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Abstract—Many practical problems in mobile social net- next user contact time and adaptively adjust the Bluetooth
works such as routing, community detection, and social be- scan duty cyclel [20, 21, 18]. Although these solutions can
havior analysis, rely on accurate user contact detection. fie save power by reducing the number of scans, they also

frequently used method for detecting user contact is throub d th f tact detecti .
Bluetooth on smartphones. However, Bluetooth scans consu&n reduce the accuracy or contact detection since many user

lots of power. Although increasing the scan duty cycle can contacts can not be detected due to the long duty cycle or
reduce the power consumption, it also reduces the accuracyf o  prediction errors@d:iO].

contact detection. In this paper, we address this problem bsed The goal of this paper is to accurately detect user contacts
on the observation that user contact changes (i.e., startsnd it |ow power. Our solution is based on the observation that

ends of user contacts) are mainly caused by user movement. tact ch . tart d ends of tact
Since most smartphones have accelerometers, we can use them user contact changes (i.e., starts and ends of user cgntacts

to detect user movement with much less energy and then are mainly caused by user movement. For example, two
start Bluetooth scans to detect user contacts. By conductin ~ users not in contact meet each other only because one (or
experiments on smartphones, we discover three relationshé  poth) of them is moving toward the other. Similarly, two

between user movement and user contact changes. According sers within communication range lose contact because one

to these relationships, we propose a Mobility-Assisted Use both) of th Sj ¢ toh h
Contact detection algorithm (MAUC), which triggers Bluetooth (or both) of them moves away. Since most smartphones have

scans only when user movements have a high possibility to accelerometers which consume much less energy, we can
cause contact changes. Moreover, we propose energy aware use them to detect user movement and then only detect user
MAUC (E-MAUC) to further reduce energy consumption contacts during user movements.

during Bluetooth discovery, while keeping the same deteain Although using movement detection to trigger user con-

accuracy as MAUC. Via trace driven simulations, we show tact detecti ianif f d th
that MAUC can reduce the number of Bluetooth scans by half act aetection can significantly reduce th€ energy consump-

while maintaining similar contact detection rates comparel  tion, there are two challenge) For moving users, how to
to existing algorithms, and E-MAUC can further reduce the  adjust the Bluetooth scan duty cycle to reduce the number

energy consumption by 45% compared to MAUC. of scans and maintain detection accuracy? (2) How should
users collaborate, so that static users can also detect user
. INTRODUCTION contact changes caused by moving neighborg?answer

. . o . these questions, we collect Bluetooth scan traces and user

Detecting users within the communication range (i.€.,;yement traces from a small testbed consisting of 20 users.
contact detection) is essential for many practical proslem pgoced on the relationships between user contact changes
mobile soqial ngtvyorks such as designing routing protocol$,nq user movements observed from the traces, we pro-
[22, |Z$], identifying community struct.ureﬂl ,E‘ 10, pose a Mobility-Assisted User Contact detection algorithm
analyzing social behawor_ﬂlS], etc. With the prolifesati  \;auC), to detect user contacts accurately. MAUC uses the
of smartphones and various embedded sensors, detectiigcejerometer in the smartphone to detect user movement.
user contacts using Bluetooth becomes a common solutiogy,ying users only trigger Bluetooth scans when their move-
[12,[18]. However, to detect user contacts with Bluetooth,ans have a high possibility of causing contact changes.
an extremely power consuming process called Bluetootlisq moving users will inform static users at proper time
scanmust be performed. Frequent scans can obtain accurafgy, ., they pass by. As a result, MAUC can reduce the
results but will drain the phone battery quickly. In contras ,mper of Bluetooth scans while maintaining high detection
infrequent scans save power but may miss lots of USELccuracy.
contacts. ) o For a Bluetooth device to be detected through a Blue-

There have been solutions on achieving a balance bgyqih scan, it must stay in the Bluetooth discovery (discove
tween accuracy and energy. The basic idea is to predict thegs|e) mode, which also consumes lots of power. To address

. . . _ , this problem, we propose energy-aware MAUC (E-MAUC)
This work was supported in part by the US National SciencenBation . .
(NSF) under grant number CNS-1218597, and by Network Sei@ga O reduce the amount of time that a Bluetooth device has to

under grant W911NF-09-2-0053. stay in the discovery mode. Our detailed contributions are



as follows.
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Bluetooth interface has to stay in the discovery mode Figure 1. Power consumption of the smartphone when the @tiet
interface is operating in different modes

The remainder of this paper is organized as follows.

Section[]) gives an overview of our work. Sectibnl Ill ana- Table |
lyzes the relationship between user contact changes and use POWER CONSUMPTIONMW)
movement. Sectiof IV and Sectibd V present the details of Status [ Mean | Std. dev
MAUC and E-MAUC. Sectioi MI evaluates the performance Idle 5343 202
of our solutions based on the collected traces. Segfioh VI Bluetooth on 2593 1.36
reviews related work and Sectién VIl concludes the paper. Bluetooth Discovery | 140.10 | 21.56
Bluetooth Dis.+Server| 141.06 41.42

II. OVERVIEW Bluetooth Scan (12s)| 307.59% | 32.29

A. Bluetooth Interface Accelerometer 178* | 086
. . * means extra power consumption in addition to that of theeRinth
For Android smartphones, the Bluetooth interface can discovery mode.

work in two modes:on and discovery A phone can only
be found by others if it works in the discovery mode. specified unique idJUl D. Then the client can obtain the
Also, a phone needs to execute a Bluetostian process Server's MAC address through Bluetooth scan, and connect
explicitly in order to find others. The power consumption of to the server's MAC address using the salé D.
the smartphone is different when the Bluetooth interface is ,
set to different modes. To measure the power consumptiors: 2-detection Rate
we use Agilent E3631A Power Supply to provide the current  Two users within the Bluetooth communication range
with constant voltage (3.7V) to the smartphone instead otan detect each other by Bluetooth scan. To measure the
using the batteryl [23, 24]. We connect the Agilent E3631Aaccuracy of a contact detection algorithm, the commonly
to our laptop through the “NI GPIB-USB-HS” cable and used metric isdetection rate(D), which is defined as the
program it by LabVIEW, in order to capture the current of number of successfully detected contacts divided by tfa tot
the smartphone every 0.25 second. number of contacts. However, even if different detection
Fig.[ shows the power consumption of the smartphonealgorithms have the same detection rate, their accuracy may
when the Bluetooth interface is operating in different mede vary.
As can be seen, keeping Bluetoatincosts very little power, Fig. [ shows an example. The real contact duration
while keeping it indiscoverycosts much more. The scan between two users are shown in the solid shaded rectangle
process is very long (around 12 seconds) and consumes lagsea. With Method-1, the contact is detected through Blue-
of power. More details are summarized in Tdb. |, where alltooth scans, and the detected contact duration is shown in
the measurements are done for 10 times when the phoneke upper dashed rectangle area. Similarly, Method-2 also
screen is turned off. The power consumption is averagedetects the user contact. Although both methods have the
over one minute when the phone is in various modes, exceglame detection rat® = 1, method-2 has higher detection
for Bluetooth scan, in which the power consumption isaccuracy since it detects the start and the end of the contact
averaged during the scan process. Also, the value withouhore accurately. That is, the detected contact duration of
star contains the phone’s total power consumption (inclgdi Method-2 (shown in the dashed rectangle) is closer to the
the idle mode), while the value with star are measured aseal contact duration (shown in the solid rectangle) tha th
extra power in addition to that of the Bluetooth discoveryof Method-1. Thus, a new metric is needed to differentiate
mode. these two cases.
The Bluetooth communication on Android is based on  To overcome the limitation of detection rate, we intro-
RFCOMM, which provides a simple and reliable data streanduce A-detectionrate, which measures how maggntact
to users, like TCP. RFCOMM requires the two communi-changes(i.e., the start and the end of the contact) are
cation nodes to work as client and server to establish @etected. Considering a contact change evehappens at
connection. The server side first creates a service with &, and it is detected at If |t — t.| < A, e is successfully
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Figure 2. UsingA-detection rate to measure the detection accuracy. EactFigure 3. Comparison of traditional contact detection atgms and the
vertical arrow represents a Bluetooth scan at that time. proposed solutions

detected. ThenA-detection rate(D,) is defined as the lIl. TRACE ANALYSIS

number of successfully detected contact changes divided by In this section, we introduce our traces and identify the

the total number of contact changes. relationships between user movement and contact changes.
As shown in Fig.[R, there are two contact Changes,A Trace Collection

marked as Start and End. Method-1 detects neither of the”

contact changes, and hence s, = 0. Method-2 detects To collect the user contact and moving traces, we dis-
both of them and hence i85 = 1. Therefore Method-2 is tributed Samsung Nexus S phones to 20 students in the CSE
more accurate than Method-1. and IST Departments at the Pennsylvania State University
and conducted experiments for 10 days during the period
C. Basic Idea from 8am to 8pm. The phones run a background service

) ) which initiates a Bluetooth scan every 30 seconds and
_In this paper, we aim to accurately detect user contacti,cors the detected neighbors. The first time a neighbor
with less energy. More generally, we aim to improve thegnnears (disappears) is considered as the start (end) of a
detection rate andA-detection rate, while reducing the coniact with that neighbor. The logged user contacts arg use

number of Bluetooth scans. Fig. 3 illustrates the basic.idegys the ground truth to determine the accuracy of various user
Traditional algorithms do not consider user movement. TheY.q 4t detection algorithms.

assume that the Bluetooth interface always stays in the The accelerometer is sampled at 50Hz, and the mean,
discovery mode, and use Bluetooth scans to detect neighbogg,nqard deviation and peak values of the three axes are
periodically. Although there are solutions to ad.jugt tharsc  ocorded within a window of 5 seconds. We classify users’
duty cycle to save power based on some prediction model$ypjjity status as moving or static within that window using
the detection accuracy is also reduced due to the long duty yecision tree algorithm that will be described in Section

cycle and high prediction errors. _ V-B] The duration over which a user's mobility status is
In MAUC, based on the observation that user contactassified as moving is recorded asnaving period

changes are mainly caused by user movement, accelerome-

ters are introduced to detect user movement. Then BluetootR. User Contact Duration

scans are only triggered when a user movement is detected, The distribution of user contact duration affects the

either by the users themselves or their neighbors, as showBluetooth scan duty cycle. First, the scan interval should

in Fig.[3. Also, we propose technigues to achieve a balbe smaller than most contact durations. Otherwise, most

ance between reducing the number of Bluetooth scans arghort user contacts will be missed. Second, this distobuti

improving the detection accuracy. also affects how to measure the accuracy of the detection
Since staying in Bluetooth discovery also consumes lotslgorithms. For example, in Fid] 2, two algorithms both

of power as shown in Tall I, the smartphone should workdetect a user contact but with different contact duratioent

in the discovery mode only when others are scanningit is necessary to usA-detection rate to differentiate them,

However, this is not supported by the original Android especially when most contact durations are short.

system. To address this problem, we modify Android so that The cumulative distribution function{D F") of the user

the discovery mode can be turned on/off adaptively. Thengontact duration is shown in Fi. 4[a). As can be seen,

we design energy aware MAUC (E-MAUC), which only sets 50%, 80% and 90% of user contact duration is less than

Bluetooth in discovery mode for a short period of time while 10 minutes, 50 minutes, and 100 minutes, respectively. The

still satisfying the discovery requirement of MAUC (see.Fig average user contact duration is 36 minutes, which is ctose t

[3). Thus, E-MAUC can keep the same detection accuracyhat in the MIT Reality trace[[Z]. As 15% of the contacts are

while saving more energy. More details of E-MAUC will be shorter than 1 minute in our trace, we getto 30 seconds.

described in Section]V. Additionally, the CCDF (complementaryC’ DF') of user
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contact duration in Fid. 4(p) (log-log scale) shows thatruse Fig.[@ shows the” DF of the time between contact changes
contact duration follows power law distribution within the and the end-points. We find 50%, 80%, and 90% of contact
range [60 min, 400 min] with a scaling index of 1.45, which changes happen within 37, 83, and 124 seconds before the
is consistent with the result i||ﬂ[3]. end-points. The number of contact changes before a given
_ _ time of the end-points is shown in Fig. g(b). Each value at
C. Relationships Between Contact Changes and User Movgime ¢ is the number of contact changes that happen within
ment (t—10,t] seconds before the end-points. Though there is no
Intuitively, a contact change event usually happens apbvious pattern, most contact changes happen very close to
the start or end of a moving period. For example, when dghe end-points.
student moves from one classroom to another, he may lodgelation 3: Communication Range vs. RSSI. To detect
contact with the previous classmates when he starts movinipe end of a user contact, Bluetooth scans should be done
and then contacts other classmates after sitting down. Bgt the boundary of the communication range. However, it
analyzing the collected trace data, we confirm this intaitio is hard to determine the exact communication range since
and identify three relationships between contact changes a the wireless signal transmission is affected by many factor
user movement. especially in indoor environments. To address this problem
Relation 1: Contact Changes vs. Start Points. We use we exploit the Received Signal Strength Indication (RS&I) t
start pointto represent the time when a user starts to moveestimate the communication range. Although RSSI is not the
To show the relationship between contact changes and stavest indicator of the communication range, they are highly
points, we compute the time between contact changes ambrrelatedﬁl?]. Android provides APIs to read the Bluetooth
the corresponding start points and draw its distribution inRSSI, ranging from 0 to -10@B, where 0 means the best
Fig.[5(a). Most contact changes are close to the start pointsignal and -100/B the worst.
Specifically, 50%, 80% and 90% of contact changes happen We uselost-RSSlto represent the last Bluetooth RSSI
within 42, 112, and 207 seconds from the start points. Fronvalue a user detects about his neighbor before the end of
the CCDF of this time in Fig.[5(H) (in log-log scale), contact with this neighbor, and then use this value to eséima
we notice that it follows an exponential distribution in the the communication range. Fif. 7(a) shows that 50%, 80%
range [6 sec, 200 sec], which means that the probability odnd 90% of user contacts end with RSSI values -79, -69 and
detecting a contact change event drops exponentially as th€2 dB. More specifically, Fig[ 7(fh) shows the number of
time from the start point increases. user contacts which end withifr — 10, 7] at each RSSt-.
Relation 2: Contact Changes vs. End-Points. We use  Considering 90% of the user contacts end when the RSSI
end-pointto represent the time when a user stops movingis smaller than -6@/ B, we pick -60dB as the defaultost-



RSSI threshold ), which is also used to determine the

Detect new A’s RSSl is below
communication range. @ neighbor A lost-RS] threshold
| |
B | |
IV. MAUC DESIGN Moving | L : ! i ; l
User Moving Moving
In this section, we present our Mobility-Assisted Accu- [ | ere fon L L1y tes
rate User Contact detection algorithm (MAUC), which can . /.“ VAT send
. Si P
detect user contacts accurately with less power. notifieation | A notifications
| Static User every A time
A. MAUC OVerVieW :(— A’s communication range —):

MAUC performs Bluetooth scans properly within the
moving periods to save energy. Specifically MAUC SO|VeSFigure 8.  An illustration of MAUC. The vertical dashed line the

. . communication range of the static phone.
two problems: how to detect the moving periods that may 9 P

cause contact changes, and how to detect user contaggnds notification when the moving period is likely to cause
within the moving periods. For each problem, we design twocontact changes in the following two cases, as shown in Fig.
solutions depending on whether a user is moving or static. £g,

moving user can detect the moving periods using accelerom- cgge 1: A moving useB sends a notification to a new
eter, but the static user may not be aware of such movingeighborA immediately after it detects the new neighbor.
periods. Therefore, moving users need to notify staticsuser  case 2: When a moving useéB moves away from
about the moving periods (see Section [V-B). Based on th@eighhor A and detectsd’s signal is weaker than the lost-

detected moving periods, moving users and static usery appRss; thresholdd), B sends notifications td everyA time,
different user contact detection algorithms, which will be ntjj either one of the following conditions is satisfied.

presented in Sectidl IIC aad D, respectively. « After one Bluetooth scanB finds A’s signal is above

B. Detecting the Moving Periods «. Then B doesn't need to send notifications as it has
moved back towardsi.

« B can not detectd, as he has moved out of the
communication range ofl.

o B stops moving.

In MAUC, a moving period is described as a set of
tuples (d, tsiarts tend), Whereid is the user who causes
the movement, and,;.,:, tenq are the corresponding start
and end time of the moving period.

We use accelerometer on smartphones to detect us
movement continuously and classify it into two status:
movingor static, based on a decision tree technique [16], A moving user needs to trigger Bluetooth scans properly
which builds decision trees from a set of training caseswithin the moving periods to reduce the number of Blue-
Each case can be described a& '), whereX is a vector  tooth scans and improve the detection accuracy. Next, we
of attributes and’” is the decision. In this papeK includes introduce an adaptive duty cycle algorithm to coordinate th
the mean, standard deviation, and peak number of the thre@uetooth scans.
axes of accelerometer, and is the movement status. Note 1) Adaptive Duty Cycle:According to Sectior II-C,
that the training process of the classifier is run off-line.  the probability of detecting a contact change event drops

In real life, temporary vibration and shift of the smart- exponentially from the start point of a moving period; thus,
phone may generate false moving periods, which should b is better to increase the scan interval quickly after a
filtered out. We remove all moving periods shorter than afailed detection. On the other hand, the appearance of a
threshold, which is set to 6 seconds based on our trace studyser contact is related to the contact histdﬁ @ 18], so it
After filtering, the remaining moving periods are recordedis helpful to adjust the Bluetooth duty cycle considering th
as detected moving periods. For example, in Flg. 8, user previous scan result. Combining them together, MAUC uses
detects two moving periods, which are shown by the twoexponential-increase and multiplicative-decrease dlgaor
rectangles above the time line. to adjust the Bluetooth scan duty cycle, as described in line

1) Interaction between Static and Moving Userk 15-21 in Alg.[d. Suppose thé" detection fails to detect
order to let static users know the moving periods thata user contact, the scan interval will increase according to
may cause contact changes, a moving user will initiate &qu.[1.

Bluetooth connection with his neighbor and then disconnect

so as to notify the neighbor and save energy for data intervaliy1 = interval; x e?*koff (1)
transmission |]4]. When receiving such a notification, the

moving neighbor just ignores it, whereas the static neighbowhere backoff records the back off stage, and increases by 1
uses it to estimate the moving user’s moving period. To savefter a failed detection. After a successful contact detect
energy for both moving and static users, a moving user onlyhe backoff value is reset to 1 and the next scan interval will

@ Contact Detection by the Moving User



be decreased according to Effli. 2, whieris set to 2. Algorithm 1: The Contact Detection Algorithm by
Moving Users
Input: Lost-RSSI Thresholdy
Normally, the next Bluetooth scan should start at :\rluet:a::f)?)trlosnetl\/e ;
Tscan = t; + interval;1 1. However, if Ty, falls into a 3 RS&_SQRSS“_@
static period, there will be no Bluetooth scan and the nexts Tscan < 0, duration < A, backof f + 1
scan is delayed to the,,, of the next moving period. ° fg?é’fgﬁer;%‘mge;\é%é € self ot L) do
Another exception is the end-point detection, which may, "~ gpdetect « false rstarts fend
happen befor&s.q. 8 t < tstart

2) End-Point Detection:The exponential-increase and °  While t <teng Or EPdetect == false do

interval; 11 = interval; [k (2)

multiplicative-decrease algorithm reduces the number of; T2 Tocan OFE 2 teng then
Bluetooth scans, but it also reduces the detection accuracy
dramatically [18]. In Sectiod II-C, we found that most =
contact changes occur near the end-points, thus we add oﬁe
more detection at the end-points to improve the detectioms

scanAt(t)

updateN and RSST

if t >T,,qthen// End point detect
FE Pdetect < true

if find at least one everthen
duration < duration/k
backof f <1

accuracy, even if it is befor&.,,. After the detection,

. . . 18 else
the scaninterval andT;.,, will be adjusted based on the duration < duration x e
detection result. 20 backof f < backoff + 1

According to the findings in Sectidn III3C, the exponen- 2 Tscan < t + duration
ial decrease scheme should be used at the start of eve} foreach new neighbom do
tia - > ; ey sendNoti ficationTo(n)
moving period, but in MAUC we do not. The reasons arez foreach n € N do
as follows. If the time interval between two moving periods? if RSSI(n) < a then
. - Lo sendNoti ficationTo(n)
is long andt,q,; of the later moving period is aftef;.q,, , duration e A
then there will be a detection at;,,:. Otherwise, if the 2 t < t + duration
time interval is short, it would be redundant to detect again
at the start point of the later moving period after the end-
point detection in the previous moving period.

The detailed algorithm is shown in Algl 1. Each moving
user keeps a neighbor-set and a RSSI-set, containing t
RSSI value of each neighbor. Using these two sets, a movin
user can determine whether a neighbor is newly detected ai
whether the RSSI value of a neighbor is below the lost-RSS
threshold. Then he can notify the proper neighbors at prop
time.

backof f

its communication range. Since this does not mé&awill
move out of the communication range immediatelyjust
dates the timeout value @ asT,(B) = t+ A. If A
ceivesB’s notification again before the timer expire4,
tendsT,(B) by A. When the timer expires4 will start
Bluetooth scan to find out the real situation in the vicinity
e(rline 14 in Alg.[2). Using this scheme, we can detect the
loss of a moving neighbor withil time in the worst case.

D. Contact Detection by the Static Users

A static user needs to detect contact changes whenAlgorithm 2: The Contact Detection Algorithm by Static
receiving notifications from moving neighbors. To receive_Users
notifications in time, the static user should keep the Blue-; :\fl"etl'agzbitrg”ew « Previous resuis
tooth server on all the time. Each static user keeps g Neighbor timeout-setr, < 0
neighbor-set to determine whether a notification is from ans startBluetoothServer()
existing neighbor or not, and a timeout-set to record thez foreach moving period 4, tstart, tena) do

. - if N then// Notification fromnew nei ghbor
timeout value of each neighbor. n¢ g

; . R . 7 scanAt(tstart)
If a static userA receives a notification from neighbér 8 N« NUn
not in the neighbor-set at timg A will record the moving  ° | To(n) + Infinity
period as B, ¢, t). In this caseA knows that some users |, eseTo(n) o A

have moved into its communication range, and then triggers foreach n € N do
a Bluetooth scan immediately to find the appearance of the if To(n) <now then// Timer expires
new neighbors. The new neighbor is added to the neighbot: scanAt(To(n))
set and its timeout value is set to infinity. This process is
shown in lines 6-9 in Alg[R2.
On the other hand, if a static user receives a noti- V. ENERGY-AWARE MAUC (E-MAUC)
fication from an existing neighboB at ¢, A will record In the previous discussions, we assume that the Bluetooth
the moving period asK, ¢, t + A). A knows B is near interface keeps working in the discovery mode. Since the




discovery mode is energy consuming, it is better to reducé’; = 12hou7‘><lgé<()§§ec/hour whereF is the energy consumed

the discovery time. In fact, the Bluetooth interface shouldin one scan, and< is the number of scans in a day. For
only work in the discovery mode when other nodes are tryingour phone, we havé’, = 307.59mW x 12s, and hence

to detect it. In this section, we present techniques tozeali P, = 0.085 - K (mW).

this idea to save energy. In E-MAUC, the Bluetooth interface only enters dis-
covery when necessary. Thus, the power consumption of
Bluetooth discovery can be further reducedRp x (1 —

In order for smartphones to spend less time in the%) + Py x % where P, is the power consumption when
discovery mode, they should be aware of the discoverBluetooth is on. Therefore the power saving r&eof E-
schedule of others and only scan at that time. This camMAUC over MAUC can be calculated using Hd. 3.
be realized by introducing a global discovery schedule and
synchronizing the smartphones using th&ut omati c” P(MAUC) — P(E-MAUC) _ (Pa—Py) x (1= ) 3)

A. Adaptive Discovery

option in the time setting menu, which sets the phone’s time P(MAUC) Py + Po + Ps
to that of the wireless service provider.

The most challenging problem is to let smartphones
enter the discovery mode automatically according to the In this section, we present the evaluation results based
discovery schedule without interrupting users, which is noon the collected traces.
feasible in the original Android system. When the Bluetooth
interface needs to enteiscoverymode, a request with type A. Algorithms for Comparison
Bl uet oot hAdapt er . ACTI ON_REQUEST_DI SCOVER-

ABLE and discoverable time will be sent to inst | oth tact detecti lqorith
Request Perm ssi onActivity.java. The timeout against several other contact detection algorithms.

value will be checked and reset to 120 seconds if it is SociableSense[ [18]:SociableSense adaptively adjusts
negative. A dialog will be popped up to ask for the user'sthe Bluetooth scan duty cycle based on whether the previous

permission. If the user refuses or ignores the request, thiletection finds any mtere_stlng eve_nts (ie., conta_ct cbsng
Bluetooth interface will not be able to enter discoveryAfter a successful detection, SociableSense adjusts the de

according to the schedule. To solve this problem, we modifyf€Ction ratey by p = p+a(1—p). Otherwisep is decreased
the Android OS to deal with negative timeout values. If f’;\ccord{ng top = p — ap. Parameter is set to 0.5, ang
the timeout value of a Bluetooth discovery request is'S restricted between 0.1 and 0.9. _
—d(d > 0), the request dialog will be bypassed and the STAR [@]: STAR uses the number of contacts in the

Bluetooth interface is directly set to discovery fértime. ~ Préviousm minutes to predict the number in the next
When the timer expires, the discovery mode is turned off. minutes. The duration between the two detections is adjuste
according to the following Equation.

Let T denote the length of the Bluetooth discovery T = T(%
interval. In E-MAUC, all phones will enter discovery every T
T time according to a global clock, and stay f@}. If The contact arrival rata is calculated based on the number
the smartphone needs to start a Bluetooth scan, it onlpf user contacts in the previous minutes. Other parameters
scans at these time periods. The selectionZofshould are constant [20]. In our experiment, we set= 1 at the
not affect the detection accuracy of MAUC, so we set itbeginning of each day.
to the minimum scan interval of MAUCT; should be Aggressive Mobility Detection (AMD): AMD uses the
longer than the maximum scan duration, which is affectednost aggressive detection scheme considering user move-
by the number of neighbors, signal strength, and interfaxen ment. During moving periods, AMD detects user contacts
between neighbors, etc. In this paper, wekgto the largest  every 30 seconds and also applies the end-point detection
scan duration based on experiments. In our trace, most scasheme. During static periods, AMD detects user contacts
durations are around 10 seconds and all of them are shortathen receiving a notification or when the timer expires.

VI. PERFORMANCEEVALUATIONS

We compare the performance of MAUC and E-MAUC

B. E-MAUC
+1)TF ()

than 12 seconds, so we sEf to 12 seconds. AMD can be seen as the upper bound of MAUC.
The comparisons are based on detection accuracy and
C. Energy Improvement of E-MAUC energy consumption. The detection accuracy is measured by

The power consumed for contact detection in MAUC detection rate andi-detection rate. The energy consumption
includes three parts: Bluetooth discovefy;), accelerometer is measured by the number of Bluetooth scans and the
(P,), and Bluetooth scanf{,). The total power consumption average amount of power consumed by the whole phone.
is P = P;+ [P,] + Ps, where P, is optional, depending As MAUC and E-MAUC have the same detection accuracy,
on whether the accelerometer is used or not. Also, we havere only use MAUC when comparing detection accuracy.



Table Il

1

MOBILITY CLASSIFIER CONFUSION MATRIX
[ IDetection rate [l A-detection rate
Static Moving 08
Static 93% 7% L 08
Moving 1.4% 98.6% g .
4
Table Il 0.2
DETECTION ACCURACY WITHWITHOUT END-POINT DETECTION
0
detection rate| A-detection rate 0 etrea e a @y,
MAUC with EP 0.78 0.57 Figure 9. Impact of Lost-RSSI threshold to the detectionuemzy of

MAUC w/o EP 0.47 0.24 MAUC

B. The Effectiveness of MAUC gffected by the scan mterval,_we keep the minimum scan

_ _ _ interval to 30 seconds and increase the maximum scan

There are many design choices in MAUC, and weinterval from 120 to 240 seconds. For AMD, since it scans
evaluate the effectiveness of the techniques used in MAUGat a constant rate, this change will not affect its perforcean

D dThe e_ﬁe,(\:/;[/lvef_ness O]; usm% ac?felerometer f(;r MOVE- " 1) Detection Accuracy:As shown in Fig.[1I0(&) and
ment detection\We first evaluate the effectiveness of move- . MAUC achieves higher detection rate ahaletection

ment detection based on accelerometer in MAUC. We ask. te than SociableSense and STAR. When the max scan

five users to adnnota_trehthelr movement s(tjatus every 10. hm”]hterval increases, the detection rate of SociableSende an
utes over two days. Then, we constructed test cases with therap drops significantly. But MAUC can still maintain high

sampled accelerometer data as attributes and user nmat'ogccuracy due to end-point detection. When the maximum

as de<_:is_ions. These cases are quided into two parts, NG,y interval is 240 seconds, MAUC can improve the detec-
for training and another for testing. The accuracy of the ion rate by 21% and 32% when compared to SociableSense

movement detection algorithm used in MAUC is shown N and STAR, respectively.
For SociableSense and STAR, we notice that the dif-

Tab.[l.
As can be seen, almost all moving periods are success- ) . X

fully detected. Although the false positive is as high as 7%?§re2rce|:ret(\;ve|$nmgwaer|]rs ?ﬁ;etc(':\ll(t)r?oratr? tﬁ?eete?(;r; cri[t?]ms
it just adds more Bluetooth scans, which will not affect the'S VeI large. ug wo aigor

. detect many contacts, they can not detect the contact ckange
detection accuracy. .

accurately, thus they can not detect contact duration accu-

rately. In contrast, this difference of MAUC is much smaller

2) Impact of End-Point DetectionWWe want to evaluate
whether the end-point detection helps improve the deuectlowhich shows that MAUC outperforms existing algorithms

accuracy of MAUC. For comparison, we create another .
. . . when detecting the contact changes.

protocol, which keeps all functions in MAUC, except the ; . )

end-point detection. As shown in TabdIll, with end-point  1he detection rate of SociableSense and STAR is very

detection, the contact detection rate can be increased frof{0S€ t0 €ach other. Since user contacts are relatively rare

47% to 78%, and thé\-detection rate can be improved from compared to the long testing time, both algorithms tend

23% to 57%. Thus, end-point detection can significantlyffo increase the scan interval to the maximum value. One

improve the detection accuracy of MAUC. interesting thing_is that STAR pferforms worse than Sociable
3) Impact of the Lost-RSSI Threshold){ The Lost- Sense most of time, although it uses more complex scheme

RSSI Threshold () affects the performance of MAUC as (O Predict future user contacts.
it determines when to detect the potential lost of moving 2) Energy Efficiency:Besides achieving high detection
neighbors. Fig[19 shows the impact afon the detection rate, MAUC is also energy efficient. This is because MAUC
accuracy in MAUC. Both the detection rate anddetection — does not initiate Bluetooth scans outside of the user moving
rate increase when increases. When is larger than -60 periods. From Fid. TI(h), we can see that MAUC uses much
dB, increasing RSSI does not bring too much improvementless number of Bluetooth scans. When the maximum scan
The lower detection rate when is small indicates most interval is 120 seconds, MAUC can reduce the number of
contact changes are not detected without correctly detgcti Bluetooth scans by 58.1% and 57.3% when compared to
the neighbors’ leaving. It also means that observing usefociableSense and STAR. We also compare the energy con-
contact from a single user’s view is not enough, since lots osumption of these four algorithms in Fig.T1/(b). The trend
user contact changes are caused by neighbors’ movemenis.similar as Fig[ T1(&), but with smaller difference betwee
) MAUC and other algorithms, because the energy saved

C. Performance Comparisons by reducing Bluetooth scans is smaller when compared to

In this subsection, we compare the detection accuracthat consumed by the Bluetooth discovery mode. Thus, we
and energy consumption of various contact detection algodse E-MAUC to further reduce the energy consumption of
rithms. As the performance of existing solutions are mainlyBluetooth discovery.
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D. Energy Improvement of E-MAUC Bluetooth due to its short communication range, and it has
already been used in several projeﬂsl]G, 2]. Among them,
he Infocom tracel]G] is collected with people attending

conference, and the MIT Reality trace [2] is based on
tudents on campus. However, none of these works consider
nergy issues.

E-MAUC lets the Bluetooth interface enter the discovery
mode only during the scan interval and turn off the discover)}
mode during other times. Thus, it can save more energ
while maintaining the same detection accuracy as MAUC.
Fig.[12 shows the detection rate and the power consumpe-
tion of various algorithms when the discovery interzal To detect user contacts with Bluetooth, power consuming
increases from 30 to 80 seconds. For edthwe set the Bluetooth scans must be used. Although reducing the num-
minimum and maximum scan interval t6 and4 x T.  ber of scans can save energy, it also reduces the detection
As shown in Fig[I2{), increasing the Bluetooth discov-accuracy![15, 17)9, 13]. To address this problem, reseesche
ery interval reduces the detection rate of all algorithmsjn [2d] models user contact durations with Pareto distri-
but MAUC/E-MAUC still outperforms SociableSense and bution, and propose a scheme called STAR to reduce the
STAR. Fig.[12(B) shows the energy consumption of smartnumber of Bluetooth scans based on this distribution. @imil
phones using various algorithms. As can be seen, E-MAUGolutions have been proposed inl[21], which uses Markov
can significantly reduce the energy consumption since iModel to describe user state changes and predict the next
turns off the discovery mode most of time. Whé&his  contact. Rachurét aI.[IE] introduce a heuristic algorithm to
30 second, E-MAUC saves 45%, 49.2% and 48.7% moradjust the duty cycle using linear reward inaction alganith
energy when compared to MAUC, SociableSense and STARyased on previous detection results. However, the predgti
respectively. in these algorithms may be wrong, and then result in low

detection accuracy, as shown in our evaluations.

VIl RELATED WORK Different from these existing works, we address this

There have been many solutions on detecting user corproblem based on the observation that user contact changes
tacts in mobile social networks or mobile opportunistic (i.e., starts and ends of user contacts) are mainly caused by
networks. In ], nodes connected to the same access poioser movement. Since most smartphones have accelerome-
via WiFi are classified as contacting each other. Howeverters, we can use them to detect user movement with much
two nodes may be out of communication range if they ardess energy and then start Bluetooth scans to detect user
at different side of the access point. m[19], class schelul contacts. Using accelerometers to detect user mobility has
are used to infer student contacts, but the contacts aftdreen around for some timg ﬂg 1]. For example, accelerom-
class or between classes cannot be modeled accurately. éiers are used to detect user moving speed and moving
more realistic approach to detect user contact is based afistance in |I|1] and user activity irﬂllZ]. However, none
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of them has been applied to saving energy in user contacts]
detection. Although it is generally not very accurate for
using accelerometers to detect fine-grained user actifaity,

is fine for our application since we only need to determine
whether the user is moving or not. Moreover, to improve
the detection accuracy, we also identified the relatiorsship 7
between contact changes and user movement, and proposed
techniques to improve the detection accuracy such as usin?g]
end-point detection, etc.

(6]

[9]
VIII. CONCLUSIONS

In this paper, we proposed a Mobility-Assisted usert®

Contact detect algorithm algorithm (MAUC) to detect user
contacts with high accuracy and low energy consumption(11]
MAUC uses accelerometers to detect user movements arﬁiz]
only start the power consuming Bluetooth scans when users
or their neighbors are moving. To improve the detection
accuracy, we identified the relationships between conta t3)
changes and user movement based on our collected real
traces, and proposed techniques to improve the detectidi?]
accuracy such as using end-point detection, etc. For a
Bluetooth device to be detected through Bluetooth scan, if15]
must stay in the Bluetooth discovery (discoverable) mode,
which also consumes lots of power. To address this probIerrE16
we propose energy-aware MAUC (E-MAUC) to reduce the
amount of time that a Bluetooth device has to stay inll7]
the discovery mode. Via trace driven simulations, we show
that MAUC can reduce the number of Bluetooth scans by1sg]
half while maintaining similar detection rate with exigin
algorithms, and E-MAUC can further reduce the energy, )
consumption by 45% compared to MAUC.
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