An Adaptive Job Allocation Method for Multicomputer Systems

Chung-yen Chang and Prasant Mohapatra
Department of Electrical and Computer Engineering
lowa State University

Ames, TA 50011

Abstract

The fragmentation problem in multicomputer sys-
tems reduces the system wutilization and prohibits the
systems from performing at their full capacity. In this
paper, we propose a generic job allocation method for
multicomputer systems based on job size reduction. We
reduce the subsystem size requirement adaptively ac-
cording to the availability of processors. The fragmen-
tation problem s greatly alleviated by this approach.
To ensure that the benefit of reducing fragmentation
15 not outweighed by the penalty of executing jobs on
less number of processors, we restrict the number of
times the size of a job can be reduced; hence the name
restricted size reduction (RSR). Extensive simulations
are conducted to validate the RSR method for hyper-
cubes and mesh-based systems with different allocation
algorithms. It is observed in both mesh and hypercube
that by using the RSR method a simple algorithm can
provide better performance than the more sophisticated
allocation algorithms. We have also compared RSR
method with the limit allocation that is based on a sim-
tlar idea. Our method outperforms the limit allocation
and provides better fairness to different size jobs. The
performance gain, fairness, and low complexity makes
the RSR method highly attractive.

1 Introduction

The performance of multicomputers depends on the
efficient use of the computing resources. Conventional
methods to improve the performance of the multi-
computers include efficient allocation algorithms and
scheduling strategies.

Several job allocation schemes [1]-[8] have been pro-
posed for the directly-connected multicomputers. Be-
cause the multicomputers use message-passing tech-
niques, the allocation schemes attempt to locate a con-
tiguous portion of the processors for the execution of a
job to minimize the distance of interprocessor commu-
nication. The processors allocated to a job retain the
same topology as the entire system with the number of
processors determined according to the requirement of
the individual jobs. In a mesh-connected system, jobs
are allocated to submeshes. In a hypercube system,
jobs are allocated to subcubes. The allocation algo-
rithm is responsible for detecting the free nodes and
recognizing whether the free nodes can form the re-
quired topology for the execution of a job. A system
may contain sufficient number of processors for the ex-
ecution of a job while the allocation algorithm fails to
find the required topology for task execution. In such

cases, the job has to wait until some of the running pro-
cesses release the nodes they hold and the allocation
algorithm can assign these nodes to the waiting job(s).
Allocation algorithms with better recognition ability
can improve the chance of assigning a job into the
system. Although the recognition ability varies dra-
matically among allocation algorithms, the actual per-
formance does not show significant difference [12, 13].
This is because of the fragmentation problem. Frag-
mentation occurs when the required number of nodes
are available but they do not form the topology re-
quired for task execution.

The performance gain observed from efficient alloca-
tion schemes is limited mainly by the first-come-first-
serve (FCFS) discipline. A job that cannot be allocated
to the system will block all the following jobs from en-
tering the system. The scheduling schemes [9, 11, 12]
arrange the order of execution so that jobs could be ex-
ecuted out of the order in which they arrived and thus
reduce the blocking effect. However, these scheduling
schemes do not provide fairness to various tasks. Some
jobs may have to wait for a very long time before they
get executed while a job arriving later may get executed
earlier.

In this paper, we propose a new approach that con-
siders adjustment of job sizes in the pursuit of improv-
ing multicomputer system performance. A job is forced
to be executed on a smaller subgraph of the system
when a subsystem of the required size cannot be found.
The size reduction of a job is done by evenly folding
the job into a recognizable smaller subgraph by the al-
location algorithm. In hypercubes, every size reduction
forces a job to be executed on a smaller subcube with
one less dimension. In the mesh systems, a size reduc-
tion can result in folding the job in one direction with
most allocation algorithms or in both directions when
the two-dimensional buddy algorithm is used. Folding
ajob evenly ensures that the workload of the processors
are increased evenly and no bottleneck is introduced.
A job can be folded further if necessary. Unlike the
limit allocation [13] which limits the largest executable
job size, to ensure the reduced waiting time is not over-
whelmed by the increased execution time caused by job
folding, we restrict the number of times a job can be
folded. The method is thus called the restricted size
reduction (RSR) method.

The RSR method is simulated with several alloca-
tion schemes. Mesh and hypercube are considered as
two example topologies as they constitute the back-
bones of most of today’s multicomputer systems. How-



ever, the RSR method is not restricted to these topolo-
gies. It is a generic method and can be applied to
other topologies using any allocation algorithm with
low overhead. The results indicate the effectiveness
of this method in improving the multicomputer per-
formance. A simple allocation algorithm with RSR
can outperform an algorithm with complete subgraph
recognition ability. We also compare the RSR method
with the limit allocation. As the result shows, the RSR
method in hypercube using the simple buddy allocation
has many advantages over the limit allocation consider-
ing the average turnaround time and the fairness. We
therefore conclude that the RSR method is an efficient
way to improve the performance of the multicomput-
ers. Similar conclusions have been also derived inde-
pendently and reported in [14].

The next section surveys the related work. The
detailed discussion and the rationale behind the RSR
method is discussed in Section 3. The simulation study
of the RSR method and the comparison with the other
techniques is shown in Section 4. Section 5 concludes
this study.

2 Related Work
2.1 Allocation Algorithms

In this subsection, we outline some of the popu-
lar allocation algorithms proposed for hypercube and
mesh-connected systems. Most of the other proposed
schemes are conceptually similar to these schemes.
However, they vary in terms of implementation com-
plexity.

2.1.1 Allocation in Mesh

Two Dimensional Buddy: The two dimensional
buddy (TDB) [1] is a generalization of the one dimen-
sional buddy algorithm [15] for storage allocation. The
system is assumed to be a square with the side length
equals to a power of two. The size of a requested sub-
mesh is rounded up to the nearest square with sides
power of two. Every square of processors can form a
larger square with its three neighboring buddies. The
time complexity for allocating an (N x N) job in an
(M x M) mesh when there are k jobs in the system is
equal to O(k’(%)Q)

Frame Sliding: The frame sliding method [2] is pro-
posed to reduce the fragmentation problem of the TDB
allocation. The size of the required submesh of a job
is called a frame. A frame filled with available nodes
is able to execute the job. The algorithm slides the
frame across the system at non-overlapping locations
to examine for a free submesh to execute the job. The
complexity of this allocation for an (m x n) job in an
(M x N) system is equal to O(% .

Perfect Recognition: The perfect recognition algo-
rithms for mesh systems are proposed in [3]. They
guarantee a required submesh can always be located
provided it exists. Two algorithms are proposed,
namely the first-fit and the best-fit algorithm. Both
algorithm perform equally well at the same time com-
plexity of O(MN) in a (M x N) system with the space
complexity of O(MN).

2.1.2 Allocation in Hypercube

Buddy: Buddy allocation scheme is similar to the
memory allocation algorithm[15]. Every subcube has
a buddy of the same size. Two adjacent buddies can
be combined to form a larger cube for the execution of
a larger job. A job is always assigned a subcube for
its execution. For an n-cube, the nodes are numbered
from 0 to 27 — 1. For a job requiring a k cube, the algo-
rithm searches for the least integer m such that all the
nodes in the region [m2*% (m + 1)2% — 1] are available.
The time complexity of allocation and deallocation in
the above case are O(2") and O(2*), respectively.
Other Algorithms for Hypercube: Many other al-
location algorithms have been proposed for the hyper-
cubes to implement perfect subcube recognition abil-
ity. Some examples include the multiple gray code [4],
maximal subset of subcubes (MSS) [5], free list [6], tree
collapsing [7] and PC-graph [8]. These algorithms have
perfect subcube recognition abilities at the price of high
implementation complexities. OQur intension is to show
that a simple allocation algorithm such as buddy can be
modified to provide a good performance. The detailed
discussion of these algorithms are beyond the scope of
this paper and the readers are referred to [4]-[8] for the
details.

2.1.3 Problems of the Allocation Schemes

The allocation algorithms vary in terms of recognition
ability and implementation complexity. However, stud-
ies [12, 13] show that a better allocation algorithm does
not guarantee a significant performance improvement
because of the fragmentation problem.

Fragmentation can be classified into internal and ex-
ternal fragmentation. The internal fragmentation is
the result of allocating jobs only to subgraphs of cer-
tain sizes. In the TDB allocation for the mesh systems,
jobs are assigned to the squares with the side lengths
equal to the power of two. In hypercubes, jobs are
always assigned to a subcube. Jobs that require irreg-
ular sizes are assigned more processors than necessary.
The extra nodes assigned to a job cannot be used for
the execution of any other job and cause the system to
be underutilized. There are two types of external frag-
mentation. The first type of external fragmentationis a
result of the imperfect recognition ability of the alloca-
tion algorithms. The allocation algorithms only check
for the free processors in the subgraphs of the system
at certain locations. For example, in the buddy alloca-
tions, only nodes that are buddies to one another are
considered for the allocation of a job. It may so hap-
pen that there are sufficient processors in the shape
of a submesh or a subcube for the execution of a job
but the allocator fails to locate these processors. This
kind of external fragmentation can be solved by using
an allocation algorithm that checks all the possible lo-
cations for the subgraphs. The other type of external
fragmentation arises when the available processors are
not physically connected in the shape of a subgraph of
the system. None of the allocation algorithms can as-
sign a job to the system for execution in this situation
even when the number of free nodes are sufficient.



2.2 Scheduling Approaches

The FCFS discipline used with the conventional al-
location schemes augments the fragmentation problem
in multicomputer systems. When the allocator fails to
assign a job for execution, the job has to wait until
more processors become available so that the allocator
can allocate it into the system for execution. Because
of the FCFS discipline, a waiting process will block
all the succeeding jobs from entering the system. The
waiting time for a blocking job is thus accumulated in
the turnaround time of all the jobs following it. The
scheduling approaches improve the performance by re-
ducing the blocking effect. This can be done by allow-
ing the jobs bypass the blocking process or by rear-
ranging the execution order of jobs so that more jobs
can be allocated to the system.

In [9], a scheduling method for the mesh sys-
tems combining a priority technique with a reservation
scheme is proposed. The reservation scheme allows a
job to reserve processors for its execution and let other
jobs bypass it to enter the system if they can. The pri-
ority technique is used to reduce the chance of fragmen-
tation. The lazy [11] scheduling scheme proposed for
hypercubes temporarily delays the allocation of a job
if any other job of the same dimension is running. The
delayed job is then executed on the existing subcube
rather then acquiring a new subcube. The fragmenta-
tion of the system and the blocking problem with the
FCFS scheme are both reduced. Another scheduling
scheme for the hypercubes called scan [12] groups jobs
of the same size together for the allocation and thereby
reduces fragmentation.

There are several problems associated with these
scheduling approaches. First, the complexities of the
scheduling approaches are high. In addition to the un-
derlying allocation algorithm used, the scheduler im-
poses additional overhead for determining the order of
the execution. In the reservation approach, a node can
be idle waiting for the availability of other nodes that
are reserved together for the execution of the same job.
This causes the system to be underutilized and limits
the performance. The performance gain of the scan
policy is dependent on the workload environment. Sec-
ond, all the scheduling approaches have one common
problem which is the violation of fairness as the jobs are
not executed in the exact order as they are submitted
to the system.

2.3 Other Approaches

A rather unconventional approach taken to improve
the performance of the multicomputer system is by ad-
justing the size of the jobs. Changing the job size to
avoid fragmentation has been studied in [10] and [13].
In [10], the authors proposed two allocation policies for
the mesh-connected system, namely the equi-partition
and folding allocations. Both policies assumes the ini-
tial submesh requirements are all equal to the size of
the system. Jobs are also migrated between nodes in
the system. The job size assumption is not practical
and the overhead for migrating jobs are not ignorable.
The two methods in [10] are hence less attractive for
the actual implementation.

The limit allocation proposed in [13] is an efficient
processor management strategy for the hypercube sys-

tems. Three limit allocation algorithms are considered,
namely the limit-k, greedy, and average. The basic idea
of limit allocation is to reduce fragmentation by lim-
iting the maximum job size in the system. Job that
requires a subcube larger than the limit will have to
be folded to the limited size. This causes serious un-
derutilization of the system under low load and results
in poor performance. The results in [13] and our sim-
ulation both prove this point. Another major problem
with the limit allocation is its unfair treatment to jobs
of different sizes. A folded job is executed on less pro-
cessors than it initially requested. This increases the
execution time of the job. Comparing with the execu-
tion time of the unfolded jobs, the folded jobs are obvi-
ously treated unfairly. With the limit allocation, larger
jobs are folded more often than the smaller ones. In
the limit-k allocation, jobs smaller than the limit size &
never get folded while jobs larger than the limit always
get folded. The turnaround time of the smaller jobs is
thus likely to be shorter than the turnaround time of
the larger jobs, which makes the scheme unfair.

3 Restricted Size Reduction (RSR)
Scheme

We propose a generic job allocation method to im-
prove the performance of the multicomputers by reduc-
ing the fragmentation problem. The proposed method
reduces the size of a job for execution when fragmen-
tation prevents it from execution. The number of
times that size reduction can be applied to a job is re-
stricted to minimize the side-effect of the increased ex-
ecution time caused by the size reduction. The alloca-
tion method is thus called the restricted size reduction
(RSR) method. Executing a job on a smaller subsys-
tem adaptively benefits the performance in two ways.
First, the fragmented nodes are utilized and more jobs
can be accommodated by the system simultaneously.
Second, the waiting delay is reduced because jobs can
be allocated earlier. The reduction of waiting delay is
especially important for system with higher load be-
cause the blocking problem is more serious for systems
with high load.

The detailed description of the algorithm is provided
in Section 3.2. Here we list the important properties

of the RSR scheme.

1. It is a generic processor management concept. The
RSR scheme is not limited to a single architecture
or a particular allocation algorithm.

2. It is fair because jobs are serviced with the FCFS
discipline. No job is treated unfairly on the basis
its size request.

3. It is adaptive. A job is only folded when the frag-
mentation prevents it from execution. This prop-
erty guarantees that the system maintains a rea-
sonable utilization at all ranges of workload.

4. It is flexible. The system administrator can de-
termine the optimal restriction on the size reduc-
tion according to the individual system’s need and
workload.



3.1 Suitability Study

In a multicomputer system, jobs come in different
sizes according to their inherent parallelism. The avail-
able parallelism of a job prohibit changing the job size
randomly. However, we argue that it is safe to scale
down a job to some extent. In a multicomputer, a job
is divided into subtasks running on different processors.
The number of subtasks that can be run concurrently
on different processors is limited by the degree of par-
allelism. It is always possible to reduce the degree of
parallelism in a job. The nCUBE’s software environ-
ment [16] explicitly supports the execution of a job on
different size cubes. For applications that require at
least some certain number of processors to execute, it
is still possible to fold the program and run them on
the smaller subsystem in a context-switching fashion.

The tradeoff for running a job on a smaller subsys-
tem is the increase of the execution time. However,
when a job is folded to half of the size it requested, it
is unlikely for the job’s execution time to exceed twice
of its execution time when its request is granted with-
out folding. Additionally, the communication overhead
for less processors is expected to be reduced for several
reasons. First, the communication path is shorter in a
smaller subsystem. Second, the smaller number of pro-
cessors in the smaller subsystem causes less interference
between messages transmitted by different processors.
Third, the frequency of interprocessor communication
could be reduced because each processor is now running
for a larger share of information. In case of multiple
process of the same task running on the same proces-
sor by context-switching, the communication overhead
could be even less because some inter-processor com-
munication might become intra-processor communica-
tion. Pessimistically, we assume a linear increase on
execution time when a job is folded as is assumed in

[13).

3.2 The RSR Algorithm

The RSR scheme is implemented along with an al-
location algorithm. A single queue is used to hold jobs
waiting for allocation. Jobs are serviced with the FCFS
discipline to preserve the fairness. A job that gets to
the head of the job queue is examined for allocation.
If the underlying allocation algorithm finds a suitable
subsystem of free processors for the execution of the
job, the job is allocated for execution. If a subsystem
of the required size cannot be located, the allocator re-
duces the size of the job to the next smaller allocable
subsystem and examine the availability of free nodes
for the job’s execution. This process repeats until ei-
ther the job is allocated or the number of times of size
reduction of the job reaches a preset restriction. The
allocation attempt is stopped when the job cannot be
allocated after all allowable size reductions have been
considered. When a job departs after execution, the
allocation process is repeated.

The reason for the restriction on the job size re-
duction is to ensure the performance gain of reducing
fragmentation is not outweighed by the loss of reduced
parallelism in the application. The RSR allocation is
flexible for implementation. The system administrator
can determine the maximum number of folding that
a job can endure based on the system status and the

workload parameters to get the optimal performance.
Discussion on the selection of the number of folding is
presented in Section 4.2. The restriction on size re-
duction also distinguishes the RSR allocation from the
limit allocation. The limit allocation limits the maxi-
mum subcube that a job can use. Only the jobs larger
than the limit are considered for folding. The RSR al-
location limits the maximum number of folding that
can be applied to a job. A job is only folded when
fragmentation prevents it from execution. Jobs of all
sizes have the possibility of being folded. This makes
the RSR method fairer than the limit allocation. Ad-
ditionally, as discussed in Section 2.3, the limit allo-
cation has the problem of underutilization because it
folds jobs regardless of the system load. Some jobs may
be folded while other processors are idling. The RSR
allocation is an adaptive allocation and it only folds
a job when necessary. A job is assigned to as many
resources it can get under the size reduction restric-
tion. The underutilization problem is avoided and the
performance is expected to improve.

To describe the RSR algorithm for a particular ar-
chitecture, two things have to be considered, the un-
derlying allocation algorithm and the restriction of the
size reduction. Any existing allocation algorithm can
be used with the RSR scheme. Our results show that
a simple algorithm with RSR technique can outper-
form more robust allocation algorithms. Therefore, it
is advantageous to choose an algorithm with low time
complexity. The size reduction is done depending on
the underlying allocation algorithm. For instance in
the mesh systems with TDB algorithm, reducing the
size of a job once results in a smaller square which
requires 1/4 of the processors it requested before the
reduction. For all allocation algorithms in the hyper-
cubes, a size reduction folds a job into a smaller cube
with half the number of the processors. The restric-
tion of the number of size reductions can be applied to
a job is a parameter of system load and performance.
An RSR allocation with the maximum number of size
reductions allowed to a job set to ¢ is called RSR-t al-
location. The size of a job is guaranteed to be reduced
less than ¢ times to ensure that the performance gain.
The sketch of the RSR-t allocation in the hypercube
system is shown below.

The RSR-t Allocation for Hypercube

1. Let k be the size of the subcube requested by the job
to be allocated. Set the minimum allowable size

s = MIN{k —t,0}.

2. Check the availability of the k-cube using the em-
bedded allocation algorithm. If found, allocate the
job and goto step 4.

3. Setk tok—1. If k > s goto step 2, else goto step
.

4. If the job queue is not empty, goto step 1 to allocate
the first job in the queue.

5. End



Judicious selection of the value of ¢ is essential to
exploit the advantages offered by the RSR allocation
scheme. Some pointers toward the selection of the
value of ¢ are discussed in Section 4.2.

4 Performance Analysis

The advantages of the RSR allocation are justified
through three steps. First, the impact of the RSR al-
location on different allocation algorithms is shown in
Section 4.2. Second, the performances of different allo-
cation algorithms combined with the RSR concept are
compared in Section 4.3 to show how a simple algo-
rithm using the RSR method can outperform an algo-
rithm with perfect subgraph recognition ability. Last,
the performance of the RSR allocation is compared
with the limit allocation in Section 4.4.

4.1 Simulation Environment

The simulations for the mesh systems are done for a
32 x 32 system. For the two-dimensional buddy algo-
rithm, the jobs are assumed to be squares with the side-
length following uniform distribution between 1 and 32.
For other allocation algorithms, the job sizes are as-
sumed to be uniformly and uncorrelatedly distributed
in both the x and y dimensions with the values between
1 and 32. We also simulated the effect of the RSR allo-
cation for an eight dimensional hypercube. Job size is
assumed either uniformly or normally distributed be-
tween 0 and 7 dimensions. The probability for any re-
quest between a 0 and a 7-cube is equals to 1/8 for the
uniform distribution. Jobs with normally distributed
dimensions are also simulated for the hypercubes. The
normal distribution of the job size is obtained by dis-
cretizing the probability of a normal distribution be-
tween —2.50 and +2.50 of its mean. The probability
obtained is normalized to one to include the probabil-
ity outside this region. The resulting probabilities for
different job sizes in the 8-cube system are (p0 = p7 =
0.025, p1 = p6 = 0.076, p2 = p5 = 0.162, p3 = p4 =
0.237).

In all the simulations, jobs are assumed to arrive in
a Poisson process. The distribution for the execution
time of a job is assumed to be exponential. For hyper-
cube, we also simulated the truncated normal service.
Both distribution have the same mean of 5 time units.
For the truncated normal service time, the standard de-
viation is assumed to be 2 time units. We simulate the
modeled system with job arrival rates calculated for dif-
ferent system loads. The arrival rate A is calculated as

system size
mean job sizexmean service time
system load is approximately equal to the system uti-
lization before a system gets saturated.

All allocation schemes are implemented as event-
driven simulations. The size reduction is done by fold-
ing the job into a smaller subcube for the hypercube
system. For the mesh using the TDB allocation, every
size reduction results in a smaller square. For other
allocation algorithms in the mesh, every size reduction
results in folding the job in the direction which it has
longer side length. This is done to ensure the result-
ing jobs are in a regular shape and to avoid future
fragmentation of the system. We simulated all allo-
cation algorithms until the completion of 50,500 jobs.

x system load. The

The first 500 jobs are ignored in the measurement to
avoid premature results. Because the execution time
is increased after a job is folded, the increased execu-
tion time needs to be measured. Therefore, the average
turnaround time which includes the execution time and
the queuing delay of a job is measured for fair compar-
ison.

4.2 The Impact of RSR Scheme

For the mesh systems, the allocation algorithms sim-
ulated are the TDB, the frame-sliding, and one of the
perfect recognition algorithm — the first-fit algorithm.
These results are illustrated in Figure 1.

—— No folding
— & -1 folding

Avg. Turnaround Time

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
System Load

(a) The TDB algorithm

—— No folding
— ¢ — 1 folding
--& - 2fold

o
=}

=y
o
o———____
O Nom e

Avg. Turnaround Time
w

10

0.4 0.5 0.6
System Load

(b) The frame-sliding algorithm

—— No folding
— & —1folding

--& - 2fold
— -3 fold
— O -4 fold

o
<]

1

1

| :

# i 2

IN
S

Avg. Turnaround Time
@
o

10

0.1 0.2 0.3 0.4 0.5 0.6 0.7
System Load

(c) The first-fit algorithm

Figure 1: The average turnaround time vs. system load
for different allocation algorithms in a 32 x 32 mesh.

Figure 1.(a) shows the average turnaround time of
jobs using the TDB allocation algorithms and RSR
scheme. The RSR-1 scheme provides a tremendous im-
provement on the average turnaround time. Further in-
crease on the number of allowable size reductions does
not provide performance gain. Because TDB algorithm



allocates jobs to square subcubes of certain sizes, job
size reduction dramatically increases the probability of
allocating a job. RSR also causes jobs to be assigned in
similar sizes and avoids fragmentation. Each job size
reduction in TDB increases the execution time of a job
by four times. This increase of execution time quickly
overshadows the benefit of reduced queuing delay with
larger number of job size reductions. Figures 1.(b) and
(c) are the results for the frame sliding and the per-
fect recognition algorithms, respectively. The behavior
of the three algorithms are similar. Under low system
load, the average turnaround time of the jobs are very
close for RSR schemes allowing different number of size
reductions. The RSR allocations allowing smaller num-
ber of size reductions have slightly shorter turnaround
time than the RSR schemes allowing larger number of
size reductions. However, the RSR schemes allowing
larger number of size reductions provide a wider oper-
ational range.

Avg. Turnaround Time

0.1 02 03 04 05 06 07 0.8 0.9
Input Load

(a) Uniform job size

Avg. Turnaround Time

Input Load

(b) Normal job size

Figure 2: The average turnaround time vs. system
load for different allocation algorithms in an 8-cube us-
ing the buddy allocation with exponentially distributed
service time.

The RSR scheme is also simulated with the buddy
allocation algorithm for the hypercube systems. The
results are shown in Figure 2. The operational range of
the system is improved with the assistance of the RSR
scheme. The turnaround time of the RSR schemes
allowing less numbers of size reductions have shorter
turnaround time than those allowing larger numbers
of size reductions. This is exactly the same observa-
tion we have made for the mesh system. As discussed
earlier; the performance gain is mainly caused by the

efficient reduction of the fragmentation problem. This
is because of the blocking effect associated with the
FCFS discipline. Using the RSR, a job is executed as
early as the size reduction restriction allows. Therefore,
it is less likely to block other jobs. The fragmented pro-
cessors are also utilized to execute the folded jobs. The
turnaround time of the RSR schemes are hence shorter.

Another observation made from these results is the
tradeoff between the larger operational range and the
lower average turnaround time. When the system load
is high, a system needs to accommodate as many jobs
as possible in order to avoid saturation. Allowing more
size reduction makes this possible. However, the allo-
cations allowing smaller number of size reductions pro-
vides shorter turnaround time under low to medium
load. This is because the allocations allowing more size
reductions tend to reduce the size of a job more often.
As the blocking effect is not serious under these loads,
the execution time is the dominant factor of the aver-
age turnaround time. Therefore, allowing less number
of size reduction avoids the unnecessary job size re-
duction and provide a better performance under such
loads. On the other hand, the system performance is
improved rapidly with a small number of size reduc-
tions. The performance improvement of allowing more
size reduction is not significant. Moreover, when the
system is running beyond a reasonable load, most jobs
will be executed with severe size reduction if the re-
striction on size reduction is high. For example, in the
mesh system using frame-sliding allocation, the oper-
ational range is increased to around 50% utilization
with three size reductions allowed. Beyond this oper-
ational range, the average turnaround time of the job
becomes approximately 10 times of the expected exe-
cution time if the job is not folded. This phenomena
is more obvious in the hypercubes where just one size
reduction improves the operational range to more than
80% utilization. Therefore, it is sufficient to improve
the system performance with just a few times of size
reduction.

4.3 Comparison Between Different Allo-
cations

To illustrate the effectiveness of the RSR scheme
in improving the multicomputer performance, we com-
pare different allocation schemes for mesh in this sec-
tion. The algorithms compared is the frame-sliding
algorithm and the first-fit algorithm. The TDB algo-
rithm is not compared because of its special assump-
tion that job sizes have to be square and cannot be
categorized with the other two algorithms which take
any rectangular jobs. Our intension is to show that an
allocation algorithm with an inferior subsystem recog-
nition ability can outperform a better algorithm with
the help of the RSR scheme. The first-fit algorithm
[3] has the ability to detect any available submesh pro-
vided it exists. It provides equally-well performance
as the other perfect recognition algorithm (the best-fit
algorithm).

As observed from Figure 3, the frame-sliding algo-
rithm performs closely to the first-fit algorithm after
allowing one size reduction. By allowing more size re-
duction, the frame-sliding algorithm outperforms the
first-fit algorithm with a wider operational range. The



turnaround time of the job under very low system load
is slightly worse for the RSR scheme using frame-sliding
algorithm because of the job size reduction. However
in most of the working region, the RSR scheme with
the frame-sliding algorithm does provide comparative
(if not better) performance. These results indicate
that an algorithm with low submesh recognition abil-
ity can provide a wider operational range and lower
turnaround time with the help of the RSR scheme.

60

— & — FS with 1 folding
- - & - with 2 foldings
— %= with 3 foldings
—© - with 4 foldings
—— First-fit

o
=]

IS
S

Avg. Turnaround Time
oW
s &

i
o

o

0.1 0.2 0.3 0.4 05 0.6
System Load

Figure 3: Comparing the RSR schemes using frame-
sliding algorithm with the first-fit algorithm.

4.4 Comparing with the Limit Allocation

We compare the RSR scheme with the limit allo-
cation [13] proposed ealier for the hypercube system.
The limit-k allocation reduces all jobs larger than a k-
cube to k-cube. The RSR-t allocation allows the size
of a job to be reduced at most ¢t times. Therefore, we
feel it is fair to compare the allocation from different
family with the same maximum number of folding. In
the 8-cube system we simulated, limit-0 and RSR-7,
limit-5 and RSR-2, limit-6 and RSR-1 are comparable
schemes.

Figure 4 shows the comparison between the two
schemes. The RSR methods perform better than the
corresponding limit schemes. All the limit-k allocations
have relatively poor performance at low to medium
load. This is because of the underutilization problem
discussed in Section 2.3. Because larger jobs are forced
to run in a smaller cube in limit allocation regardless
of the system load, the larger jobs always have longer
execution time. In the extreme case such as limit-0,
a job initially requesting for a 7-cube would spend 128
times of the execution time when it is granted a 7-cube.
For the RSR allocations, a job is folded only when nec-
essary. Under a low input load, a job almost never
gets its size reduced. When the load increases, more
jobs get folded. Since we restrict the number of times
size reduction can be applied to a job, increase on the
execution time is limited.

Along with better performance, the RSR scheme
also provides fairness toward job of different size. Fig-
ure 5 shows the average turnaround time for jobs of
different sizes. The extreme comparisons between the
RSR-7 and the limit-0 allocation are illustrated in
part (a). The RSR-1 and RSR-2 are compared with the
limit-6 and limit-5, correspondingly in part (b). The
turnaround time is plotted in logarithmic scale because
of the big difference on the response time for the limit-
k allocations. Limit-6 and RSR~1 have close response

Avg. Turnaround Time

01 02 03 04 05 06 07 08
Input Load

(a) Uniform job size distribution

Avg. Turnaround Time

01 02 03 04 05 06 07

Input Load

(b) Normal job size distribution

Figure 4: Comparing between the limit allocations and
the RSR schemes with the exponential service time dis-
tribution in an 8-cube system.

time for all job sizes. This is because the longer queu-
ing delay jobs experienced in such load outweighs the
execution time. RSR-2 and RSR-7 started to treat jobs
unfairly at such a load. Jobs requiring larger subcubes
have higher turnaround time than smaller jobs. Since
larger jobs are more likely to be affected by the frag-
mentation, their sizes are more likely to be reduced.
With a higher size reduction restriction, larger jobs
could be folded more than once. The reduction of
the job sizes increases the execution time of the larger
jobs. The unfair treatment of limit-0 and limit-5 is vis-
ible because the queuing delay does not outweigh the
turnaround time for these two allocations.

The greedy limit is a variant of our proposed RSR
allocation scheme when the restriction of size reduction
allows all jobs to be executed on a single node when
necessary. However, our results in Section 4.2 points
out that allowing too much size reduction results in
unnecessary folding of the jobs under low to medium
load. The performance of the system under such load is
sacrificed with the excessive size reduction. Therefore,
it is not desirable to use the greedy limit allocation.
The RSR schemes also provide much fairer treatment
to jobs of different sizes. Therefore, we conclude that
the RSR scheme is better than the limit allocations
from the comparisons.

5 Concluding Remarks

A new allocation strategy called restricted size re-
duction (RSR) is proposed to improve the multicom-
puter performance. The RSR allocation is a generic



1000

100 +

BRSR7
BLimit-0)

Avg. Turnaround

1000

Avg. Turnaround Time

Figure 5: Fairness comparison between the limit al-
location and the RSR schemes at a high system load
(0.7) for an 8-cube system.

approach that can be used with any allocation algo-
rithm in any architectures. The suitability of adjusting
the job size is studied. The possible impact on the ex-
ecution time of an individual process is justified from
the speedup laws. The complexity of the RSR strategy
is also analyzed. The complexity is believed to be no
higher than the underlying allocation algorithm used.
Extensive simulations are performed to validate the
advantages of the RSR allocation in both mesh and hy-
percube systems. The impact of folding a job is first
studied for different allocation algorithms. Different al-
location algorithms applying RSR are then compared
for the mesh system. The RSR allocation is also com-
pared with the limit allocation which is believed to be
the most efficient processor management method for
the hypercubes. It is concluded that the RSR alloca-
tion improves the performance of every allocation algo-
rithm by efficiently reducing the fragmentation. Thus,
RSR allocation makes it possible for a system to have
a superior performance without using a sophisticated
allocation algorithm that has high time complexity.

References

[1] K. Li and K. H. Cheng, “A Two-Dimensional
Buddy System for Dynamic Resource Allocation
in a Partitionable Mesh Connected System,” Jour-

nal of Parallel and Distributed Computing, 12, pp.
79-83, 1991.

[2] P.J. Chuang and N. F. Tzeng, “An Efficient Sub-
mesh Allocation Strategy for Mesh Computer Sys-

tems,” Int. Conf. on Distributed Computing Sys-
tems, pp. 256-263, May 1991.

[3] Y. H. Zhu, “Efficient Processor Allocation Strate-
gies for Mesh-Connected Parallel Computers,”

Journal of Parallel and Distributed Computing,
16, pp. 328-337, 1992.

[4] M. S. Chen and K. G. Shin, “Processor Allocation
i an N-Cube Multiprocessor Using Gray Codes,”
IEEE Trans. on Computers, vol. C-36, No. 12,
Dec. 1987.

[5] S. Dutt and J. P. Hayes, “Subcube Allocation in
Hypercube Computers,” IEEE Trans. on Comput-
ers, vol. 40, No. 3, Mar. 1991.

[6] J. Kim, C. R. Das, and W. Lin, “A Top-Down
Processor Allocation Scheme for Hypercube Com-
puters,” IEEE Trans. on Parallel and Distributed
Systems, pp. 20-30, Jan. 1991.

[7] P. J. Chuang and N. F. Tzeng, “Dynamic Pro-
cessor Allocationin Hypercube Computers,” Int.
Symp. on Computer Architecture, pp. 40-49, May
1990.

[8] H. Wang and Q. Yang, “Prime Cube Graph Ap-
proach for Processor Allocation in Hypercube Mul-
tiprocessors,” Int. Conf. on Parallel Processing,
pp- 25-32, Aug. 1991.

[9] D. Das Sharma and D. K. Pradhan, “Job Schedul-
ing in Mesh Multicomputers,” Proc. Int. Conf. on
Parallel Processing, vol. I, pp. 251-258, 1994.

[10] C. McCann and J. Zahorjan, “Processor Alloca-
tion Policies for Message-Passing Parallel Com-
puters,” Proc. ACM SIGMETRICS Conf. pp. 19-
32, May, 1994.

[11] P. Mohapatra, C. Yu, and C. R. Das, “A Lazy
Scheduling Scheme for Hypercube Computers,”

Journal of Parallel and Distributed Computing,
27, pp- 26-37, May, 1995.

[12] P. Krueger, T. H. Lai, and V. A. Radiya, “Pro-
cessor Allocation vs. Job Scheduling on Hypercube
Computers,” Int. Conf. on Distributed Computing
Systems, pp. 394-401, 1991.

[13] C. Yu and C. R. Das, “Limit Allocation: An Ef-
ficient Processor Management Scheme for Hyper-
cubes,” Int. Conf. on Parallel Processing, vol. II,

pp. 143-150, 1994.

[14] B. S. Yoo, C. R. Das, and C. Yu, “Processor Man-
agement Techniques for Mesh-Connected Multi-
processors,” Int. Conf. on Parallel Processing, vol.

IT, pp. 105 - 112, 1995.

[15] K. C. Knowlton, “A Fast Storage Allocator,”
Communications of ACM, vol. 8, pp. 623-625, Oct.
1965.

[16] nCUBE2 Programmer’s Guide, nCUBE, 1992.



