Architectural Impact of Secure Socket Layer on Internet
Servers

Krishna Kant and Ravishankar Iyer
Server Architecture Lab
Intel Corporation, Beaverton, OR

Abstract

Secure socket layer (SSL) is the most popular protocol used in
the Internet for facilitating secure communications. In this
paper, we analyze the performance and architectural impact
of SSL on the servers in terms of various parameters such as
throughput, utilization, cache sizes, cache miss ratios, num-
ber of processors, control dependencies, file access sizes, bus
transactions, network load, etc. The major conclusions from
this study are as follows: The use of SSL increases com-
putational cost of the transactions by a factor of 5-7. SSL
transactions do not benefit much from a larger L2 cache, but
a larger L1 cache would be helpful. A complex logic for han-
dling control dependencies is not useful for SSL transaction
as the frequency of branches is very low. Because SSL work-
load is highly CPU bound, it may be possible to enhance SSL
performance by using a number of other architectural features
as well.

1 Introduction

The explosive growth in Internet for supporting elec-
tronic commerce and other exchange of sensitive infor-
mation has highlighted the need for efficiently support-
ing secure communications between clients and servers.
Currently, there are two major techniques for imple-
menting security:

1. At network (or IP) level via the Internet Protocol
Security Protocol (IPSEC) [9]. This protocol is in-
tended to be implemented in the network interface
cards (NICs) and secures NIC to NIC communica-
tions. IPSEC allows a secured private network to
be physically spread over the entire Internet.

2. At session (or transport) level via the Secure Sock-
ets layer (SSL) [6]. This protocol secures an indi-
vidual communication session. It is typically im-
plemented on the application processor, although
it could be offloaded to auxiliary or coprocessors.

This paper concentrates on SSL, although many of
the performance issues are common to both SSL and

Prasant Mohapatra
Dept. of Computer Science and Engineering
Michigan state University, East Lansing, MI

IPSEC. Secure HTTP (called HTTPS) uses SSL for se-
curity and is being used widely in e-commerce environ-
ment to protect sensitive web transactions (e.g., order
placement, payment). Unfortunately, SSL typically has
enormous performance impact on the web server, and
results in long client response times. It is estimated that
10-25% of e-commerce transactions are aborted because
of unduly long client response times, which translates
into 1.9 billion dollar lost revenue [13]. In addition, the
tardy response experienced by non-secured transactions
on the same server (e.g., browsing transactions) may
cause further abandonment by customers who may have
otherwise moved on from “browsing” to the “ordering”
step. Thus, the performance of the security protocol
plays a significant role in the performance of web servers
used in the e-commerce environment.

In this paper, we have done an experimental study
of the SSL performance and its architectural impact us-
ing Intel Pentium ITT Xeon based servers. Intel proces-
sors provide detailed hardware level measurements via
a tool called EMON, and these were used to understand
low-level details of server performance for a number of
configurations. System level information was collected
using the PERFMON tool of NT O/S. The configu-
rations analyzed varied the following parameters: (a)
number of processors in the SMP server (uniprocessor,
dual processor and quad processor configuration), (b)
three different L2 cache sizes (512 KB, 1 MB and 2
MB), and (c) three different file sizes in order to differ-
entiate the impact of the handshaking protocol from the
bulk encryption and transfer cases. The study exposes
various architectural features that impact the perfor-
mance of secure transactions in the Internet based on
SSL protocol. The results of this study could be used
as a preliminary guide for designing high-performance
Internet servers used for secure transactions.

Several techniques could be used to improve the per-
formance of the SSL-based secure communication. It is
possible to introduce some additional architectural fea-
tures such as, efficient caching structure, support for ad-
ditional instructions, and perhaps even a security copro-
cessor. These issues are detailed in Section 4. Looking

beyond the architectural aspects, the most crucial issues
in obtaining good performance from e-commerce servers
(with or without SSL) are (a) a decent overload control
scheme suitably aided by hardware mechanisms such as
intelligent NICs, and (b) good server engineering prac-
tices. In contrast to “servers” in traditional telecom-
munications systems [10], these issues have been largely
ignored for Web servers. A limited amount of stud-
ies have been reported on the architectural issues of E-
commerce servers. An analysis of resource management
policies on the basis of revenue generation is reported
n [11]. Other related works on web server performance
includes service differentiation [1] and operating system
support issues [2, 3, 5]. Although there have been a few
studies concerning the cost of SSL [8, 7], the purpose of
this paper is to go deeper and study the architectural
impact of SSL and thereby identify what architectural
features would help in obtaining better performance.
The rest of the paper is organized as follows. An
overview of the SSL protocol is presented in Section 2.
SSL resource requirements and the experimental setup
are discussed in Section 3. The data analysis and the
architectural issues are detailed in Section 4. Inferences
and the concluding remarks are outlined in Section 5.

2 Overview of SSL

SSL is a protocol for securing client-server communica-
tions and includes mechanisms for authentication, en-
cryption and decryption [6, 12]. It has two impor-
tant functions: (a) authentication of the server and
client at the beginning of the session, and (b) encryp-
tion/decryption of data exchanged between the two
parties during the session. The authentication is per-
formed via the SSL handshake protocol, which involves
3 phases, with one or more messages sent in each direc-
tion in each phase:

1. Parameter Negotiation, that decides on the bulk-
data encryption, key-exchange, and authentication
algorithms.

2. Mutual Authentication, that exchanges client and
server certificates.

3. Secret Key Exchange, which establishes the encryp-
tion and decryption keys for bulk-data exchange.

During the handshake, the server establishes a
“session-id” which can be cached so that a client does
not need to go through the full handshake protocol if it
attempts to establish a secure connection shortly after
terminating the last one. In this paper, we assume that
no session-id caching is done.

Following the handshake protocol, the data exchange
takes place using the chosen private key bulk-data en-

cryption algorithm. For maximum security, the recom-
mended key length for bulk data encryption is 128 bits,
although 40-bit key encryption is also prevalent (pri-
marily because of earlier US export laws). 40-bit en-
cryption has no performance consequences since it is
implemented by keeping only the first 40-bits of a 128-
bit key secret. If a block cipher is used, the data is
encrypted in blocks of 64 bits. SSL also decomposes
large messages into fragments of size at most 16 KB in
order to facilitate message authentication. Each frag-
ment is appended with the message authentication code
(MAC) which is computed using the negotiated secure
hash function over the entire message.

Next, we briefly discuss the computational costs as-
sociated with using SSL. The handshake protocol is ob-
viously expensive in terms of the number of message
exchanges; however, a much more time consuming activ-
ity is the public key encryption and decryption needed
for protecting the exchange of the private key. RSA
is by far the most commonly used public key encryp-
tion algorithm in practice and belongs to the class of
exponentiation ciphers [12]. Let (e,d) denote the en-
cryption/decryption key-pair, and N = pg where p and
g are large primes. Then, encrypted message C' and
plain-text message M are related as follows:

C = M°modN, M = C%modN (1)
Here the public key consists of the pair (IV,e) and the
private key consists of the triplet (p, ¢,d). The strength
of this cipher is essentially controlled by the difficulty
of factoring N into the factors p and ¢, which necessi-
tates key lengths of 512 or 1024 bits. The algorithm to
efficiently evaluate equation (1) involves unsigned arith-
metic operations (multiplication, addition, shift and ro-
tate) on large integers. Thus, processors with longer
word length unsigned integer instructions will automat-
ically provide a significant performance boost to RSA.
In fact, since a 2nx2n-bit multiplication requires four
nxn-bit multiplications, doubling the word length of
unsigned operations will provide 4-times performance
boost so long the cycles per instruction remains the
same. It turns out that even with a 512-bit key length,
almost 80% of the SSL handshake time may be spent
in the RSA exponentiation, which makes the efficient
coding of exponentiation critical for good performance.
For the same reason, availability of special hardware fea-
tures to expedite exponentiation can have a tremendous
influence on handshake performance.

Private (or symmetric) key algorithms such as DES,
RC4, IDEA, etc. are typically used for bulk data encryp-
tion. By design, these algorithms are highly sequential
in nature and use many rounds of computations. In ad-
dition, in the cipher block chaining (CBC) mode, the
successive 64-bit blocks on input are not encrypted in-
dependently; instead, the output of ith block is used in

the (¢ + 1)st block. Consequently, bulk-data encryption
is not only computationally intensive but also does not
have much inherent parallelism that can be exploited by
modern superscalar or vector-oriented (e.g., MMX-like)
architectures.

3 SSL Resource Requirements

Because of very large computational cost of SSL hand-
shake, an important parameter in this SSL requirements
study is the amount of bulk data transfer per handshake.
In a typical e-tailing environment, a customer browses
through product descriptions using non-secured trans-
actions. Eventually, when the customer decides to pur-
chase some product, secured transactions are used to
exchange sensitive information such as the credit card
number. In such cases, a SSL handshake will occur
for one or a few secure transactions. On the other ex-
treme, in environments such as online banking or stock
trading, even the “browsing” transactions (e.g., check-
ing account balance or portfolio) may be considered too
sensitive to be run in non-secure mode. In such a case,
SSL handshake is necessary only when the customer ini-
tially logs into the service, and from then only encrypted
data transfer ensues. In these “one-time handshake”
situations, the cost of SSL handshake becomes irrele-
vant and one must concentrate on the efficiency of bulk
data encryption/decryption. Accordingly, we consider
the following 3 cases:

1. SSL handshake followed by a very small data trans-
fer. Indeed we consider only a 30 byte data transfer.
This case is intended for studying the handshake
performance only.!

2. SSL handshake followed by encrypted transfer of
a huge web-page. The web page size chosen here
was 1 MB. In this case, the handshake overhead
becomes negligible, and hence we get to see only
the bulk data encryption performance.?

3. SSL handshake followed by 36 KB web-page trans-
fer. This size was determined to be the average size
based on data from several large e-commerce sites.

In order to characterize these cases, we ran experi-
ments where the clients were repeatedly retrieving web-
pages of the three sizes listed above. The traffic gener-
ator provided the capability to run the request with or

1Even a very small transaction such as providing credit card
number amounts to a POST operation with a few Kbytes of data;
therefore, the 30 byte case is not representative of small informa-
tion transfer case.

2This case was intended to approximate a one-time handshake
case since the traffic generator used did not have the capability of
a true one-time handshake.

without SSL. In the SSL case, the public-key encryption
used 512-bit RSA and the private key encryption used
128-bit RC4. In all cases, the web-pages were static
files; in fact, all clients were retrieving the same web-
page. The experiments were run on an Intel Pentium
III Xeon based SMP server running NT4.0 O/S and Mi-
crosoft Internet Information Server (IIS) v4.0. In order
to study the impact of cache size, experiments were run
employing processors with 2 MB, 1 MB and 512 KB L2
cache.

4 Data Analysis

In this section, we analyze the data obtained from all
the counters in our experimental setup. We also discuss
the architectural implications relating to the behavior
of the secure communication protocol. In this analy-
sis, we examine the data both from the perspective of
comparing SSL performance against the non-SSL case
and in terms of architectural features that would help
boost SSL performance (irrespective of corresponding
non-SSL performance).

4.1 Overall Performance

Table 1 shows the overall performance parameters for
the three web-page sizes, and varying number of pro-
cessors in the server system (1P, 2P and 4P). The first
parameter of interest is the achieved throughput. The
goal of the experiments was to subject the server to a
load such that all processors are nearly 100% utilized,
and yet the number of connection errors, timeouts and
retransmissions remains negligible. Although in most
cases, 95% or higher processor utilization was achieved,
there were some significant exceptions where maximum
achieved load was only in 60-80% range. Table 1 does
not directly list the achieved throughput; instead, to en-
sure a fair comparison, it lists the throughput scaled up
to 100% processor utilization, i.e., achieved throughput
divided by the observed processor utilization. The third
column in Table 2 shows the ratios of scaled throughput
for SSL and non-SSL case. It is seen that for 1P, non-
SSL throughput is 5.6 to 7.1 times that of SSL through-
put; however, as the number of processors increase, the
ratio goes down. This is to be expected in view of the
fact that more processors mean more coherency traffic
in both SSL and non-SSL cases.

Table 1 also shows the path length (number of instruc-
tions retired per transaction) and processor cycles per
instruction (CPI) with and without SSL. These param-
eters and indeed most others need to be corrected for
the idle time, especially in cases where the achieved pro-
cessor utilization was low. The correction is necessary
since the characteristics of instructions executed during
idle periods (NOPs, scanning of device interrupt vectors,

req No | Throughput | path-length | cycles/inst DBUS util

file of | w/| w/o w/ | wio| w/ | w/o w/ | wjo
size | procs SSL SSL SSL SSL

30 B 1 353 | 2496 734 49 | 1.94 | 4.13 6.7% 3.2%

2 661 | 4166 698 47 | 2.17 | 5.14 | 18.2% | 13.9%

4| 1197 | 6531 706 52 | 2.37 | 5.86 | 38.8% | 30.8%

1 MB 1 12 75 | 35077 | 2828 | 1.18 | 2.39 | 10.0% | 11.3%

2 23 110 | 34896 | 3151 | 1.27 | 2.96 | 20.8% | 24.3%

4 41 144 | 34389 | 3659 | 1.42 | 3.84 | 37.5% | 44.3%

36 KB 1 201 | 1120 1834 136 | 1.39 | 3.30 8.0% 7.4%

2 345 | 1643 2064 158 | 1.50 | 3.85 | 17.6% | 19.3%

4| 548 | 2442 | 2348 | 186 | 1.57 | 4.42 | 32.9% | 34.6%

Table 1: Throughput, path-length, CPI and Data bus utilization (2 MB L2 cache)

Req No | Rel non-SSL L1 inst MR L1 data MR L2 MR

file of | tput | cycle w/ | wjo w/ | w/o w/ | w/o
size | procs /op SSL SSL SSL

30B 1] 7.07 7.02 1 0.93% | 1.77% | 2.71% | 5.54% | 12.1% 1.9%
21630 | 6.29 | 0.65% | 1.20% | 3.45% | 6.83% | 23.1% | 7.3%
4 | 5.46 5.46 | 0.45% | 0.90% | 4.13% | 7.40% | 35.8% | 10.7%
1 MB 1] 6.14 6.10 | 0.35% | 0.27% | 2.46% | 4.57% | 11.2% | 23.3%
2 | 4.89 4.77 1 0.30% | 0.10% | 2.85% | 5.14% | 16.3% | 44.0%
4| 3.49 3.47 | 0.22% | 0.07% | 2.86% | 5.92% | 19.7% | 57.0%
36 KB 1] 5.58 5.67 | 0.52% | 0.77% | 3.03% | 5.00% 7.1% 8.7%
2 | 4.77 5.06 | 0.49% | 0.49% | 3.03% | 6.03% | 13.4% | 15.4%
4 | 4.46 4.49 | 0.37% | 0.31% | 3.14% | 6.27% | 27.2% | 21.4%

Table 2: Relative throughput and L1/L2 Cache miss ratios (2 MB L2 cache)

maintenance activities, etc.) have very different charac-
teristics than during non-idle periods. We excluded the
idle impact by recording values of hardware counters
during idle period and subtracting out an appropriate
proportion of those from the non-idle measurements. It
is seen that SSL can increase path length 10-15 fold
over the non-SSL case, however, the CPI drops by more
than a factor of 2, thereby resulting in a net increase in
processing cost of about 5-7 fold. The fourth column in
Table 2 shows the ratio of cycles per transaction for SSL
and non-SSL case. A very close tracking of columns 3
and 4 (relative throughput and relative cycles per op-
eration or cycles/op) gives credence to the estimated
throughput scaling factors.

The small CPI for SSL is indicative of primarily com-
putational type of workload, which immediately implies
that a faster CPU core would go a long way in improving
SSL performance so long as L1 is large enough to supply
much of the code and data need in the computations.
(However, since bulk data encryption/decryption algo-
rithms tend to be highly sequential in nature, a wider

issue width would not help; but a longer pipeline would.)
It is worth noting in this regard that the performance of
ordinary Web benchmarks (such as SPECweb96) does
not scale well with the core speed because of significant
locking/contention issues. This advantage of SSL over
non-SSL shows up in further analysis in this section.

4.2 L1 Cache Characteristics

Table 2 also shows the L1 instruction and data miss
ratios. (Intel Pentium IIT has separate instruction and
data L1 caches, each of size 16 KB, but it has a sin-
gle unified L2 cache.) It is seen that L1 instruction
miss ratios are very low in all cases, but L1 data miss
ratios are significant. The instruction miss ratio gener-
ally decreases with number of processors, but the data
miss ratio goes up. This is to be expected because more
processors allow a better sharing of code, but the data
footprint and coherency misses in data cache increases
with the number of processors. In any case, the effect of
number of processors in not very pronounced because of
small size of L1. A larger L1 would perhaps show more

degradation in miss ratios as a function of number of
processors.

For the SSL handshake case (30 byte file sizes), the
miss ratio for instruction and data seem to be much
lower (about one-half) in the SSL case compared to the
non-SSL case. Although the data miss ratio retains the
same behavior for all file sizes and processor configu-
rations, the instruction miss ratio becomes very poor
with the SSL traffic for bulk transfers (1MB file sizes).
This behavior of L1 cache can be explained as follows.
The lower data cache miss ratio in case of SSL is pri-
marily because of the frequent reuse of the data during
the encryption and decryption process. For the instruc-
tion stream, the locality in the instruction relating to
the handshaking process is very high, but there is not
much temporal locality in the bulk transfer case. More-
over, the working set of instructions in the bulk transfer
case probably does not fit within the L1 cache. This
also implies that to improve bulk data encryption per-
formance, a larger instruction L1 would help. A larger
data L1 should also help because of low CPI of SSL com-
putations which makes misses out of L1 very expensive.
In particular, in Pentium IIT Xeon a miss out of L1 must
encounter additional 12 clock cycles of delay (assuming
that the data is available in L2).

4.3 L2 Cache Characteristics

In this subsection, we examine L2 miss ratios in Table 2
and Figures 1-3. Figure 1 shows the scaling of miss
ratios as a function of number of processors and file-
size for the 2MB L2 cache size. In contrast, Figures 2
and 3 show the scaling with respect to number of proces-
sors and L2 cache sizes for the two extreme cases (SSL
handshake dominated and encryption dominated situa-
tions). It may be noted that L2 miss ratios are very high
without SSL even though we have an extremely simple
situation (i.e., a single static web page that is being re-
quested by all clients). This is especially true for large
web pages, as shown in the 1 Mbyte file-size case. For
example, with 512 KB L2 cache, the miss ratio is 66% for
the 4 processor case. For 2 MB L2, this reduces to 57%,
which is still very high. Such a behavior is also observed
in simple Web benchmarks such as SPECweb96. One
major reason for high miss ratios is high degree of lock-
ing/contention in TCP processing. The other reason is
the cache pollution because of TCP checksums, since
checksum computation involves a sequential reading of
the packet data and essentially a “one touch” access to
it. Currently, TCP checksums are typically performed
by the main processor, but with newer NICs and appro-
priate support in the operating system, the trend is to
offload this functionality to the NIC itself. In particular,
Intel Gigabit NICs operating under the upcoming Win-
dows 2000 O/S can offload TCP checksums to the NICs.

This offloading should reduce non-SSL miss ratios con-
siderably. We plan to conduct experiments shortly to
confirm this.

@
3

BSSL
Non-SSL

@
S

IS
S

30bytes 36Kbytes

w
S

N
S

% L2 Cache Misses

=
15}

)

1p 2p 4p 1p 2p 4ap 1p 2p 4p
No. of Procs / File Size

Figure 1: L2 miss ratio vs. file size (2 MB L2)

70 ESSL BNonSSL

a g
g 3

N
8

(for 1Mbyte file sizes)
8 8

9% L2 Cache Misses

5

o

No. of Procs / Cache Size

Figure 2: L2 miss ratio vs. L2 size for 1 Mbyte files

50 B SSL BNonSSL,

No. of Procs / L2 Cache Size

Figure 3: L2 miss ratio vs. L2 size for 30byte files

It may be noted that the heavy computational work-
load of SSL helps in reducing the L2 cache miss ra-
tio. Unfortunately, SSL processing itself has certain
features that would lead to high L2 cache miss ratios.
One of these is the sending and reception of multiple
small messages, each of which requires search in trans-
mission control block (TCB) data structure, TCP check-
sum and TCP header processing. These operations have
small locality, as is seen from the performance of cur-
rent Web benchmarks. Consequently, SSL handshake
(30 byte case) shows very high L2 miss ratios; in fact,
much higher than the corresponding non-SSL case. (Ac-
tually, SSL handshake has high temporal locality within
a small range of addresses, which is already exploited at
the L1 level, and not much locality is left at the L2 level.)

The other aspect relevant for L2 miss ratio is the cache
pollution due to bulk data encryption and decryption.
As with TCP checksum calculations, the entire packet
must be read in the L2 cache for encryption/decryption;
however, unlike checksum calculation, the data is now
modified thereby increasing chances of coherency misses.
On the other hand, because of the sequential nature
of encryption and decryption algorithms, bulk data en-
cryption has a very high spatial locality even over large
spans, which is exploited by the L2 cache. This explains
why the L2 miss ratio is smaller for SSL case than for
non-SSL case for 1 Mbyte file size. In the 36 KB file-
size case, both effects are present and they almost cancel
each other out.

A detailed look at L2 cache data suggests significant
L2 cache pollution caused by the “one-touch” process-
ing in encryption/decryption, which displaces data hav-
ing more favorable reference patterns. Furthermore, in
case of encryption, the encrypted data must be sent
out over the PCI bus. Thus if the encrypted segment
is still sitting in L2 cache when the DMA transfer is
requested, it would result in a hit modified (HITM)
condition in the cache and a consequent data transfer
from the cache. The latencies for dealing with these
“dirty hits” are known to be very high. Larger data
segments could cause back-to-back HITMs, which are
known to be problematic on current Pentium platforms
due to extra latencies and dead clocks on the data bus.
Note that certain one-touch operations (such as TCP
checksum or TCB scan) occur regularly in network ori-
ented workloads even without SSL and affect the perfor-
mance significantly. For example, it is estimated that in
SPECweb96, most of the read misses occur due to TCP
checksums, and therefore, the performance can be im-
proved significantly by off-loading TCP checksums to
NICs.

In view of the above, a larger L2 cache would help
so long as the performance is not I/O latency limited.
More important, an architecture that reduces L2 cache
pollution should result in a substantial performance im-
provement. For example, Intel Pentium-IIT architecture
includes special prefetching instructions that can bring
data from memory directly into L1 cache without first
placing it in the L2 cache. SSL implementation can
be coded to take advantage of this by bringing data
for encryption/decryption directly into the L1 cache.
This should help significantly because (a) other, more
frequently referenced data in L2 is not displaced, (b)
“dirty hits” and associated problem of long latencies in
IO and dead clocks on the data bus are avoided for L2,
and (c¢) L1 being much smaller and faster, the proba-
bility of a dirty hit in L1 is considerably smaller. If
a significant amount of cache pollution associated with
SSL processing can be avoided this way, the prefetch
instructions should be provide a significant gain in SSL

performance. This needs to be verified by actual coding
or experimentation.

4.4 Branch and Prediction Behavior

The behavior of control dependencies (branch frequency,
branch misprediction rate, and BTB inefficiency) for
SSL and non-SSL transactions are summarized in Ta-
ble 3. It is observed that the frequency of branches
in the SSL-based transactions is about one-half of that
of the non-SSL-based transactions for the handshaking
case, and becomes much less for the bulk transfer case.
This fact indicates that there are less control dependen-
cies in the SSL-based transactions. For the bulk transfer
case, the encryption process is inherently sequential in
nature with minimal branches. Lower control dependen-
cies is another reason for high hit ratio in L1 and lower
CPI in case of SSL. The low frequency of branches in
SSL can enable exploitation of high degree of pipelining
in the processor architecture.

Upon comparing the misprediction rate (proportion
of mispredictions per branch instruction retired), it is
observed that in case of the 4P configuration, the mis-
prediction rate with SSL is always higher than that of
the non-SSL case. To investigate further, we analyzed
the proportion of branches that the branch target buffer
(BTB) did not predict (we term this as BTB inefficiency,
which are listed in the last two columns of Table 3).
We observed that the BTB is highly inefficient for 4P
cases. For the 1P and 2P cases, it is observed that
for the handshaking operations, the misprediction rate
with SSL is lower than the non-SSL case. However, in
the bulk transfer case, the situation is reverse. This
fact also explains a part of the behavior of L1 cache
misses discussed earlier. Thus better branch prediction
algorithms need to investigated for helping SSL trans-
actions. However, it is cautioned not to use an overly
complex branch predictor for SSL transactions since the
frequency of branches in these cases are low.

5 Architectural Inferences

With a rapid expansion of e-commerce and the corre-
sponding privacy/security concerns, the use of SSL (or
later versions of SSL) is also expected to escalate rapidly.
In parallel, IPSEC implementation in the NICs has been
receiving a big push from the vendors. It is expected
that IPSEC capable NICs will soon become quite inex-
pensive thereby fueling the rapid deployment of IPSEC
in the Internet. In view of these developments, it is
essential to examine the entire stack — from low-level
architecture up to the application level — to find ways of
making secured communications run faster and better.
Here, we briefly outline work that needs to be taken to
make secured communications a success.

req No branches per fraction BTB

file of instruction mispredicted Inefficiency
size | procs | w/ SSL | w/o SSL | w/ SSL | w/o SSL | w/ SSL | w/o SSL
30B 1 0.116 0.210 0.116 0.219 0.576 1.000
2 0.103 0.222 0.127 0.202 0.707 0.999
4 0.084 0.260 0.217 0.157 0.999 0.764
1 MB 1 0.058 0.158 0.067 0.062 0.348 0.475
2 0.060 0.202 0.059 0.029 0.305 0.273
4 0.059 0.288 0.052 0.019 0.281 0.165
36 KB 1 0.068 0.191 0.099 0.141 0.475 0.744
2 0.064 0.203 0.099 0.102 0.476 0.578
4 0.042 0.286 0.181 0.056 0.875 0.325

Table 3: Comparison of branch frequency, misprediction, and BTB inefficiency

As stated in section 4.2, some of the current proces-
sors already contain features that could be exploited for
superior performance in secured communications. We
believe that the performance boost obtainable from a
recoding of security algorithms that take advantage of
such instructions (for array processing and for L2 cache
pollution avoidance) may be sufficiently significant to
deserve a quick evaluation. In the longer run, proces-
sors could provide special instructions that speeds up
encryption/decryption. A factor of 2 reduction in CPI
under SSL (along with a large increase in path-length) is
a clear indication that SSL workload is primarily compu-
tational and could be speeded up via special prefetching
and computational instructions. A “security coproces-
sor” or a special purpose processor that sits lower in the
architectural hierarchy (e.g., a specialized I/O proces-
sor) may also be considered.

As mentioned in section 4.2, a larger L1 cache might
help SSL processing. This could be verified using cache
simulators exercised using an address trace of SSL trans-
actions, but this has not been done thus far. If larger L1
indeed gives a significant performance boost, future gen-
erations of processors may consider tradeoffs between a
larger L1 size vs. other area-intensive parts of a proces-
sor (e.g., branch predictors).

5.1 System-Level Issues

The increase in processing requirements under SSL is
not confined to the core only. The nature of SSL pro-
cessing has a number of other effects as well. In partic-
ular, following the trend for L2 miss ratio, the overall
bus traffic increases for the SSL handshake, but actu-
ally goes down for the data transfer part. (See last two
columns in Table 1.) This difference is most apparent
for the 1P case.

With a small file-size, the network traffic increases
substantially under SSL as a result of about 8 message

transfers per handshake plus a single data transfer. This
is a 9-fold increase in number of packets to be handled.
However, since the throughput also drops by a factor
of 5-7, the overall effect is not very substantial. Fur-
thermore, for a more realistic data transfer size, this
overhead will go down further since the data part itself
will involve a few packets (assuming maximum packet
size of 1460 bytes). Thus the overall impact of SSL on
required network bandwidth is not significant. This is
in contrast with the media reports that seem to indi-
cate a big increase in network bandwidth requirements.
However, advancements in NIC technology such as in-
terrupt batching, NIC checksums, larger NIC buffers,
larger PCI transfer sizes, would have a positive impact.
In particular, since SSL handshake data (512 bytes) and
perhaps also the exchanged data (a few KB) are small
in size, efficient transfer of small packets and interrupt
batching are clearly a plus.

One further issue in Microsoft’s NT environment has
to do with 0-copy vs. 1-copy sends. NT can do 0-copy
sends of static files but is limited to 1-copy send of dy-
namic data. Given static original data, the SSL encryp-
tion turns it into dynamic data, which must suffer a
user-space to kernel space copy. This increases context
switches and results in higher bus/memory load, all of
which contribute to poorer performance. A 0-copy I/0O
solution (such as supported by the VI architecture [4])
would avoid this problem.

Table 4 shows the transaction response time experi-
enced with and without SSL for the two extreme cases
of very small and very large data transfers. Here we con-
sider only the response time for the first byte because it
hides the impact of requested file size and thus makes
the 30B and 1 MB cases comparable. As expected, the
L2 cache size does not have any important role to play
here. The most significant result here is that the re-
sponse time increase by a factor of about 10 under SSL!
If we were to look at the time to last byte for a 1 MB

file-size | First-byte response times vs. L2 cache size
& no. SSL case Non-SSL case

of procs | 2MB 1MB 512K | 2MB 1MB 512K
30B, 1P 558 579 602 63 67 70
30B, 2P 384 401 410 70 62 62
30B, 4P 350 348 353 43 44 17
1MB, 1P 272 212 274 25 39 53
1MB, 2P 222 224 222 28 33 49
1MB, 4P 198 209 211 32 51 58

Table 4: Time (ms) to receive the first byte of web page

file size, we find that a response time of 1-2 secs with-
out SSL (which is quite tolerable) increases to 10-15 secs
with SSL (which is large enough to result in significant
abandonment and retries).

It may be noted that the response time is signifi-
cantly higher for 30B case because the handshake in-
volves about 4 round-trip delays between the server and
the client. With a large file transfer also involved, the
competing connection setups go down drastically and
the TCP data transfer becomes much more efficient (by
virtue of slow-start mechanism). This results in a signif-
icant drop in queuing delays and hence a drop in first-
byte response times. A consequence of these observa-
tions is that the client response time can be improved
by reducing the frequency of SSL handshakes. The re-
sponse time also improves with increasing number of
processors because the increased processing power re-
duces CPU delays much more than the increase in queu-
ing delays at other resources due to increased through-
put.

6 Conclusions

In this paper, we have presented an experimental analy-
sis of the impact of SSL transactions on Internet server
architecture. In particular, in addition to quantifying
the overall drop in throughput due to SSL, the analysis
also supports the following observations:

e SSL workload is processor bound and hence more
powerful processors are very helpful in improving
the performance.

e A processor with high pipeline depth can improve
the performance of SSL transactions, whereas the
increase in the issue width may not, especially in
cases where the performance is dominated by bulk
data encryption. This behavior results from the
high sequentiality and low control dependencies in
SSL code.

e Increasing the size of L1 cache should have a posi-
tive impact on the SSL performance.

e The frequency of branches are low, and the effi-
ciency of BTB is also low. Thus a complex logic
and large BTB for branch handling is not benefi-
cial for SSL transactions.

e Increasing the size of L2 caches to any reasonable
extent has minimal impact on SSL performance.

e SSL handshake and encryption/decryption of large
web-pages has very good scaling with respect to the
number of processors in a SMP environment, which
may promote the use of 4-way or 8-ways systems for
these applications.

These observations are useful for designing servers for
use in the e-commerce environment and also for direct-
ing further studies in this area.

References

[1] J. Almeida, M. Dabu, A. Manikutty, and P. Cao, “Pro-
viding differentiated levels of service in web content
hosting,” Proc. of workshop on internet server perfor-

mance (WISP), June 1998.
[2] G. Banga, P. Druschel, and J.C. Mogul, “Better Oper-

ating System features for faster network servers,” Proc.
of workshop on internet server performance (WISP),

June 1998.
[3] G. Banga and P. Druschel, “Measuring the capacity of

a web server,” Proc of USENIX symposium on Internet

Technologies and Systems, Monterery, CA, Dec 1997.
[4] D. Dunning, G. Regnier, et. al.,, “The virtual interface

architecture: a protected, zero copy user-level interface

to networks,” IEEE Micro, March 1998, pp. 66-76.
[5] P. Druschel and G. Banga, “Lazy receiver processing

(LRP): A Network Subsystem Architecture for Server

Systems”, Tech Report, Rice University.
[6] A.O. Freier, P. Karlton, P.C. Kocher,

“The SSL Protocol, V3.0, IETF draft at

www.netscape.com/enngslS/draftSOQ.txt.
[7] A. Goldberg, R. Buff, A. Schmitt, “Secure Server per-

formance dramatically improved by caching SSL session
keys”, Proc. of 1998 WISP (held with ACM Sigmetrics

conference), June 1998.
[8] A. Goldberg, R. Buff, A. Schmitt, “A Comparison of

HTTP and HTTPS Performance”, Technical Report,

Computer Science dept, Courant Institute, NYU.
[9] S. Kent and R. Atkinson, “Security Architecture for the

Internet Protocol,” RFC 2401, Nov 1998.
D.R. Manfield, G. Millsteed, and M. Zukerman, “Con-

gestion Controls in SS7 Signalling Networks,” IEEE

Communications Magazine, June 1993, pp 50-57.
[11] D. A. Menasce, V. A. F. Almeida, R. Fonseca, and

M. A. Mendes, “Resource Management in E-commerce
Servers,” Workshop on Internet Server Performance
b)

1999.
W. Stallings, Cryptography and Network Security:

Principles and Practice, Second Ed, Prentice Hall, 1999.
[13] T. Wilson, “E-Biz bucks lost under SSL

strain”, Internet Week online, May 20, 1999, at
www.internetwk.com/lead/lead052099.

[12]

