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Abstract—In recent times we have witnessed the emergence of large online markets with two-sided preferences that are
responsible for businesses worth billions of dollars. Recommendation systems are critical components of such markets. It
is to be noted that the matching in such a market depends on the preferences of both sides, consequently, the construction
of a recommendation system for such a market calls for consideration of preferences of both sides. The online dating
market, and the online freelancer market are examples of markets with two-sided preferences. Recommendation systems
for such markets are fundamentally different from typical rating based product recommendations. We pose this problem
as a bipartite ranking problem. There has been extensive research on bipartite ranking algorithms. Typically, generalized
linear regression models are popular methods of constructing such ranking on account of their ability to be learned
easily from big data, and their computational simplicity on engineering platforms. However, we show that for markets
with two sided preferences, one can improve the AUC (Area Under the receiver operator Curve) score by considering
separate models for preferences of both the sides and constructing a two layer architecture for ranking. We call this a
two-level model algorithm. For both synthetic and real data we show that the two-level model algorithm has a better AUC
performance than the direct application of a generalized linear model such as L1 logistic regression or an ensemble
method such as random forest algorithm. We provide a theoretical justification of AUC optimality of two-level model and
pose a theoretical problem for a more general result.
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1 INTRODUCTION

Two-sided markets [1] facilitates transaction be-
tween two distinct user groups. Today, several com-
panies provide such two sided market platforms.
Examples of such markets include e-commerce plat-
form such as eBay, online labor markets [2] such as
Elance-oDesk, online dating services such as eHar-
mony and match.com, and online housing rentals
such as Airbnb and many others. In this paper,
we consider the two sided markets where both
user groups have distinct preferences such as online
dating (male and female user groups) or online
labor market (employee and employer user groups).
We call such markets as “markets with two sided
preferences”. Matching of users from both sides
is central to the business models of all such two-
sided markets. One way of providing algorithmic
matching for such markets is to build an effi-
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cient recommendation system [3]. Generally these
markets with two sided preferences employ some
mechanisms for promoting interactions between the
two user groups. For example, Elance-oDesk’s plat-
form comprises of mechanisms such as bidding for
jobs by contractors, inviting of contractors by the
employers who posted jobs, rejecting or accepting
of the bids submitted by the contractors, or rejecting
or accepting the invites sent by the employers etc.
This user behavior data (mostly counts of these
events) and the attributes of the user groups can be
used to model preferences of the two user groups
separately. One can also construct joint features
consisting of attributes of two user groups. All these
features then can be used to estimate probability
of matching. The probability of matching can be
considered as a function of probability of prefer-
ences of the two user groups. In this paper, we
pose the recommendation problem as a bipartite
ranking problem and we measure the accuracy of
the system using AUC (Area Under the receiver
operator Curve) score. An AUC score represents
the ratio of the number of pairs for which the
probability of matching with a good candidate is
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higher than probability of matching with an inferior
candidate and the total number of all matching
pairs. This guarantees that the recommended set
will be ranked according to the desirability of the
candidates for the purpose of matching. In the case
of online labor market, there can be only one or
a few matching employees or contractors for a job
posted by an employer. Hence, AUC score will be
high for a model if the top ranked candidates are
recruited by the employers. In this paper, we show
that one can exploit the special structure of typical
data sets available in the markets with two sided
preferences and can design a two layer architec-
ture that can produce high AUC score compared
to some popular regression based algorithms. We
call this algorithm as “two-level model”. In the
first level this estimates the preference functions of
both sides as well as a general matching function;
in the second level it computes the probability of
matching of two users by way of an approximate
Bayesian matching technique that incorporates a
binning based density estimation. We show that this
simple two-level model results in a 2 to more than
10% higher AUC (area under the curve) score and
similar gains in TPR (true positive rate) and TNR
(true negative rate) compared to direct regression
based estimation of probability of matching using
L1 regularized logistic regression [4] or random
forest [5].

2 BACKGROUND ON RECOMMENDATION SYS-
TEMS

There has been extensive research on recommen-
dation systems [3], [6] because of their commer-
cial importance. Popular algorithms include nearest
neighbor based collaborative filtering [7], content
based filtering [8], matrix factorization [9], regres-
sion, classification [10], and learning to rank [11]
based algorithms. Collaborative filtering or matrix
factorization have been extensively used particu-
larly in the e-commerce industry, however they
are best to use when estimating a rating given
by users. However, when the goal is to obtain a
recommendation based on an n-dimension feature
constructed from the attributes of two user groups,
the input is a tensor [12] and the factorization
problem becomes much more complex. The near-
est neighbor techniques are also known to suffer
from curse of dimensionality problems and not the
preferred algorithm when n is high. Notably, a few
researchers from the industry [13], [14], [15] have

reported the use of linear models for matching in
online dating and labor markets. They essentially
have constructed one model for matching based
on regression based techniques directly from the
features created from the attributes and behaviors
of two user groups on the site. Generally, the linear
models [16] are also suitable for learning from big
data. Furthermore, the underlying algorithms for
these models can be easily scaled up to include
many features, these models are also easy to deploy
in engineering platforms, and they can be computed
fast. These reasons make linear models very popu-
lar for building recommendation systems for two
sided markets in the industry. Interestingly, very
few papers have actually focussed on recommenda-
tion systems for two sided markets, barring some
studies on matching in the context of online dat-
ing [17]. In one such study [17], it has been observed
that the recommendation systems in such markets
can have a reciprocal relationship between entities
of both sides. In this paper the authors describe the
characteristics of such a reciprocal relationship and
present a heuristic algorithm for designing recom-
mendation systems for online dating by computing
a compatibility score for each side. Their paper dis-
cusses about the special characteristics of the prob-
lem of recommendation systems for markets with
two sided preferences. Their algorithm is based on
a compatibility score that is constructed from the
given preferences of the users. Their compatibility
score approach has been shown to improve the
precision of the recommender systems but they did
not report any ranking metric in the paper. The
success of their algorithm depends on correctness of
the specific preferences provided by the users that
can often be unreliable. Our method on the other
hand does not depend on user specified preferences
and is much more generally applicable.

3 PROBLEM SETTING

Let us assume that there are two user groups
u and u′ in a two-sided marketplace. We model
their preference to each other by y = f1(x̄1) and
y′ = f2(x̄2) respectively. Let m = f3(x̄3) denote the
function that represents the matching between the
two user groups, where fi : Rn → {0, 1} ∀i is an
arbitrary function and x̄i ∈ Rn is an n-dimensional
feature vector and i ∈ {1, 2, 3} represents three
different feature vectors. In all our experiments, we
used x1 = x2 = x3. The features are constructed
from attributes of u and u′ and interactions between
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them. The values y = 1 and y′ = 1 denote positive
preferences whereas the value m = 1 denotes a
match. The probability of preferences of user groups
u and u′ can then be represented by P ((y = 1)|x̄)
and P ((y′ = 1)|x̄). Similarly, the probability of
matching can be represented by P ((m = 1)|x̄).

4 MAIN IDEA

In this paper, we propose a new approach to max-
imize AUC scores for recommendation systems in
markets with two-sided preferences via a two-level
model. In the first level, we estimate the probabil-
ities P ((y = 1)|x̄) and P ((y′ = 1)|x̄) using a L1-LR
(l1 regularized logistic regression) [4]. This corre-
sponds to functions f1(x̄) and f2(x̄) respectively. We
construct a third model using a L1-LR that corre-
sponds to the probability P ((m = 1)/x̄) = f3(x̄).
We use a cross validation technique to choose a
regularization parameter λ for each logistic model.
Note, the reason we have used the third model be-
cause we have seen this to improve the AUC score
although we have not reported the results without
the third model. Intuitively, one can consider that
the first three models capture some of the latent
features from this data sets. We use a L1-LR for the
following reasons:
• It is easy to train with big data. Several effi-

cient algorithms [18] exist to solve the opti-
mization problems.

• L1 minimization tends to give sparse solu-
tions and has logarithmic sample complexity
bounds [4].

• It is also an effective learner even in circum-
stances involving an exponential number of
irrelevant features [19].

• L1 regularization has appealing asymptotic
sample consistency for feature selection [20].

• Logistic loss is proper and is known to
have a better regret bound with pairwise
ranking. This makes it a good choice for
maximizing AUC score using a univariate
loss function [21].

All the above properties ensure that we can effi-
ciently learn the preference function of each side
using large amount of historical data, and these
models can have better AUC scores for matching.
Furthermore, Logistic Regression or other gener-
alized linear models are preferred for many com-
mercial ranking and recommendation applications
primarily because computing scores or probabilities
in real time in production is much easier compared
to more expressive and powerful ensemble models

such as random forest or gradient boosted tree [22].
Noteworthy here is the fact that, although the algo-
rithm uses three logistic models, it is applicable to
a more general framework where multiple hidden
states may exist to model the interactions of agents
from two sides in a marketplace. In the second level,
we aim to compute

P (m = 1|f1(x̄), f2(x̄), f3(x̄)) (1)

which is the probability of matching given the
models obtained in first level. It is well known
that algorithms that can estimate the optimal class
probability [23] also have nice AUC properties. One
way of optimally estimating class probability is to
use a proper composite loss function [24]. Reid et
al. defined a proper loss function as a loss where
its conditional expected loss L(p, q) := Ey∼p[l(y, q)]
is minimized when q = p. This means that, the loss
is minimum when the estimation of y is correct.
Here, y ∈ {0, 1} represents the class. It has been
observed [24] that, it is possible to write an arbitrary
loss function λ(y, v) as a composition of a proper
loss l and an invertible function ϕ−1. The resulting
composite function is called proper composite loss.
It can be easily shown that square, exponential, or
logistic losses are of this kind. However, in our case,
each logistic function takes the following form:

fi(x̄) = P ((y = 1)|x̄, θ) = σ(θT x̄) =
1

1 + exp(−θT x̄)

We can write the loss function for equation 1 as
l(y, σ̄(θT x̄)), where σ̄ denotes a real valued vector
and each element x̄ is generated by the logistic
function σ. It is not obvious if an invertible function
ϕ−1 exists for such a nonlinear loss function of x̄.
However, it is known that one can estimate this
probability empirically using a density estimation
technique [25]. We choose to use the simple his-
togram based technique with a small modification
to address it’s limitation with respect to continuity.
These techniques are known to perform well with
enough data. We first discretize each of the three
probabilities and compute the empirical joint distri-
bution of the these probabilities with the class label.
Discretization is done by binning the probabilities
in B number of bins. This discretization maps each
probability value to a bin. The parameter B is
chosen by cross validation. The bins corresponding
to the probability values are represented by fi(x̄)b.
The new probability of match is computed by using
the following two entities:

c0(x̄) = #(f1(x̄)b, f2(x̄)b, f3(x̄)b, 0)

c1(x̄) = #(f1(x̄)b, f2(x̄)b, f3(x̄)b, 1)

If either c0(x̄) or c1(x̄) is zero we turn back to
our base model for prediction as the counts are not
trusted otherwise we return the following empirical
distribution:

P̂ (m = 1|f1(x̄), f2(x̄), f3(x̄)) =
c1(x̄)

c1(x̄) + c0(x̄)
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Algorithm 1 explains the details of this two-level
method. Note that this binning strategy approxi-
mates the conditional probability of match given
the three probabilities f1(x̄), f2(x̄), and f3(x̄). The
the best way to combine these three probabilities, or
equivalently their corresponding models, is through
their joint distribution with the class label. This joint
distribution is the optimal classifier in the sense
that it minimizes the expected squared loss [26].
Furthermore note as B increases we use our base
model more and more. The number of different
combinations for #(f1(x̄)b, f2(x̄)b, f3(x̄)b,m) is 2 ×
B3. Note that, we have found using this empirical
density estimation techniques provide better AUC
score compared to using another logistic model in
the second layer. Using another logistic model in
second layer will be very similar to a feed forward
neural network. We have not reported the results
with logistic model in the second layer.

5 EXPERIMENTAL RESULTS

In order to validate our algorithm, we conducted
several experiments with synthetic and real data
sets.

5.1 Synthetic data generation
We draw a random real vector x̄ ∈ Rn from unit
cube. We then use two separate linear functions
of form f = a0 + Σi=n

i=1aixito generate two prefer-
ence functions from two sides of the market. Let’s
assume that these are f1 and f2. The coefficients
ais are drawn randomly from two different Gaus-
sian distributions with two different means and
standard deviations. Then, we use two threshold
functions of form f > b to generate the values
of y i.e. class labels for the preference function.
Values of b are chosen such that we can obtain
certain percentage of positive (y = 1) instances.
Varying the values of b we can impose a degree
of imbalance in the generated data. We define an
imbalance parameter positive skew as ratio of num-
ber of positive instances and the total number of
data points and call it µ. We control µ by choosing
suitable values of threshold b. We then generate
two kinds of functions combining f1 and f2. we
combine two functions linearly f3 = c1f1 + c2f2.
We also define a label noise parameter νl ∈ {0, 1}
which denotes the percentages of label that may be
randomly flipped in a data set. Table 1 compares the
AUC scores results on a 50 dimensional synthetic
datasets of 100K points with 10% label noise.

Algorithm 1 Two-level Model
1: procedure TRAINTWOLEVEL(BaseCls, B, X ,Y )
2: BaseCls is the Base Classifier
3: ▷ X is an n× d and Y is n× 3
4: ▷ Y [ , 0] contains y
5: ▷ Y [ , 1] contains y′

6: ▷ Y [ , 2] contains m
7: ▷ B is the number of bins
8:
9: Split (X,Y ) randomly into two parts:

10: (Xtrain, Ytrain) and (Xvalidate, Yvalidate)
11: cls0 ←LR.train (Xtrain, Ytrain[, 0])
12: cls1 ← LR.train (Xtrain, Ytrain[, 1])
13: cls2 ←BaseCls.train (Xtrain, Ytrain[, 2])
14: ▷ LR is logistic regression
15: C ← {} ▷ C will store empirical counts
16:
17: for x̄, y ∈ Xvalidate, Yvalidate[ , 2] do
18: b0 ← bin(cls0.prob(x̄), B)
19: b1 ← bin(cls1.prob(x̄), B)
20: b2 ← bin(cls2.prob(x̄), B)
21: c← (b0, b1, b2, y)
22: if c ∈ C then
23: C[c]++
24: else
25: C[c] = 1
26: end if
27: end for
28: end procedure
29:
30: procedure BIN(p, B)
31: return floor(p×B)
32: end procedure
33:
34: procedure ESTIMATEPROBABILITY(x̄)
35: b0 ← bin(cls0.prob(x̄), B)
36: b1 ← bin(cls1.prob(x̄), B)
37: b2 ← bin(cls2.prob(x̄), B)
38: c0 ← (b0, b1, b2, 0)
39: c1 ← (b0, b1, b2, 1)
40: if c0 ∈ C and c1 ∈ C then
41: return C[c1]

C[c0]+C[c1]
42: else
43: return cls2.prob(x̄)
44: end if
45: end procedure
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Data Metrics L1-LR TL

Syn νl = 0.00 µ = 0.10
AUC 0.91 0.93
TPR 0.82 0.86
TNR 0.83 0.86

Syn νl = 0.10 µ = 0.10
AUC 0.83 0.88
TPR 0.74 0.82
TNR 0.78 0.87

Real νl = 0.0
AUC 0.87 0.89
TPR 0.71 0.76
TNR 0.83 0.84

TABLE 1
Comparison of 16 binned two-level model with

L1-LR with λ = 0.1.

Data Metrics RF TL

Syn νl = 0.00
AUC 0.91 0.93
TPR 0.82 0.87
TNR 0.83 0.85

Syn νl = 0.10
AUC 0.82 0.89
TPR 0.74 0.82
TNR 0.77 0.87

Real νl = 0.0
AUC 0.86 0.89
TPR 0.71 0.76
TNR 0.83 0.84

TABLE 2
Comparison of 16 binned two-level model with RF

with 100 trees with 18 nodes.

5.2 Real data description
We obtain a real two-sided market data from one of
the world’s largest online labor market Elance.com.
This data set is collected from six month’s of in-
teractions in Elance.com in 2013. At Elance.com
clients post jobs and they can invite contractors.
The contractors can bid for any job with or without
an invite. Upon receiving job applications from
several contractors for a posted job, a client can
then award the job to his contractor of choice. Once
the contractor accepts the awarded jobs, we can
consider that a matching between the client and
contractor has taken place. In our notations, invites
can be considered as a signal or preference for the
clients towards the contractors and a bid can be con-
sidered as a contractor’s interest towards a client.
An accept even indicates a match between the client
and contractor. An award event does not have any
special significance but it is just a state that comes
before an accept state. In the data set, features have
been obtained using various user interaction signals
and content based signals from both clients and
contractors. Each data point contains either a bid
or an invite. The data set has around ten million
such instances and it has 88 features. We use first

three month’s of data for training and validation
and the next three month’s data is used for testing.

5.3 Results
In table 1 we show that a two-level model with 16
bins gives 4% improvement in AUC score for no la-
bel noise and it gives 10% improvement when there
is a 10% label noise compared to L1-LR applied
directly to the data to model matching. Note that
the f1(x̄) and f2(x̄) are generated with µ = 0.35 and
f3(x̄ is generated with µ = 0.10. The AUC score is
improved by 2% for real data compared to l1 logistic
regression. It is to be noted that 2% real improve-
ment can actually be responsible for huge amount
of revenue for these sites. For synthetic data, two-
level model gives 3-12% better true positive and
true negative rates improvement compared to L1-
LR. It also improves those for real data but in a
smaller percentage from what we observed in the
synthetic data. One can argue that the L1-LR being
a generalized linear model is not the best model
to capture the complex distribution of matching.
Hence, we also use random forest as another alter-
native direct regression technique. Random forest
is a powerful ensemble method and is known to
be consistent [27]. In table 2, we show that two-
level model has 4-10% AUC improvement and 2-
10% true positive and negative rate improvement
for the synthetic data. We also observe 2% AUC
improvement for real data compared to random
forest. Note, we cross validate to obtain the optimal
λ in case of L1-LR and we did a grid search to
find the optimal number of nodes and trees for
the random forest for our data sets. Overall the
observation is that the two-sided model almost
always improves not only the AUC score but also
the TPR and TNR values in our experiments.

5.4 A theoretical question
There is an interesting empirical observation in this
experiment. The following set relationship holds for
any markets with two-sided preferences:

|x̄ : m = 1| ⊆ |x̄ : y = 1| ∪ |x̄ : y′ = 1|

These sets are the domains of the functions
f1(x̄1), f2(x̄2) and f3(x̄3) respectively. We can pose
a theoretical question on this as follows: if this
set relationship in the data domains always leads
to a better AUC performance of two-level models
compared to any direct regression algorithm with
univariate loss function from the proper composite
loss function family.
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6 CONCLUSION

In this paper we introduce a novel two-level model
algorithm that has a better AUC performance com-
pared to direct applications of regression techniques
such as L1-LR or random forests for markets with
two-sided preferences and provide a theoretical
justification for the algorithm’s better AUC perfor-
mance. The results we obtained clearly demonstrate
that the two-level algorithm, despite being quite
simple can lead to substantially better AUC perfor-
mance. This yields a better recommendation system
for markets with two-sided preferences.
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