does not disrupt service of existing
on-tree nodes. We also have compared QMT-JL, SSP and
the static multicast tree construction algorithm HLIF with
Average QoS Cost as performance metric.

There are some important issues meriting further re-
search:
� Tree rearrangement- Since members join and leave the

group based on locally optimal paths (e.g., in terms of
cost), the global optimality of the tree will degenerate
as more and more join/leave operations happen. This
calls for tree rearrangement whose goal is to keep the
cost of the tree near optimal with minimal service
disruptions. Addressing this issue in the context of
heterogeneous DiffServ QoS is an interesting future
work.� In the current form, our algorithm does not take into
account minimizing the number of good neighbor
instances. As a future work, we could develop a cost
model and an algorithm that accounts not only for the
Tree QoS cost but also takes into account the good
neighbor cost.

References

[1] K. Nichols, S. Blake, F. Baker, and D. Black, ”Definition of the
Differentiated Services field (DS filed) in the IPv4 and IPv6 headers,”
IETF RFC 2474, Dec. 1998.

[2] S. Deering, ”Multicast Routing in Internetworks and Extended
LANs”, ACM SIGCOMM Computer Communication Review, 1995.

[3] A. Striegel, and G. Manimaran, ”A scalable approach to DiffServ
Multicasting,” in Proc. of ICC’2001, Helsinki, Finland, June 2001.

[4] A. Striegel, A. Bouabdallah, H. Bettahar, and G. Manimaran, ”EBM:
A New Approach for Scalable DiffServ Multicasting”, in Proc. of
Network Group Communications (NGC), Munich, Germany, Sept.
2003.

[5] H. Takahashi and A. Matsuyama ”An Approximate solution for the
Steiner problem in graphs,” Math. Japonica, vol. 24 (1980), pp. 573-
577.

[6] L. Kou, G. Markowsky and L. Berman, ”A fast algorithm for Steiner
trees,” Acta Informatica 15 (1981) 141-145.

[7] S. Ramanathan, ”Multicast tree generation in networks with asym-
metric links,” IEEE/ACM Transcations on Networking, 4(4):558-568,
November 1996.

[8] G.N. Rouskas and I. Baldine, ”Multicast Routing with End-to-End
Delay and delay variations constraints,” IEEE INFOCOM’96, 1996,
pp. 353-360.

[9] N.F. Maxemchuk, ”Video Distribution on Multicast Networks,” IEEE
JSAC, April 1997, vol.15, no.3, pp. 357-372.

[10] B. Wang and Jennifer C. Hou, ”QoS-Based Multicast Routing for
Distributing Layered Video to Heterogeneous Receivers in Rate-
based Networks,” IEEE INFOCOM’00, 2000, pp. 480-489.

[11] G.L. Xue, ”Minimum-cost QoS multicast and unicast routing in
Communication Networks,” IEEE Transactions on Communications
51(5): 817-824 May 2003.

[12] R. Sriram, G. Manimaran, and C. Siva Ram Murthy, ”Preferred link
based delay-constrained least cost routing in wide area networks,”
Computer Communications, vol.21, no.18, pp.1655-1669, Nov. 1998.

[13] S. Chen, K. Nahrstedt, and Y. Shavitt, ”A QoS-aware multicast
routing protocol,” IEEE INFOCOM, pp.1594-1603, 2000.

[14] G. Manimaran, H. Shankar Rahul, and C. Siva Ram Murthy, ”A
new distributed route selection approach for channel establishment
in real-time networks,” IEEE/ACM Trans. Networking, vol.7, no.5,
pp.698-709, Oct. 1999.

[15] A. Striegel and G. Manimaran, ”A scalable protocol for member
join/leave in DiffServ multicasting”, in Proc. IEEE Local Computer
Networks (LCN), Florida, USA, Nov. 2001.

[16] Yang-hua Chu, Sanjay G. Rao and Hui Zhang, ”A Case For
End System Multicast”, Proceedings of ACM SIGMETRICS, Santa
Clara,CA, June 2000, pp 1-12.

[17] V. Jacobson, K. Nichols, and K. Poduri, ”An Expedited Forwarding
PHB,” Internet Draft, IETF, Nov. 1998.

[18] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski, ”Assured
Forwarding PHB Group,” Internet Draft, IETF, Nov. 1998.

[19] T.H. Cormen, C.E. Leiserson and R.L. Rivest, ”Introduction to
Algorithms,” The MIT Press, Cambridge, Mass., 1990.

[20] A. Striegel, and G. Manimaran, ”Dynamic DSCPs for Heteroge-
neous QoS in DiffServ Multicasting,” in Proc. of IEEE GLOBECOM,
Nov. 2002.

[21] A. Sai Sudhir, G. Manimaran and S. Tirthapura, ”Heterogeneous
QoS in DiffServ Networks - Static Multicast,” Technical Report, Iowa
State University, 2004.

7

