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Abstract—Many practical problems in mobile social net-
works such as routing, community detection, and social be-
havior analysis, rely on accurate user contact detection. The
frequently used method for detecting user contact is through
Bluetooth on smartphones. However, Bluetooth scans consume
lots of power. Although increasing the scan duty cycle can
reduce the power consumption, it also reduces the accuracy of
contact detection. In this paper, we address this problem based
on the observation that user contact changes (i.e., starts and
ends of user contacts) are mainly caused by user movement.
Since most smartphones have accelerometers, we can use them
to detect user movement with much less energy and then
start Bluetooth scans to detect user contacts. By conducting
experiments on smartphones, we discover three relationships
between user movement and user contact changes. According
to these relationships, we propose a Mobility-Assisted User
Contact detection algorithm (MAUC), which triggers Bluetooth
scans only when user movements have a high possibility to
cause contact changes. Moreover, we propose energy aware
MAUC (E-MAUC) to further reduce energy consumption
during Bluetooth discovery, while keeping the same detection
accuracy as MAUC. Via trace driven simulations, we show
that MAUC can reduce the number of Bluetooth scans by half
while maintaining similar contact detection rates compared
to existing algorithms, and E-MAUC can further reduce the
energy consumption by 45% compared to MAUC.

I. I NTRODUCTION

Detecting users within the communication range (i.e.,
contact detection) is essential for many practical problems in
mobile social networks such as designing routing protocols
[22, 25], identifying community structures [14, 5, 10],
analyzing social behaviors [18], etc. With the proliferation
of smartphones and various embedded sensors, detecting
user contacts using Bluetooth becomes a common solution
[12, 18]. However, to detect user contacts with Bluetooth,
an extremely power consuming process called Bluetooth
scanmust be performed. Frequent scans can obtain accurate
results but will drain the phone battery quickly. In contrast,
infrequent scans save power but may miss lots of user
contacts.

There have been solutions on achieving a balance be-
tween accuracy and energy. The basic idea is to predict the

This work was supported in part by the US National Science Foundation
(NSF) under grant number CNS-1218597, and by Network Science CTA
under grant W911NF-09-2-0053.

next user contact time and adaptively adjust the Bluetooth
scan duty cycle [20, 21, 18]. Although these solutions can
save power by reducing the number of scans, they also
reduce the accuracy of contact detection since many user
contacts can not be detected due to the long duty cycle or
prediction errors [18, 20].

The goal of this paper is to accurately detect user contacts
with low power. Our solution is based on the observation that
user contact changes (i.e., starts and ends of user contacts)
are mainly caused by user movement. For example, two
users not in contact meet each other only because one (or
both) of them is moving toward the other. Similarly, two
users within communication range lose contact because one
(or both) of them moves away. Since most smartphones have
accelerometers which consume much less energy, we can
use them to detect user movement and then only detect user
contacts during user movements.

Although using movement detection to trigger user con-
tact detection can significantly reduce the energy consump-
tion, there are two challenges:(1) For moving users, how to
adjust the Bluetooth scan duty cycle to reduce the number
of scans and maintain detection accuracy? (2) How should
users collaborate, so that static users can also detect user
contact changes caused by moving neighbors?To answer
these questions, we collect Bluetooth scan traces and user
movement traces from a small testbed consisting of 20 users.
Based on the relationships between user contact changes
and user movements observed from the traces, we pro-
pose a Mobility-Assisted User Contact detection algorithm
(MAUC ), to detect user contacts accurately. MAUC uses the
accelerometer in the smartphone to detect user movement.
Moving users only trigger Bluetooth scans when their move-
ments have a high possibility of causing contact changes.
Also, moving users will inform static users at proper time
when they pass by. As a result, MAUC can reduce the
number of Bluetooth scans while maintaining high detection
accuracy.

For a Bluetooth device to be detected through a Blue-
tooth scan, it must stay in the Bluetooth discovery (discover-
able) mode, which also consumes lots of power. To address
this problem, we propose energy-aware MAUC (E-MAUC)
to reduce the amount of time that a Bluetooth device has to
stay in the discovery mode. Our detailed contributions are



as follows.

• We collect and analyze user moving and contact traces
and identify three relationships between user contact
changes and user movement.

• We propose MAUC, an energy efficient algorithm to
detect user contacts. It can improve the detection accu-
racy, while reducing the number of Bluetooth scans.

• To further save energy, we propose energy-aware
MAUC to adaptively adjust the amount of time that the
Bluetooth interface has to stay in the discovery mode.

The remainder of this paper is organized as follows.
Section II gives an overview of our work. Section III ana-
lyzes the relationship between user contact changes and user
movement. Section IV and Section V present the details of
MAUC and E-MAUC. Section VI evaluates the performance
of our solutions based on the collected traces. Section VII
reviews related work and Section VIII concludes the paper.

II. OVERVIEW

A. Bluetooth Interface

For Android smartphones, the Bluetooth interface can
work in two modes:on and discovery. A phone can only
be found by others if it works in the discovery mode.
Also, a phone needs to execute a Bluetoothscan process
explicitly in order to find others. The power consumption of
the smartphone is different when the Bluetooth interface is
set to different modes. To measure the power consumption,
we use Agilent E3631A Power Supply to provide the current
with constant voltage (3.7V) to the smartphone instead of
using the battery [23, 24]. We connect the Agilent E3631A
to our laptop through the “NI GPIB-USB-HS” cable and
program it by LabVIEW, in order to capture the current of
the smartphone every 0.25 second.

Fig. 1 shows the power consumption of the smartphone
when the Bluetooth interface is operating in different modes.
As can be seen, keeping Bluetoothoncosts very little power,
while keeping it indiscoverycosts much more. The scan
process is very long (around 12 seconds) and consumes lots
of power. More details are summarized in Tab. I, where all
the measurements are done for 10 times when the phone’s
screen is turned off. The power consumption is averaged
over one minute when the phone is in various modes, except
for Bluetooth scan, in which the power consumption is
averaged during the scan process. Also, the value without
star contains the phone’s total power consumption (including
the idle mode), while the value with star are measured as
extra power in addition to that of the Bluetooth discovery
mode.

The Bluetooth communication on Android is based on
RFCOMM, which provides a simple and reliable data stream
to users, like TCP. RFCOMM requires the two communi-
cation nodes to work as client and server to establish a
connection. The server side first creates a service with a
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Figure 1. Power consumption of the smartphone when the Bluetooth
interface is operating in different modes

Table I
POWER CONSUMPTION(MW)

Status Mean Std. dev

Idle 23.43 2.92
Bluetooth on 25.23 1.36

Bluetooth Discovery 140.10 21.56
Bluetooth Dis.+Server 141.06 41.42

Bluetooth Scan (12s) 307.59* 32.29

Accelerometer 1.78* 0.86

* means extra power consumption in addition to that of the Bluetooth
discovery mode.

specified unique idUUID. Then the client can obtain the
server’s MAC address through Bluetooth scan, and connect
to the server’s MAC address using the sameUUID.

B. ∆-detection Rate

Two users within the Bluetooth communication range
can detect each other by Bluetooth scan. To measure the
accuracy of a contact detection algorithm, the commonly
used metric isdetection rate(D), which is defined as the
number of successfully detected contacts divided by the total
number of contacts. However, even if different detection
algorithms have the same detection rate, their accuracy may
vary.

Fig. 2 shows an example. The real contact duration
between two users are shown in the solid shaded rectangle
area. With Method-1, the contact is detected through Blue-
tooth scans, and the detected contact duration is shown in
the upper dashed rectangle area. Similarly, Method-2 also
detects the user contact. Although both methods have the
same detection rateD = 1, method-2 has higher detection
accuracy since it detects the start and the end of the contact
more accurately. That is, the detected contact duration of
Method-2 (shown in the dashed rectangle) is closer to the
real contact duration (shown in the solid rectangle) than that
of Method-1. Thus, a new metric is needed to differentiate
these two cases.

To overcome the limitation of detection rate, we intro-
duce∆-detectionrate, which measures how manycontact
changes(i.e., the start and the end of the contact) are
detected. Considering a contact change evente happens at
te, and it is detected att. If |t− te| ≤ ∆, e is successfully
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Figure 2. Using∆-detection rate to measure the detection accuracy. Each
vertical arrow represents a Bluetooth scan at that time.

detected. Then,∆-detection rate(D∆) is defined as the
number of successfully detected contact changes divided by
the total number of contact changes.

As shown in Fig. 2, there are two contact changes,
marked as Start and End. Method-1 detects neither of the
contact changes, and hence itsD∆ = 0. Method-2 detects
both of them and hence itsD∆ = 1. Therefore Method-2 is
more accurate than Method-1.

C. Basic Idea

In this paper, we aim to accurately detect user contacts
with less energy. More generally, we aim to improve the
detection rate and∆-detection rate, while reducing the
number of Bluetooth scans. Fig. 3 illustrates the basic idea.
Traditional algorithms do not consider user movement. They
assume that the Bluetooth interface always stays in the
discovery mode, and use Bluetooth scans to detect neighbors
periodically. Although there are solutions to adjust the scan
duty cycle to save power based on some prediction models,
the detection accuracy is also reduced due to the long duty
cycle and high prediction errors.

In MAUC, based on the observation that user contact
changes are mainly caused by user movement, accelerome-
ters are introduced to detect user movement. Then Bluetooth
scans are only triggered when a user movement is detected,
either by the users themselves or their neighbors, as shown
in Fig. 3. Also, we propose techniques to achieve a bal-
ance between reducing the number of Bluetooth scans and
improving the detection accuracy.

Since staying in Bluetooth discovery also consumes lots
of power as shown in Tab. I, the smartphone should work
in the discovery mode only when others are scanning.
However, this is not supported by the original Android
system. To address this problem, we modify Android so that
the discovery mode can be turned on/off adaptively. Then,
we design energy aware MAUC (E-MAUC), which only sets
Bluetooth in discovery mode for a short period of time while
still satisfying the discovery requirement of MAUC (see Fig.
3). Thus, E-MAUC can keep the same detection accuracy
while saving more energy. More details of E-MAUC will be
described in Section V.
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Figure 3. Comparison of traditional contact detection algorithms and the
proposed solutions

III. T RACE ANALYSIS

In this section, we introduce our traces and identify the
relationships between user movement and contact changes.

A. Trace Collection

To collect the user contact and moving traces, we dis-
tributed Samsung Nexus S phones to 20 students in the CSE
and IST Departments at the Pennsylvania State University
and conducted experiments for 10 days during the period
from 8am to 8pm. The phones run a background service
which initiates a Bluetooth scan every 30 seconds and
records the detected neighbors. The first time a neighbor
appears (disappears) is considered as the start (end) of a
contact with that neighbor. The logged user contacts are used
as the ground truth to determine the accuracy of various user
contact detection algorithms.

The accelerometer is sampled at 50Hz, and the mean,
standard deviation and peak values of the three axes are
recorded within a window of 5 seconds. We classify users’
mobility status as moving or static within that window using
a decision tree algorithm that will be described in Section
IV-B. The duration over which a user’s mobility status is
classified as moving is recorded as amoving period.

B. User Contact Duration

The distribution of user contact duration affects the
Bluetooth scan duty cycle. First, the scan interval should
be smaller than most contact durations. Otherwise, most
short user contacts will be missed. Second, this distribution
also affects how to measure the accuracy of the detection
algorithms. For example, in Fig. 2, two algorithms both
detect a user contact but with different contact duration, then
it is necessary to use∆-detection rate to differentiate them,
especially when most contact durations are short.

The cumulative distribution function (CDF ) of the user
contact duration is shown in Fig. 4(a). As can be seen,
50%, 80% and 90% of user contact duration is less than
10 minutes, 50 minutes, and 100 minutes, respectively. The
average user contact duration is 36 minutes, which is close to
that in the MIT Reality trace [2]. As 15% of the contacts are
shorter than 1 minute in our trace, we set∆ to 30 seconds.
Additionally, the CCDF (complementaryCDF ) of user
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Figure 4. User contact duration distribution
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Figure 5. Relationship between contact changes and start points
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tact changes and end-points

Figure 6. Relationship between contact changes and end-points
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Figure 7. Relationship between communication range and lost-RSSI

contact duration in Fig. 4(b) (log-log scale) shows that user
contact duration follows power law distribution within the
range [60 min, 400 min] with a scaling index of 1.45, which
is consistent with the result in [3].

C. Relationships Between Contact Changes and User Move-
ment

Intuitively, a contact change event usually happens at
the start or end of a moving period. For example, when a
student moves from one classroom to another, he may lose
contact with the previous classmates when he starts moving
and then contacts other classmates after sitting down. By
analyzing the collected trace data, we confirm this intuition
and identify three relationships between contact changes and
user movement.
Relation 1: Contact Changes vs. Start Points. We use
start pointto represent the time when a user starts to move.
To show the relationship between contact changes and start
points, we compute the time between contact changes and
the corresponding start points and draw its distribution in
Fig. 5(a). Most contact changes are close to the start points.
Specifically, 50%, 80% and 90% of contact changes happen
within 42, 112, and 207 seconds from the start points. From
the CCDF of this time in Fig. 5(b) (in log-log scale),
we notice that it follows an exponential distribution in the
range [6 sec, 200 sec], which means that the probability of
detecting a contact change event drops exponentially as the
time from the start point increases.
Relation 2: Contact Changes vs. End-Points. We use
end-pointto represent the time when a user stops moving.

Fig. 6 shows theCDF of the time between contact changes
and the end-points. We find 50%, 80%, and 90% of contact
changes happen within 37, 83, and 124 seconds before the
end-points. The number of contact changes before a given
time of the end-points is shown in Fig. 6(b). Each value at
time t is the number of contact changes that happen within
(t−10, t] seconds before the end-points. Though there is no
obvious pattern, most contact changes happen very close to
the end-points.
Relation 3: Communication Range vs. RSSI. To detect
the end of a user contact, Bluetooth scans should be done
at the boundary of the communication range. However, it
is hard to determine the exact communication range since
the wireless signal transmission is affected by many factors,
especially in indoor environments. To address this problem,
we exploit the Received Signal Strength Indication (RSSI) to
estimate the communication range. Although RSSI is not the
best indicator of the communication range, they are highly
correlated [7]. Android provides APIs to read the Bluetooth
RSSI, ranging from 0 to -100dB, where 0 means the best
signal and -100dB the worst.

We uselost-RSSIto represent the last Bluetooth RSSI
value a user detects about his neighbor before the end of
contact with this neighbor, and then use this value to estimate
the communication range. Fig. 7(a) shows that 50%, 80%
and 90% of user contacts end with RSSI values -79, -69 and
-62 dB. More specifically, Fig. 7(b) shows the number of
user contacts which end within(r − 10, r] at each RSSIr.
Considering 90% of the user contacts end when the RSSI
is smaller than -60dB, we pick -60dB as the defaultlost-



RSSI threshold (α), which is also used to determine the
communication range.

IV. MAUC D ESIGN

In this section, we present our Mobility-Assisted Accu-
rate User Contact detection algorithm (MAUC), which can
detect user contacts accurately with less power.

A. MAUC Overview

MAUC performs Bluetooth scans properly within the
moving periods to save energy. Specifically, MAUC solves
two problems: how to detect the moving periods that may
cause contact changes, and how to detect user contacts
within the moving periods. For each problem, we design two
solutions depending on whether a user is moving or static. A
moving user can detect the moving periods using accelerom-
eter, but the static user may not be aware of such moving
periods. Therefore, moving users need to notify static users
about the moving periods (see Section IV-B). Based on the
detected moving periods, moving users and static users apply
different user contact detection algorithms, which will be
presented in Section IV-C and IV-D, respectively.

B. Detecting the Moving Periods

In MAUC, a moving period is described as a set of
tuples (id, tstart, tend), where id is the user who causes
the movement, andtstart, tend are the corresponding start
and end time of the moving period.

We use accelerometer on smartphones to detect user
movement continuously and classify it into two status:
movingor static, based on a decision tree technique [16],
which builds decision trees from a set of training cases.
Each case can be described as (−→x ;Y ), where−→x is a vector
of attributes andY is the decision. In this paper,−→x includes
the mean, standard deviation, and peak number of the three
axes of accelerometer, andY is the movement status. Note
that the training process of the classifier is run off-line.

In real life, temporary vibration and shift of the smart-
phone may generate false moving periods, which should be
filtered out. We remove all moving periods shorter than a
threshold, which is set to 6 seconds based on our trace study.
After filtering, the remaining moving periods are recorded
as detected moving periods. For example, in Fig. 8, userB
detects two moving periods, which are shown by the two
rectangles above the time line.

1) Interaction between Static and Moving Users:In
order to let static users know the moving periods that
may cause contact changes, a moving user will initiate a
Bluetooth connection with his neighbor and then disconnect,
so as to notify the neighbor and save energy for data
transmission [4]. When receiving such a notification, the
moving neighbor just ignores it, whereas the static neighbor
uses it to estimate the moving user’s moving period. To save
energy for both moving and static users, a moving user only
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Figure 8. An illustration of MAUC. The vertical dashed line is the
communication range of the static phone.

sends notification when the moving period is likely to cause
contact changes in the following two cases, as shown in Fig.
8.

Case 1: A moving userB sends a notification to a new
neighborA immediately after it detects the new neighbor.

Case 2: When a moving userB moves away from
neighborA and detectsA’s signal is weaker than the lost-
RSSI threshold (α), B sends notifications toA every∆ time,
until either one of the following conditions is satisfied.

• After one Bluetooth scan,B findsA’s signal is above
α. ThenB doesn’t need to send notifications as it has
moved back towardsA.

• B can not detectA, as he has moved out of the
communication range ofA.

• B stops moving.

C. Contact Detection by the Moving User

A moving user needs to trigger Bluetooth scans properly
within the moving periods to reduce the number of Blue-
tooth scans and improve the detection accuracy. Next, we
introduce an adaptive duty cycle algorithm to coordinate the
Bluetooth scans.

1) Adaptive Duty Cycle:According to Section III-C,
the probability of detecting a contact change event drops
exponentially from the start point of a moving period; thus,
it is better to increase the scan interval quickly after a
failed detection. On the other hand, the appearance of a
user contact is related to the contact history [20, 18], so it
is helpful to adjust the Bluetooth duty cycle considering the
previous scan result. Combining them together, MAUC uses
exponential-increase and multiplicative-decrease algorithm
to adjust the Bluetooth scan duty cycle, as described in line
15-21 in Alg. 1. Suppose theith detection fails to detect
a user contact, the scan interval will increase according to
Equ. 1.

intervali+1 = intervali × ebackoff (1)

where backoff records the back off stage, and increases by 1
after a failed detection. After a successful contact detection,
the backoff value is reset to 1 and the next scan interval will



be decreased according to Equ. 2, wherek is set to 2.

intervali+1 = intervali/k (2)

Normally, the next Bluetooth scan should start at
Tscan = ti + intervali+1. However, if Tscan falls into a
static period, there will be no Bluetooth scan and the next
scan is delayed to thetstart of the next moving period.
Another exception is the end-point detection, which may
happen beforeTscan.

2) End-Point Detection:The exponential-increase and
multiplicative-decrease algorithm reduces the number of
Bluetooth scans, but it also reduces the detection accuracy
dramatically [18]. In Section III-C, we found that most
contact changes occur near the end-points, thus we add one
more detection at the end-points to improve the detection
accuracy, even if it is beforeTscan. After the detection,
the scaninterval andTscan will be adjusted based on the
detection result.

According to the findings in Section III-C, the exponen-
tial decrease scheme should be used at the start of every
moving period, but in MAUC we do not. The reasons are
as follows. If the time interval between two moving periods
is long andtstart of the later moving period is afterTscan,
then there will be a detection attstart. Otherwise, if the
time interval is short, it would be redundant to detect again
at the start point of the later moving period after the end-
point detection in the previous moving period.

The detailed algorithm is shown in Alg. 1. Each moving
user keeps a neighbor-set and a RSSI-set, containing the
RSSI value of each neighbor. Using these two sets, a moving
user can determine whether a neighbor is newly detected and
whether the RSSI value of a neighbor is below the lost-RSSI
threshold. Then he can notify the proper neighbors at proper
time.

D. Contact Detection by the Static Users

A static user needs to detect contact changes when
receiving notifications from moving neighbors. To receive
notifications in time, the static user should keep the Blue-
tooth server on all the time. Each static user keeps a
neighbor-set to determine whether a notification is from an
existing neighbor or not, and a timeout-set to record the
timeout value of each neighbor.

If a static userA receives a notification from neighborB
not in the neighbor-set at timet, A will record the moving
period as (B, t, t). In this caseA knows that some users
have moved into its communication range, and then triggers
a Bluetooth scan immediately to find the appearance of the
new neighbors. The new neighbor is added to the neighbor-
set and its timeout value is set to infinity. This process is
shown in lines 6-9 in Alg. 2.

On the other hand, if a static userA receives a noti-
fication from an existing neighborB at t, A will record
the moving period as (B, t, t + ∆). A knows B is near

Algorithm 1: The Contact Detection Algorithm by
Moving Users

Input : Lost-RSSI Thresholdα
1 Initialization:
2 Neighbor-setN ← ∅
3 RSSI-setRSSI ← ∅
4 Tscan ← 0, duration← ∆, backoff ← 1
5 stopBluetoothServer()
6 foreach moving period (< self >, tstart, tend) do
7 EPdetect← false
8 t← tstart
9 while t < tend or EPdetect == false do

10 if t ≥ Tscan or t ≥ tend then
11 scanAt(t)
12 updateN andRSSI
13 if t ≥ Tend then // End point detect
14 EPdetect← true
15 if find at least one eventthen
16 duration ← duration/k
17 backoff ← 1
18 else
19 duration ← duration× ebackoff

20 backoff ← backoff + 1
21 Tscan ← t+ duration
22 foreach new neighborn do
23 sendNotificationTo(n)
24 foreach n ∈ N do
25 if RSSI(n) < α then
26 sendNotificationTo(n)
27 duration ← ∆
28 t← t + duration

its communication range. Since this does not meanB will
move out of the communication range immediately,A just
updates the timeout value ofB as To(B) = t + ∆. If A
receivesB’s notification again before the timer expires,A
extendsTo(B) by ∆. When the timer expires,A will start
a Bluetooth scan to find out the real situation in the vicinity
(line 14 in Alg. 2). Using this scheme, we can detect the
loss of a moving neighbor within∆ time in the worst case.

Algorithm 2: The Contact Detection Algorithm by Static
Users

1 Initialization:
2 Neighbor-setN ← Previous results
3 Neighbor timeout-setTo ← ∅
4 startBluetoothServer()
5 foreach moving period (n, tstart, tend) do
6 if n /∈ N then // Notification from new neighbor
7 scanAt(tstart)
8 N ← N ∪ n
9 To(n)← Infinity

10 else
11 To(n)← tstart +∆
12 foreach n ∈ N do
13 if To(n) < now then // Timer expires
14 scanAt(To(n))

V. ENERGY-AWARE MAUC (E-MAUC)

In the previous discussions, we assume that the Bluetooth
interface keeps working in the discovery mode. Since the



discovery mode is energy consuming, it is better to reduce
the discovery time. In fact, the Bluetooth interface should
only work in the discovery mode when other nodes are trying
to detect it. In this section, we present techniques to realize
this idea to save energy.

A. Adaptive Discovery

In order for smartphones to spend less time in the
discovery mode, they should be aware of the discovery
schedule of others and only scan at that time. This can
be realized by introducing a global discovery schedule and
synchronizing the smartphones using the “Automatic”
option in the time setting menu, which sets the phone’s time
to that of the wireless service provider.

The most challenging problem is to let smartphones
enter the discovery mode automatically according to the
discovery schedule without interrupting users, which is not
feasible in the original Android system. When the Bluetooth
interface needs to enterdiscoverymode, a request with type
BluetoothAdapter.ACTION_REQUEST_DISCOVER-
ABLE and discoverable time will be sent to
RequestPermissionActivity.java. The timeout
value will be checked and reset to 120 seconds if it is
negative. A dialog will be popped up to ask for the user’s
permission. If the user refuses or ignores the request, the
Bluetooth interface will not be able to enter discovery
according to the schedule. To solve this problem, we modify
the Android OS to deal with negative timeout values. If
the timeout value of a Bluetooth discovery request is
−d(d > 0), the request dialog will be bypassed and the
Bluetooth interface is directly set to discovery ford time.
When the timer expires, the discovery mode is turned off.

B. E-MAUC

Let T denote the length of the Bluetooth discovery
interval. In E-MAUC, all phones will enter discovery every
T time according to a global clock, and stay forTd. If
the smartphone needs to start a Bluetooth scan, it only
scans at these time periods. The selection ofT should
not affect the detection accuracy of MAUC, so we set it
to the minimum scan interval of MAUC.Td should be
longer than the maximum scan duration, which is affected
by the number of neighbors, signal strength, and interference
between neighbors, etc. In this paper, we setTd to the largest
scan duration based on experiments. In our trace, most scan
durations are around 10 seconds and all of them are shorter
than 12 seconds, so we setTd to 12 seconds.

C. Energy Improvement of E-MAUC

The power consumed for contact detection in MAUC
includes three parts: Bluetooth discovery (Pd), accelerometer
(Pa), and Bluetooth scan (Ps). The total power consumption
is P = Pd + [Pa] + Ps, wherePa is optional, depending
on whether the accelerometer is used or not. Also, we have

Ps =
K×Es

12hour×3600sec/hour whereEs is the energy consumed
in one scan, andK is the number of scans in a day. For
our phone, we haveEs = 307.59mW × 12s, and hence
Ps = 0.085 ·K(mW ).

In E-MAUC, the Bluetooth interface only enters dis-
covery when necessary. Thus, the power consumption of
Bluetooth discovery can be further reduced toPb × (1 −
Td

T ) + Pd × Td

T , wherePb is the power consumption when
Bluetooth is on. Therefore the power saving rateQ of E-
MAUC over MAUC can be calculated using Eq. 3.

Q =
P (MAUC)− P (E-MAUC)

P (MAUC)
=

(Pd − Pb)× (1− Td

T
)

Pd + Pa + Ps

(3)

VI. PERFORMANCEEVALUATIONS

In this section, we present the evaluation results based
on the collected traces.

A. Algorithms for Comparison

We compare the performance of MAUC and E-MAUC
against several other contact detection algorithms.

SociableSense [18]:SociableSense adaptively adjusts
the Bluetooth scan duty cycle based on whether the previous
detection finds any interesting events (i.e., contact changes).
After a successful detection, SociableSense adjusts the de-
tection ratep by p = p+α(1−p). Otherwise,p is decreased
according top = p − αp. Parameterα is set to 0.5, andp
is restricted between 0.1 and 0.9.

STAR [20]: STAR uses the number of contacts in the
previousm minutes to predict the number in the nextm
minutes. The duration between the two detections is adjusted
according to the following Equation.

T = τ(
c(1 − k)

λkτ
+ 1)

1

1−k (4)

The contact arrival rateλ is calculated based on the number
of user contacts in the previousm minutes. Other parameters
are constant [20]. In our experiment, we setλ = 1 at the
beginning of each day.

Aggressive Mobility Detection (AMD): AMD uses the
most aggressive detection scheme considering user move-
ment. During moving periods, AMD detects user contacts
every 30 seconds and also applies the end-point detection
scheme. During static periods, AMD detects user contacts
when receiving a notification or when the timer expires.
AMD can be seen as the upper bound of MAUC.

The comparisons are based on detection accuracy and
energy consumption. The detection accuracy is measured by
detection rate and∆-detection rate. The energy consumption
is measured by the number of Bluetooth scans and the
average amount of power consumed by the whole phone.
As MAUC and E-MAUC have the same detection accuracy,
we only use MAUC when comparing detection accuracy.



Table II
MOBILITY CLASSIFIER CONFUSION MATRIX

Static Moving

Static 93% 7%
Moving 1.4% 98.6%

Table III
DETECTION ACCURACY WITH/WITHOUT END-POINT DETECTION

detection rate ∆-detection rate

MAUC with EP 0.78 0.57
MAUC w/o EP 0.47 0.24

B. The Effectiveness of MAUC

There are many design choices in MAUC, and we
evaluate the effectiveness of the techniques used in MAUC.

1) The effectiveness of using accelerometer for move-
ment detection:We first evaluate the effectiveness of move-
ment detection based on accelerometer in MAUC. We asked
five users to annotate their movement status every 10 min-
utes over two days. Then, we constructed test cases with the
sampled accelerometer data as attributes and user notations
as decisions. These cases are divided into two parts, one
for training and another for testing. The accuracy of the
movement detection algorithm used in MAUC is shown in
Tab. II.

As can be seen, almost all moving periods are success-
fully detected. Although the false positive is as high as 7%,
it just adds more Bluetooth scans, which will not affect the
detection accuracy.

2) Impact of End-Point Detection:We want to evaluate
whether the end-point detection helps improve the detection
accuracy of MAUC. For comparison, we create another
protocol, which keeps all functions in MAUC, except the
end-point detection. As shown in Tab. III, with end-point
detection, the contact detection rate can be increased from
47% to 78%, and the∆-detection rate can be improved from
23% to 57%. Thus, end-point detection can significantly
improve the detection accuracy of MAUC.

3) Impact of the Lost-RSSI Threshold (α): The Lost-
RSSI Threshold (α) affects the performance of MAUC as
it determines when to detect the potential lost of moving
neighbors. Fig. 9 shows the impact ofα on the detection
accuracy in MAUC. Both the detection rate and∆-detection
rate increase whenα increases. Whenα is larger than -60
dB, increasing RSSI does not bring too much improvement.
The lower detection rate whenα is small indicates most
contact changes are not detected without correctly detecting
the neighbors’ leaving. It also means that observing user
contact from a single user’s view is not enough, since lots of
user contact changes are caused by neighbors’ movements.

C. Performance Comparisons

In this subsection, we compare the detection accuracy
and energy consumption of various contact detection algo-
rithms. As the performance of existing solutions are mainly
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Figure 9. Impact of Lost-RSSI threshold to the detection accuracy of
MAUC

affected by the scan interval, we keep the minimum scan
interval to 30 seconds and increase the maximum scan
interval from 120 to 240 seconds. For AMD, since it scans
at a constant rate, this change will not affect its performance.

1) Detection Accuracy:As shown in Fig. 10(a) and
10(b), MAUC achieves higher detection rate and∆-detection
rate than SociableSense and STAR. When the max scan
interval increases, the detection rate of SociableSense and
STAR drops significantly. But MAUC can still maintain high
accuracy due to end-point detection. When the maximum
scan interval is 240 seconds, MAUC can improve the detec-
tion rate by 21% and 32% when compared to SociableSense
and STAR, respectively.

For SociableSense and STAR, we notice that the dif-
ference between their detection rate and∆-detection rate
is very large. It means that although these two algorithms
detect many contacts, they can not detect the contact changes
accurately, thus they can not detect contact duration accu-
rately. In contrast, this difference of MAUC is much smaller,
which shows that MAUC outperforms existing algorithms
when detecting the contact changes.

The detection rate of SociableSense and STAR is very
close to each other. Since user contacts are relatively rare
compared to the long testing time, both algorithms tend
to increase the scan interval to the maximum value. One
interesting thing is that STAR performs worse than Sociable-
Sense most of time, although it uses more complex scheme
to predict future user contacts.

2) Energy Efficiency:Besides achieving high detection
rate, MAUC is also energy efficient. This is because MAUC
does not initiate Bluetooth scans outside of the user moving
periods. From Fig. 11(a), we can see that MAUC uses much
less number of Bluetooth scans. When the maximum scan
interval is 120 seconds, MAUC can reduce the number of
Bluetooth scans by 58.1% and 57.3% when compared to
SociableSense and STAR. We also compare the energy con-
sumption of these four algorithms in Fig. 11(b). The trend
is similar as Fig. 11(a), but with smaller difference between
MAUC and other algorithms, because the energy saved
by reducing Bluetooth scans is smaller when compared to
that consumed by the Bluetooth discovery mode. Thus, we
use E-MAUC to further reduce the energy consumption of
Bluetooth discovery.
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Figure 10. Detection accuracy and power comparison of MAUC and other algorithms
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Figure 11. Detection accuracy and power comparison of MAUC and other algorithms

D. Energy Improvement of E-MAUC

E-MAUC lets the Bluetooth interface enter the discovery
mode only during the scan interval and turn off the discovery
mode during other times. Thus, it can save more energy
while maintaining the same detection accuracy as MAUC.
Fig. 12 shows the detection rate and the power consump-
tion of various algorithms when the discovery intervalT
increases from 30 to 80 seconds. For eachT , we set the
minimum and maximum scan interval toT and 4 × T .
As shown in Fig. 12(a), increasing the Bluetooth discov-
ery interval reduces the detection rate of all algorithms,
but MAUC/E-MAUC still outperforms SociableSense and
STAR. Fig. 12(b) shows the energy consumption of smart-
phones using various algorithms. As can be seen, E-MAUC
can significantly reduce the energy consumption since it
turns off the discovery mode most of time. WhenT is
30 second, E-MAUC saves 45%, 49.2% and 48.7% more
energy when compared to MAUC, SociableSense and STAR,
respectively.

VII. R ELATED WORK

There have been many solutions on detecting user con-
tacts in mobile social networks or mobile opportunistic
networks. In [11], nodes connected to the same access point
via WiFi are classified as contacting each other. However,
two nodes may be out of communication range if they are
at different side of the access point. In [19], class schedules
are used to infer student contacts, but the contacts after
class or between classes cannot be modeled accurately. A
more realistic approach to detect user contact is based on

Bluetooth due to its short communication range, and it has
already been used in several projects [6, 2]. Among them,
the Infocom trace [6] is collected with people attending
a conference, and the MIT Reality trace [2] is based on
students on campus. However, none of these works consider
energy issues.

To detect user contacts with Bluetooth, power consuming
Bluetooth scans must be used. Although reducing the num-
ber of scans can save energy, it also reduces the detection
accuracy [15, 17, 9, 13]. To address this problem, researchers
in [20] models user contact durations with Pareto distri-
bution, and propose a scheme called STAR to reduce the
number of Bluetooth scans based on this distribution. Similar
solutions have been proposed in [21], which uses Markov
Model to describe user state changes and predict the next
contact. Rachuriet al. [18] introduce a heuristic algorithm to
adjust the duty cycle using linear reward inaction algorithm
based on previous detection results. However, the predictions
in these algorithms may be wrong, and then result in low
detection accuracy, as shown in our evaluations.

Different from these existing works, we address this
problem based on the observation that user contact changes
(i.e., starts and ends of user contacts) are mainly caused by
user movement. Since most smartphones have accelerome-
ters, we can use them to detect user movement with much
less energy and then start Bluetooth scans to detect user
contacts. Using accelerometers to detect user mobility has
been around for some time [8, 1]. For example, accelerom-
eters are used to detect user moving speed and moving
distance in [1] and user activity in [12]. However, none
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Figure 12. Performance comparisons with various discoveryinterval

of them has been applied to saving energy in user contact
detection. Although it is generally not very accurate for
using accelerometers to detect fine-grained user activity,this
is fine for our application since we only need to determine
whether the user is moving or not. Moreover, to improve
the detection accuracy, we also identified the relationships
between contact changes and user movement, and proposed
techniques to improve the detection accuracy such as using
end-point detection, etc.

VIII. C ONCLUSIONS

In this paper, we proposed a Mobility-Assisted User
Contact detect algorithm algorithm (MAUC) to detect user
contacts with high accuracy and low energy consumption.
MAUC uses accelerometers to detect user movements and
only start the power consuming Bluetooth scans when users
or their neighbors are moving. To improve the detection
accuracy, we identified the relationships between contact
changes and user movement based on our collected real
traces, and proposed techniques to improve the detection
accuracy such as using end-point detection, etc. For a
Bluetooth device to be detected through Bluetooth scan, it
must stay in the Bluetooth discovery (discoverable) mode,
which also consumes lots of power. To address this problem,
we propose energy-aware MAUC (E-MAUC) to reduce the
amount of time that a Bluetooth device has to stay in
the discovery mode. Via trace driven simulations, we show
that MAUC can reduce the number of Bluetooth scans by
half while maintaining similar detection rate with existing
algorithms, and E-MAUC can further reduce the energy
consumption by 45% compared to MAUC.
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