
Speculative Route Invalidation to Improve BGP
Convergence Delay under Large-Scale Failures

Amit Sahoo
Dept. of Computer Science
Univ. of Califonia, Davis

Davis, CA 95616
Email:asahoo@ucdavis.edu

Krishna Kant
Intel Corporation

Hillsboro,OR 97124
Email: krishna.kant@intel.com

Prasant Mohapatra
Dept. of Computer Science
Univ. of Califonia, Davis

Davis, CA 95616
Email:pmohapatra@ucdavis.edu

Abstract— The Border Gateway Protocol (BGP) has been
known to suffer from large convergence delays after failures. We
have also found that the impact of a failure rises sharply with
the size of the failure. In this paper we present and evaluate
a speculative route invalidation scheme aimed at reducing the
convergence delays for large-scale failures. Our scheme collects
statistics from BGP updates received at a router and identifies
Autonomous Systems (ASes) that are likely to be “unstable”.
Routes that contain these ASes are marked as invalid and
not propagated further. This cuts down the number of invalid
routes during the convergence process and results in a significant
improvement in the convergence delay.

I. INTRODUCTION

The Internet is composed of a large number of indepen-
dently administered networks (also known as autonomous
systems). Packets are routed between different autonomous
systems (ASes) by the Border Gateway Protocol [1]. BGP
has been used as the primary inter-domain routing protocol
in the Internet over the last ten years or so and the excellent
scalability of BGP has been a major facilitating factor for the
explosive growth of the Internet. However BGP does have
its share of shortcomings and the most important one is the
long convergence delay (or recovery time) after failures in
the network. The failure of network elements can cause BGP
to suffer from extended periods of instability during which
numerous BGP routers modify their routing tables.

BGP employs the path-vector routing algorithm in which
each router sends the best route for each destination to each
of its BGP neighbors. The router also stores all the routes
that are sent by its neighbors and selects the best route for
each destination according to some policy. If it receives a
notification that the best route for a destination has failed, then
it switches to the next best route and advertises this route to
the neighbors. However there is no guarantee that the backup
route is still valid, and the process has to be repeated all
over again if the backup route is later found to have failed
as well. This can result in a considerable delay before the
cycle of withdrawals/advertisements comes to an end and all
BGP nodes have a valid and stable path to each destination.

Numerous studies [2], [3], [4], [5], [6] have been carried
out to study the fault tolerance and recovery characteristics of
BGP. In particular, it was shown by Labovitz et al. [3] that the
convergence delay for isolated route withdrawals can be > 3

minutes in 30% of the cases. They also found that packet loss
rate can increase by 30x and packet delay by 4x during re-
covery. Furthermore, we have shown in our previous work [7]
that multiple simultaneous failures can cause the convergence
delay to increase significantly. Though large-scale failures
might be rare, they have the potential to cause widespread
disruptions to e-commerce as well as critical services such as
emergency response, banking, infrastructure monitoring etc.
Hence the importance of a short convergence delay after
failures (especially large ones) cannot be overstated.

In this paper we present a scheme aimed at decreasing the
convergence delay of large-scale failures by reducing the num-
ber of invalid routes explored during the convergence process.
We do this by collecting statistics about withdrawn/replaced
routes and by using this information to estimate whether a
route is valid or not. If a route is suspected to be invalid, then it
is not propagated further. Our scheme is designed to run inde-
pendently at each BGP router/AS. Hence coordination between
various ASes is not required and performance gains can be
achieved with partial deployment. Our experiments show that
we can reduce the convergence delay substantially for large-
scale failures without causing any significant deterioration for
other scenarios.

In this section we have talked about BGP and the need
for reducing the convergence delay incurred by BGP after
a failure. In the next section, we talk about schemes that
try to identify the cause of BGP route updates, and their
suitability for real time application. We present and discuss our
speculative invalidation scheme in Section III. In Section IV
we describe our experimental setup followed by the results
and analysis in Section V. We wrap up with the conclusion in
Section VI, and the references.

II. RELATED WORK

There have been a few proposals that attempt to identify
topological changes using BGP updates. Chang et al. [8]
collected BGP updates from multiple vantage points and used
a two level clustering scheme to group the updates into events.
The first clustering scheme groups updates that were received
at the same observation point, refer to the same prefix and are
closely spaced in time. The second clustering scheme takes the
first-level clusters from multiple vantage points and groups



those that might be caused by the same event. The authors
studied various characteristics of BGP events, such as the
duration of the instability, the number of prefixes affected,
etc. Caesar et al. [9] presented a scheme to identify the
cause of “major” BGP events. Whenever a BGP route for a
prefix is changed, suspect elements (ASes or links) and the
corresponding event at that element are identified. An AS or
link is considered to be of either major or minor significance
and marked accordingly; based on the number of prefixes for
which the route might have changed because of an event at
this element. After all the elements have been marked, a set of
rules are used to estimate the location. Finally the intersection
of the results from various views can be computed to narrow
down the set of responsible network elements.

Feldmann et al. [10] and Lad et al. [11] also proposed
schemes similar to the ones above. All these schemes attempt
to identify the cause of the BGP updates. Once the cause has
been identified, we can just avoid the invalid routes and thus
the BGP convergence delays can be reduced greatly. However,
none of these schemes are suitable for real time application
because of the high processing overhead associated with them.
As BGP updates keep coming in, the algorithms would have
to be run repeatedly and that is not feasible in real time.
Furthermore, all the schemes except the one proposed by
Caesar et al. require data to be collated from multiple views;
and that complicates things further. Our scheme employs a
approach similar to the ones above, but it has a much lower
overhead and operates independently at each BGP router.

III. SPECULATIVE INVALIDATION SCHEME

As we mentioned earlier, the primary cause of long conver-
gence delay is the absence of information in BGP about the
validity of routes. Our goal is to expedite the BGP convergence
process for large-scale failures by identifying invalid routes
and reducing their effect on the convergence process. We
identified the following constraints that must be satisfied by
any candidate scheme:

• All the analysis has to be done independently at a
BGP router. Communication between routers will lead
to additional delays and the scheme will have to deal
with lost packets. The deployment would also have to be
coordinated between multiple ASes/organizations.

• The scheme should have a low processing overhead, so
that the timely processing of BGP updates in not affected.

• The convergence delay for situations other than large-
scale failures should not be increased.

Our scheme leverages the fact that large-scale failures generate
a large number of updates that can be used to identify the
failed/affected ASes. It is also based on the assumption that
failed/affected ASes will be present in a large number of
the generated updates. There can be scenarios where this
assumption does not hold true [12]. However, these scenarios
are known to be rare [13], and it is very unlikely that a
large number of updates will be generated due to these
events. Similarly, addition of new links or peerings, and policy

changes lead to BGP updates, but again the volume can be
expected to be low.

Our scheme maintains a failCount for each AS at each BGP
router. This value is incremented when a route containing
that AS is withdrawn or replaced. It is decremented when we
receive a new route containing that AS. When an AS suffers
total or partial failure, a large number of routes containing
that AS are likely to be withdrawn. Hence, we consider
the failCount to be a measure of the likelihood that an AS
has failed. We then select the ASes that have the largest
failCounts and consider all routes that contain those ASes
to be “invalid”. As the overhead of examining all the stored
routes will be too high, we install route filters which reject
new route advertisements that contain any of the “suspect”
ASes. We only want to consider the recent history for selecting
the “suspect” ASes. Therefore we divide the time into slots
and use a configurable parameter, history, to determine how
many slots of data we want to consider. BGP updates are sent
periodically, and the period is determined by the MRAI [1].
We select the length of the time slot to be equal to the MRAI
(after adjusting for jitter [1]), so that we receive one cycle of
update messages in each slot. A larger slot length will only
increase the response time for our scheme. A smaller value will
decrease the response time but there could be a lot of variation
in the number of messages received in two contiguous slots
and that might lead to instability.

The failCounts for all the ASes are stored in a two dimen-
sional array failCounts[numASes][history]. At the beginning
of each time slot, we add up the failCounts for the last
history slots for each AS, and then use the avgFailedPath-
Length parameter to determine the number of ASes that
will be “invalidated”. avgFailedPathLength is the average
path length of the routes replaced/withdrawn during the last
history time slots. If we assume conservatively that each
replaced/withdrawn route contains one failed/unstable AS;
then after the replacement/withdrawal of a route, the failCount
of one impaired AS and (avgFailedPathLength-1) stable ASes
is incremented on average. If the sum of the failCounts for
all ASes at an observation point is X, then the sum of the
failCounts of the failed/unstable ASes can be expected to be
close to X/avgFailedPathLength. Therefore, starting from the
front (highest failCountSums), we identify the smallest set of
ASes for which the sum of failCountSums is greater than this
value (X/avgFailedPathLength), and consider all the ASes in
this set to be “suspect” for the duration of the time slot.
The pseudocode for our scheme is listed in Algorithm 1.
As it might be difficult to identify the failed/unstable ASes
correctly if the amount of data available for analysis is small,
we execute the invalidation scheme only if the number of
destinations for which the route has changed is greater than
largeFailureThresh.

Our scheme manages to keep both the storage and process-
ing overhead low. The overhead of incrementing/decrementing
the counts and of running the new routes through the filters
can be expected to be much lower than the overall processing
overhead for a BGP update. The overhead of sorting the counts



Algorithm 1 Invalidation Scheme
1: if (Number of destinations for which the routes has

changed in the last history slots) < largeFailureThresh
then

2: Stop
3: end if
4: for i = 1 to numASes do
5: failCountSums[i] ← ∑history

j=1 failCounts[i][j]
6: end for
7: sumFailCounts ← ∑numASes

i=1 failCountSums[i]
8: Sort failCountSums in descending order
9: failThreshold ← sumFailCounts / avgFailedPathLength

10: currentSum ← 0
11: for i = 0 to numASes do
12: if currentSum < failThreshold then
13: Add a filter to deny routes containing the AS at

position i
14: currentSum ← currentSum+ failCountSums[i]
15: end if
16: end for

and installing the filters will also have little effect because
these activities are only carried out once every time slot. The
storage overhead will only be about 100 KB, with a history of
two, as the failCount for each timeslot can be safely stored in
two bytes per AS. The storage requirements can be decreased
further at the cost of computational complexity if we use
dynamic instead of static storage.

Our scheme does have a few issues that we need to work
around. A new route is marked invalid if it contains a “suspect”
AS. We need a way to remove the “invalid” flag if the AS
in question is no longer considered to be “suspect”. For this
purpose, we need to maintain a list of routes that have been
invalidated because of a particular AS. If this AS is not
“suspect” anymore, then we can retrieve the corresponding
list and validate the routes. We believe that the overhead for
this process can be restricted to a manageable level, as we
only need to do this once every time slot. Another issue is
the possibility that all the routes for a destination are marked
invalid. In such a scenario, we store the destination in a list
and check for the existence of a valid route at the beginning of
the next time slot. As the scheme runs independently at each
router, the set of “suspect” ASes at two BGP routers in the
same AS might be different, which in turn might cause them
to select different routes for the same destination. To solve
this problem, we consider the routes received from internal
BGP peers to be always valid. This means that all the routers
in an AS will have the same set of candidate route for each
destination, and hence will select the same “best” route as long
as they employ the same policy.

IV. EVALUATION METHODOLOGY

A modified version of BRITE [14] was used for topol-
ogy generation and BGP simulations were carried out using
SSFNet [15].

A. Topology Generation

BRITE can generate topologies with a configurable number
of ASes and with multiple routers in each AS. BRITE supports
a couple of schemes that try to generate a power-law degree
distribution, however the results are generally not satisfactory
if the number of nodes (ASes) is less than a thousand.
We therefore modified BRITE to allow more flexible degree
distributions. This also enabled us to work in more controlled
settings (e.g. uniform degree).

We used 200 node topologies for our experiments. This
was dictated in part by memory restrictions on the 32 bit
machines that we used. For our experiments, we predominantly
used topologies with a “realistic” degree distribution, derived
from the actual degree distribution for inter-AS links [16].
The average measured inter-AS degree from the Internet AS-
level topology is about 8.0 [16]. However, the Internet has
over 22000 ASes and the maximum inter-AS degree is in the
thousands. For our 200 AS network we decided to restrict
the maximum degree to 50. The resultant degree distribution
decays as a power law with an exponent of about -1.85. and
has an average degree of about 4. For all links, we used a one
way delay of 25 ms.

Although large-scale failures could be scattered throughout
the network, many failure scenarios (e.g., those caused by
natural and man-made disasters) are expected to be geograph-
ically concentrated. We randomly placed all the routers on
a 1000x1000 grid and then considered failures in contiguous
areas of the grid (usually the center of the grid to avoid edge
effects). We assumed that all routers and links in the failed area
become inoperative. We experimented with failure magnitudes
of 1 to 20%. While we are primarily interested in the 1 to 10%
range, we included 20% failures to emphasize the trends.

B. BGP Simulation

We used the SSFNet simulator for our experiments because
it has been used extensively in the research community for
large-scale BGP simulations. In the simulations, the path
length (i.e., number of hops along the route) was the only
criterion used for selecting the routes and there were no policy
based restrictions on route advertisements. All the timers were
jittered as specified in RFC 4271 [1] resulting in a reduction of
up to 25%. In our experiments, the MRAI timer was applied
on a per-peer basis (as is commonly done in the Internet)
rather than a per-destination basis. The MRAI timer was set
to 30 seconds for external BGP peers and 0 for internal BGP
peers. We simulated processing delays for BGP updates, but
the delays were were much lower than the external BGP MRAI
and hence can be expected to have little effect on the recovery
time.

V. RESULTS

In this section we present and analyze the results of our
experiments. We used 200 node/AS (1 router per AS) topolo-
gies with “realistic degree” distributions (average degree 4)
and a history of one time slot for our experiments, unless
stated otherwise. We found that our scheme performs best



Fig. 1. Convergence delay with invalidation scheme Fig. 2. Number of valid routes marked as invalid

when we implement it at “high” degree nodes only. By default,
the results that we present here were obtained with the scheme
implemented at the nodes/ASes with a degree of greater than 4.
We study the consequences of this type of partial deployment
of our scheme later on in this section.

We first compare the convergence delay for standard BGP
and our invalidation scheme in Fig. 1. We experiment with
largeFailureThresh values of 1, 3 and 5. We plot the magnitude
of the failure (in terms of the fraction of routers failed) on
the x-axis and the convergence delay (in seconds) on the
y-axis. We can see that there is a significant improvement
in the convergence delay for each failure magnitude when
we use the invalidation scheme. We also see that the perfor-
mance improves as largeFailureThresh is decreased. A lower
largeFailureThresh means that our algorithm will be executed
more often and more ASes will be marked as “suspect”,
which in turn causes a higher fraction of invalid routes to
be removed. This leads to a quicker convergence process. For
large failures, routes are changed for a large number of desti-
nations, and hence the difference in the number of invocations
of our scheme (for different values of largeFailureThresh)
is decreased. Thus the convergence delays start to converge
(for different values of largeFailureThresh) as the size of the
failures is increased.

There is no guarantee that our scheme will identify the
failed/unstable ASes correctly. In case that we mark a stable
AS as “suspect”, we will deny any routes that contain that
AS (for that time slot). In order to study the correctness
of the decisions made by our scheme, we kept track of:
the number of routes that are denied, the number of valid
routes are denied, and the total number of invalid routes. We
plot the error rate (valid routes denied/total routes denied)
of our scheme in Fig. 2. For the lowest possible value of
largeFailureThresh (=1), we see that the error rate declines
slowly. This happens because the amount of data available for
analysis increases with the size of the failure and thus the
validity of the deductions is improved. The actual number of
valid routes that are denied ranged from about 2 (1% failure) to
about 10 (20% failure) per AS over the convergence period. As
we increase the largeFailureThresh, we were surprised to see

that the error rate went up for the smaller failures. The reason
for this behavior is clear from Fig. 3, in which we plot the
fraction of invalid routes that are denied (efficiency). As we can
see, the efficiency for “threshold=1” is pretty much constant for
different failure sizes. If we increase the threshold, the amount
of data analyzed per invocation (of our scheme) is increased;
however the total amount of data analyzed across the network
goes down because our scheme is executed less often. Thus for
smaller failures, the effectiveness of our scheme is decreased
leading to lower efficiency and a higher error rate. From these
results it is clear that we get the best performance when we
set largeFailureThresh to 1, and that is what we used for the
rest of the results in this section.

The performance of our scheme is dependent on the number
of updates received at a router, which is determined in part
by the degree of the node/AS. We evaluate the performance
of our scheme when it is implemented only at those nodes
whose degree exceeds a certain value (highDegreeThreshold),
in Fig. 4. We see that for the degree distribution we used
for the experiments, the convergence delay is decreased by
up to 75% with our scheme running at just 20% of nodes
(highDegreeThreshold=4) by upto 50% with the scheme run-
ning at just 10% of nodes (highDegreeThreshold=8). This
is significant because we can get sizeable benefits without
implementing our scheme at smaller ASes that typically have
limited connectivity. The convergence delay increases with
the highDegreeThreshold because the fraction of the invalid
routes that we are able to identify (efficiency) decreases
(in general) when we run it at fewer nodes. For example,
efficiency is equal to about 45% when highDegreeThreshold
is equal to 4, but the efficiency drops to the 30 to 35% range
when highDegreeThreshold is increased to 8. However on the
brighter side, increasing the highDegreeThreshold from 0 to
8, drops the maximum error rate from 20 to 10%. Thus, a
lower highDegreeThreshold increases the probability that we
mistakenly consider some routes as invalid. In order to study
that effect, we measure another parameter that we call “lost
connectivity”.

After a failure, connectivity to some destinations is truly
lost. However other destinations might not be accessible



Fig. 3. Number of correctly identified invalid routes Fig. 4. Effect of deploying the invalidation scheme on a subset of
nodes

Fig. 5. Effect of highDegreeThreshold on “Lost Connectivity” Fig. 6. Convergence delay for recovery scenario

for some time even though there exists a valid path from
the source. For example, standard BGP might prefer shorter
invalid routes over longer but valid routes. Similarly in our
scheme, a router might not have a path to an AS because all
the candidate routes are mistakenly considered to be invalid.
The “lost connectivity” at a router is the cumulative duration
of the transient “loss” of connectivity. We measure the “lost
connectivity” for all routers in the network and compute the
average. We show the difference in the “lost connectivity”, as
compared to standard BGP in Fig. 5. We observe that with a
highDegreeThreshold of 4 or higher, the “lost connectivity”
is improved marginally. However, for highDegreeThreshold
equal to 0, there is a significant increase from the standard
case. That is because at low degree nodes, the probability
of mistakenly marking a neighbor as “suspect” is high since
each neighbor is present in a large number or routes (and
withdrawals). However we see that the convergence delay
can be improved significantly without increasing the “lost
connectivity” if we run our invalidation scheme at the high
degree nodes only. For the remaining results in this section,
we use a highDegreeThreshold of 4.

We also evaluated the performance of our scheme on some
other topologies. We used topologies with linearly decreasing
degree distributions and average degrees of 4 and 8. We again

found that with a highDegreeThreshold of 4, our scheme
provided big improvements in convergence delay without any
significant increase in the “lost connectivity”. We would like
to verify the effectiveness of our scheme for a larger number
of topologies and study the factors, if any, that affect the ideal
value for the highDegreeThreshold. That work is ongoing.

We have seen that our scheme works well for large scale
failure scenarios. However this improvement in convergence
delay should not come at the cost of worse performance in
scenarios where the failed routers and links “recover” after
some time. All the routes are valid after the recovery. However
our scheme might still consider some routes to be invalid,
because of the length of the time slot or because a large
number of updates are still flying around. We show the ratio
of the convergence delays for our scheme and standard BGP,
for different recovery scenarios in Fig. 6. Markopolou [17] et
al. measured the “time to repair” for router failures and found
the median value to be about 400 seconds. If we recover the
failed nodes/ASes after 400 seconds, the convergence delay
for our scheme is effectively equal to that for standard BGP.
For a recovery time of 100 seconds, the difference is within
a few percent. For a recovery time of 15 seconds (highly
unlikely for large-scale failures), the convergence delays are
moderately greater (∼10% at the higher end) than the base



Fig. 7. Convergence delay for multi-router ASes

case. However even in that scenario, the deterioration in the
convergence delay is significantly less than the improvement
that we observed in Fig. 1.

All the results that we have looked at till now, used a history
of 1 time slot. It makes the most sense to have a history of
1 time slot, because we will be basing our decisions on the
most recent data that we have. A longer history does provide
us more data, but that data could be stale. We experimented
with other values of history and found that the performance
went down as history is increased. We also found that the
error rate, which we talked about previously, went up with
the history.

Finally we evaluated the performance of our invalidation
scheme for topologies with multiple routers per AS. We
selected the number (1-100) of routers in an AS from a heavy
tailed distribution. The details of the topology generation can
be found in our previous work [7]. In Fig. 7 we plot the
improvement in the convergence delay for the multirouter-AS
topology. The trends are similar to what we observed in Fig. 1,
with the lowest largeFailureThresh providing the best results.
We also see that the improvement in the delay is somewhat less
than what we observed in Fig. 1. This can be attributed in part
to the possibility of partial AS failures. A failure could affect
the capability of an AS to provide conduit to one destination
but not to another. However, our scheme is not sophisticated
enough to make such distinctions. Despite this issue, we are
able to reduce the convergence delays by more than 50%.

VI. CONCLUSION

In this paper we proposed and evaluated a speculative inval-
idation strategy, designed to reduce the convergence delay for
large-scale failures. We identify failed/unstable ASes by ana-
lyzing the BGP updates received at a router. Routes containing
these “suspect” ASes are then removed from contention. This
action goes a long way in reducing the uncertainty, about
the validity of routes, faced by BGP during the convergence
process. As a result the convergence delays are reduced
greatly. At the same time, there is no significant increase in
the convergence delay for realistic recovery scenarios. As in
any speculative scheme, errors do occur. However the errors

can be minimized and all the benefits of our scheme can be
obtained if we implement it at “high degree” nodes only.
We also introduced a new parameter, “lost connectivity”, to
measure the impact of a failure. This parameter is a measure
of the total loss of connectivity (between all possible source-
destination pairs) as a result of the failure.

Currently we are looking at ways to improve the perfor-
mance of our invalidation scheme further. The algorithm that
we used to identify the “suspect” ASes is fairly lightweight.
It is also very general as we do not make any assumptions
about the preference functions used to select the best routes.
We are considering more complex (both in terms of time
and space) schemes that might be able to provide even better
results, possibly by independently analyzing updates sent by a
neighbor or updates sent for a group of prefixes. We are also
exploring strategies to reduce the “lost connectivity” during a
failure.

REFERENCES

[1] Y. Rekhter, T. Li, and S. Hares, “Border Gateway Protocol 4,” RFC 4271,
Jan. 2006.

[2] C. Labovitz, G. R. Malan, and F. Jahanian, “Internet Routing Instability,”
IEEE/ACM Transactions on Networking, vol. 6, no. 5, pp. 515–528, Oct.
1998.

[3] Labovitz, C., Ahuja, et al., “Delayed internet routing convergence,” in
Proc. ACM SIGCOMM 2000, Stockholm, Sweden, Aug. 28–Sep. 1, 2000,
pp. 175–187.

[4] Dan Pei, B. Zhang, et al., “An analysis of convergence delay in path
vector routing protocols,” Computer Networks, vol. 30, no. 3, Feb. 2006,
pp. 398–421.

[5] T.G. Griffin and B.J. Premore, “An experimental analysis of BGP con-
vergence time,” in Proc. ICNP 2001, Riverside, California, Nov. 11–14,
2001, pp. 53–61.

[6] D. Obradovic, “Real-time Model and Convergence Time of BGP,” in
Proc. IEEE INFOCOM 2002, vol. 2, New York, Jun. 23–27, 2002, pp.
893–901.

[7] A. Sahoo, K. Kant, and P. Mohapatra, “Characterization of BGP recovery
under Large-scale Failures,” in Proc. ICC 2006, Istanbul, Turkey, June
11–15, 2006.

[8] Di-Fa Chang, R. Govindan, and J. Heidemann, “The Temporal and
Topological Characteristics of BGP Path Changes,” in Proc. ICNP 2003,
Atlanta, Georgia, Nov. 4–7, 2003, pp. 190-199.

[9] M. Caesar, L. Subramanian, R. Katz, “Towards localizing root causes
of BGP dynamics,” U.C. Berkeley Technical Report UCB/CSD-04-1302,
November 2003

[10] A. Feldmann, O. Maennel, Z. M. Mao, A. Berger, and B. Maggs,
“Locating Internet Routing Instabilities,” in Proc. ACM SIGCOMM 2004,
Portland, Oregon, Aug. 30–Sep. 3, 2004, pp. 205-218..

[11] M. Lad, A. Nanavati, D. Massey, and L. Zhang, “An algorithmic
approach to identifying link failures,” in Proc. IEEE PRDC, Papeete,
Tahiti, Mar. 3–5, 2004, pp. 25-34.

[12] R. Teixeira and J. Rexford, “A measurement framework for pinpointing
routing changes,” in Proc. ACM SIGCOMM workshop on Network
troubleshooting, Portland, Oregon, Sep. 3, 2004, pp. 313–318.

[13] F. Wang, L. Gao, ”On inferring and characterizing internet routing
policies,” in Proc. IMC 2003, Miami, Florida, Oct. 27–29 2003, pp. 15–
26.

[14] A. Medina, A. Lakhina, et al., “Brite: Universal topology generation
from a user’s perspective,” in Proc. MASCOTS 2001, Cincinnati, Ohio,
August 15–18, 2001, pp. 346-353.

[15] “SSFNet: Scalable Simulation Framework”. [Online]. Available:
http://www.ssfnet.org/

[16] B. Zhang, R. Liu, et al., “Measuring the internet’s vital statistics:
Collecting the internet AS-level topology ,” ACM SIGCOMM Computer
Communication Review, vol. 35, issue 1, pp. 53–61, Jan. 2005.

[17] A. Markopoulou, G. Iannaconne, S. Bhattacharrya, C-N. Chuah, and C.
Diot, “Characterization of Failures in an IP Backbone,” in Proc. IEEE
INFOCOM 2004, vol. 4, Hong Kong, Mar. 7–11, 2004, pp. 2307-2317.


