Improving Cache Performance of Network Intensive Workloads

U. Vallamsetty and P. Mohapatra
Computer Science and Engineering
Michigan State University
East Lansing, MI 48824
{vallamse, prasant }@msu.edu

Abstract

The performance of servers for network-intensive
workloads such as web services and online transaction
processing applications depends on the effective uti-
lization of the processor caches. A detailed analysis of
the cache space utilization of web workloads shows us
that several memory addresses are referenced only once
during their lifetime in the cache. These references fre-
quently reside in the cache for a long time contributing
to the pollution of cache. The most commonly adopted
least-recently-used (LRU) replacement scheme does not
exploit this characteristic. In this paper, we propose
an alternative block replacement policy called Single-
Touch Aware Replacement (STAR) algorithm. This
algorithm predicts blocks that will potentially be ref-
erenced only once and replaces them early enough to
improve cache efficiency. The STAR scheme was im-
plemented in a trace-driven cache simulator and the
performance with several commercial workloads was
analyzed. The use of the STAR algorithm results in
up to 20% improvement in cache performance for web
workloads (SPECweb96, SPECweb99) and up to 5%
improvement in online transaction processing (TPC-C)
workloads.

1. Introduction

As Internet usage expands rapidly, there is an in-
creasing need to design and build more efficient and
powerful Internet servers, both front-end and back-end.
Recent studies have shown that the system character-
istics of commercial applications such as web services
[9, 12] and online transaction processing applications
[3, 6] are significantly different from those of scientific
applications. Our aim in this paper is to explore the
cache/memory access characteristics of some of these
commercial workloads and present architectural opti-
mizations to improve system performance for the class
of network-intensive applications.

With processor’s speed increasing at a rapid pace,

R. Iyer and K. Kant
Enterprise Architecture Laboratory
Intel Corporation, Portland, OR

{ravishankar.iyer, krishna.kant}@intel.com

the performance of systems used for network-intensive
applications depends largely on its cache/memory per-
formance. This exacerbates the need for efficiently uti-
lizing the cache space. In this paper, we perform a
detailed analysis of the cache space utilization of web
workloads (using SPECweb96 [1] and SPECweb99 [13]
benchmarks) and online transaction processing work-
loads (using the TPC-C benchmark [14]). Our study
shows that a high proportion of memory addresses are
referenced only once during their lifetime in the proces-
sor cache. These references, which we term as single-
touch references, are one of the primary causes of cache
pollution observed in network-intensive applications.
Widely used replacement policies such as Least Re-
cently Used (LRU) and its variations fail to recognize
this property. In this paper, we propose a new replace-
ment algorithm called STAR (Single Touch Aware Re-
placement) that exploits the single touch property of
this popular class of workload. The proposed scheme
identifies blocks that will potentially be referenced only
once and replaces them early enough to reduce cache
pollution and thereby improve cache efficiency and per-
formance. The design changes required to implement
the STAR algorithm are minimal and can be option-
ally turned off in favor of the LRU replacement policy,
if desired.

Related work in this area includes the annex cache
[7], the LRFU replacement policy for file caches
[11] and several other cache organizations/replacement
policies that have been proposed to eliminate conflicts
in the cache. The annex cache technique [7] uses an
additional buffer to filter out the single touch accesses
from entering the L2 cache. This cache acts as an aux-
iliary cache at the same level as the L2 cache. The
main disadvantages of this scheme include the usage of
extra hardware and consumption of additional cache
space. Furthermore, annex cache is applicable for only
direct-mapped L2 caches. Our proposed solution does
not require any additional hardware. Instead we make
simple modifications to the LRU policy commonly used
in most current generation microprocessors. Unlike the

annex cache, our scheme is applicable for both direct-
mapped and set-associative caches. In general, this
increases flexibility in adapting to other cache access
patterns as well as reduces the risk of increasing access
time. Our approach is similar to the LRFU policy [11]
proposed by Lee et al. for the hierarchy of disk caches.
However, they have not exploited the presence of sin-
gle touch references and the implementation of their
algorithm requires linked lists that are suitable for disk
caches but not for processor caches.

In order to demonstrate the benefits of our pro-
posed approach, we have implemented and evaluated
the STAR replacement policy in a cache hierarchy sim-
ulator. Using SPECweb96 and SPECweb99 traces, we
show that the STAR replacement policy is capable of
improving system performance significantly. In addi-
tion, we also show that for workloads that do not pos-
sess a high degree of single-touch references, the STAR
replacement policy does not degrade performance but
works as well as currently used policies such as LRU.
The TPC-C benchmark is used as an example for this
class of applications. The use of real workloads and
the observed performance benefits validate the effec-
tiveness of the STAR algorithm. We have also ana-
lyzed the impact of various cache configurations such
as cache size, degree of associativity, and line size on
the performance of STAR algorithm.

The rest of this paper is organized as follows. Section
2 highlights the access characteristics of web workloads
that motivates our work. Section 3 describes the STAR
algorithm and the implementation details. Section 4
covers the performance evaluation of STAR. Finally,
section 5 summarizes our conclusions and presents a
direction for future work.

2. Characterization of Single-Touch References
in Benchmarks

In order to explore the existence of single-touch ref-
erences in network-intensive applications, we first need
to characterize these types of reference patterns. The
key numbers that are of interest here are the propor-
tion of single-touch references and the time for which
they reside in the cache before getting evicted using the
LRU replacement policy. In addition, we will explore
the inability of the LRU cache replacement scheme in
handling these single-touch references.

As mentioned earlier, not all applications exhibit
single-touch referencing behavior. Single touch refer-
encing behavior can be observed in network-related
applications and is the primary cause of high cache
pollution in these applications. We analyzed the
memory referencing behavior of SPECweb96 [1] and

SPECweb99 [13] benchmarks. To demonstrate the im-
pact of the proposed technique for applications that do
not have a significant proportion of single-touch refer-
ences, we also considered the TPC-C [14] benchmark as
a candidate. TPC-C is a benchmark from Transaction
Processing Council, which models an Online Transac-
tion Processing environment.

The benchmarks were processed through a trace-
driven cache simulator®, and a snapshot of every set in
the cache was taken whenever there was any activity in
the set. A complete snapshot of all the cache references
for the benchmarks was then generated. Scripts were
run to compute measures like the miss ratio, number
of accesses to every cache line before it is evicted, etc.
The results obtained from this study are summarized
in Tables 1, 2, and 3.

| S.N | Behavior | Result |
1 Total number of times a line was | 595517
evicted from the cache
2 | Average age from last touch of | 429154

lines evicted by LRU
3 | Probability of single-touches for | 0.91
every eviction

4 | No. of chances of removing a
single-touch when LRU did not

147911

5 | Avg. no. of l-touch requests 1.30
present for every possible 1-touch
eviction

6 | How many times LRU evicted 1- | 398197
touches

7 | Avg. age of 1-touches when re- | 502678

moved by LRU

Table 1. Characterization of SPECweb96 benchmark

Table 1 shows a sample set of data obtained from
the snapshots for a specific cache configuration (1MB,
32Byte, 4-way L2 Cache, 32KB Unified, Direct Mapped
L1 cache) using the SPECweb96 benchmark. The LRU
scheme was used for replacement of cache lines. In this
paper, the age of cache lines is quantified in terms of the
number of references to the cache. Although this quan-
tification may not directly correspond with the timing
parameter, in the absence of time measures in the sim-
ulator, this estimation is very close. Moreover we are
interested in the relative values for performance com-
parison, for which the reference count is adequate. It
can be observed from the third row of the table that
there is a high probability (0.91) of finding a single-
touch line for every eviction done by LRU. However,

LA detailed description of the cache simulator is presented in
Section 4.1

the LRU scheme was not able to exploit this situa-
tion as quantified in the Table (see row 4). However,
about 66% of the evictions made by the LRU scheme
are actually single-touch references(rows 1/6). Another
interesting observation that can be derived from the
above data is that LRU waits for a fairly long time
before evicting a single-touch reference. It waits for
an average of about 502678 references before evicting
a single-touch reference.

| S.N | Behavior | Result |
1 Total number of times a line was | 197551
evicted from the cache
2 | Average age (from last touch) of | 335637

lines evicted by LRU
3 | Probability of single-touches for | 0.69
every eviction

4 | No. of chances of removing a
single-touch when LRU did not

70146

5 | Avg. no. of l-touch requests | 1.14
present for every possible 1-touch
eviction

6 | How many times LRU evicted 1- | 64895
touches

7 | Avg. age of 1-touches when re- | 317256

moved by LRU

Table 2. Characterization of SPECweb99 benchmark.

Table 2 shows the cache behavior for the traces of
SPECweb99 benchmark workload. This data is from a
smaller trace hence the number of evictions from the
cache block is lower than that of Table 1. It can also
be seen that the probability of single-touches for every
eviction made from the cache block is 0.69, which is
lower than that obtained for the SPECweb96 bench-
mark. This is expected since the number of single-
touches is lower in case of the later benchmark. Only
32% (rows 1/6) of the evictions made by LRU in
this case are single touches, whereas the percentage of
single-touches is 66% in case of the SPECweb96 trace.
Due to this decrease in the percentage of single-touch
references we expect to see a lower improvement for
this benchmark than that of SPECweb96.

Data in Table 3 is obtained by repeating the pre-
vious experiment with the TPC-C benchmark trace.
This trace is similar to SPECweb96 in terms of the
number of references. The percentage of single-touches
in this trace (27%) is much lower than the SPECweb96
trace. We can see that the probability of obtaining a
single-touch for every reference (0.59) is lower than the
previous two cases. Since the TPC-C benchmark has

| S.No | Behavior | Result]
1 Total number of times a line was | 553929
evicted from the cache
2 Average age from last touch of | 228381

lines evicted by LRU
3 Probability of single-touches for 0.59
every eviction

4 No. of chances of removing a
single-touch when LRU did not

176117

5 Avg. no. of 1-touch requests 1.12
present for every possible 1-touch
eviction

6 How many times LRU evicted 1- | 152802
touches

7 Avg. age of 1-touches when re- | 254297

moved by LRU

Table 3. Characterization of TPC-C benchmark.

a very high locality of references, this workload might
not suite the STAR algorithm proposed in this paper.
This in fact is the reason for using this workload as the
third test case. This workload would give the worst
case behavior of the STAR algorithm.

From the above analysis, we found that there is
definitely adequate room for improvement by exploit-
ing single-touch reference behavior of network inten-
sive workloads. This improvement can be obtained in
two different ways. One way is by reducing the cy-
cles wasted in keeping an invalid line in the cache; a
single-touch is equivalent to an invalid line after the
first touch, which might have replaced a line that is
to be accessed again. The second way we can improve
the cache performance is by reducing the number of
inefficient evictions made by LRU. Every time a single-
touch line is not evicted, another line which might be
referenced again is evicted displaying the inefficiency of
the LRU scheme.

3. The STAR Algorithm

The main idea of the STAR algorithm is to identify
the single-touch references and evict them as early as
possible making room for other cache lines that will
probably be used more frequently. In addition, all the
advantages of the LRU scheme are still retained by the
STAR algorithm.

The STAR replacement policy tries to replace single-
touch references from the cache by predicting the lines
that are not likely to be referenced again. Unlike LRU
and LFU, the STAR scheme uses the hit frequency
information along with the age information for mak-
ing predictions. In case of LFU replacement policy

only the frequency information is used, while LRU
uses just the age information. By using a combination
of the frequency and age information STAR identifies
the single-touch references for making evictions, and is
thus more effective and efficient than the LFU or LRU
schemes. Furthermore, unlike other related schemes we
keep track of only single-touches and one bit is enough
to differentiate between a line touched once and more
than once. Thus, the hardware and logic requirements
of STAR are minimal.

3.1. Algorithm Description

The goal of the proposed scheme is to predict single-
touch references, i.e., to detect the cache lines which are
accessed once and are evicted before any additional ref-
erences. There might be cases when these predictions
are wrong. Thus, it may be possible to get a good per-
centage of correct predictions but no performance gain
if the improvement gets nullified by the losses due to
incorrect predictions. Detection of single-touch refer-
ences can be done by having a counter for the number
of hits to every line in the cache. A single bit denoting
one reference or more than one reference would suffice
the purpose. However, some lines that are identified
as single-touch references may stay dormant for some-
time before getting a bunch of hits. Ideally, these lines
should not be detected as single touch references. Here
we need to impose a certain time-period before consid-
ering a line as a single-touch candidate. Otherwise all
lines that are fetched very recently become candidates
for single-touches, which is undesirable. The waiting
period after which a line is considered for a single-
touch marking becomes an important tradeoff parame-
ter. The longer we wait, the closer we get towards the
LRU scheme. If we do not wait long enough, we end up
making a lot of mispredictions about single-touch lines.
For deciding this tradeoff factor we introduce a param-
eter called the maturity age. The term maturity age is
defined as the age (in terms of the number of references
to the cache) after which a line can be identified as a
single-touch line if it has only one reference. In other
words, once a line is brought in, it is not immediately
checked as a possible candidate for single-touch refer-
ence during subsequent references. Once it “ages”, it is
then checked to detect if it is a single-touch line. Thus
a line that is brought in recently is not mistaken as a
single-touch line. The maturity age for cache lines is a
variable that depends on the application environment
and the workload. We have analyzed a wide range of
parameter values for the maturity age and some infer-
ences are derived in the next section.

The flow chart for the STAR algorithm is shown in
Figure 1. In the chart M refers to the maturity age.

For each Block B

/
Victim=B

8 M = B. Maturity
I Found = True

L |

Fdse%
False @ True
Y Y

Use LRU tofind Victim Replace Block B

Figure 1. Flow Chart for STAR Algorithm

The algorithm looks for an older single-touch line until
it reaches the last line in the set. At this point, “Found”
is checked to see if there is at least one single-touch
reference found in the set for eviction. If a single-touch
reference does not exist, LRU algorithm is used to find
a candidate for eviction. Then the oldest block in the
cache will be replaced irrespective of the frequency of
hits of the lines. Otherwise the oldest single-touch line
is replaced by the eviction algorithm.

STAR Replacement Module
maturity = 4
Found Victim = False
for each block in the set
if no. of hits = 1 and Age > maturity
Victim Line = Block Number;
maturity = Block Age;
Found Victim = True;
if !(Found Victim)
Victim Line = Line with Maximum Age;

The formal module for STAR algorithm is shown in
the above box. The maturity age is initialized to 4,
which sets the threshold for the age of lines that are
going to be considered for eviction. The value of § is a
configurable variable and can be set on the basis of the
workload characteristics. The Found Victim variable
is used to determine if a block is found for eviction or
not. Two criteria are used to decide whether a line is
a candidate for eviction. The first one makes sure that
there is only one hit to the line being considered. The
second criteria used for choosing lines to be evicted is
the age of the lines. It is made sure that among multiple
single-touch lines, the one with the maximum age is

evicted. If no lines are found that satisfy this criteria
then a line which has the maximum age is evicted. This
process will ensure that the performance is always at
least as good as the pseudo-LRU scheme.

3.2. Preliminary analysis of STAR

Performance of the STAR algorithm was analyzed
over the three different workloads discussed earlier —
SPECweb96, SPECweb99, TPC-C. The results ob-
tained for the STAR algorithm from these experiments
are discussed in this subsection.

| S.No | Behavior

1 Total number of times a line was
evicted from the cache

2 Probability of single-touches for | 0.91
every eviction

| Result |
595517

3 No. times STAR predictions are | 105035
correct

4 Avg. no. of cycles gained for pre- | 119709
diction

5 No. of times STAR predictions | 3675
are wrong

6 Avg. frequency of wrongly pre- | 8.16
dicted lines

7 Avg. age of lines evicted after a
miss-prediction

93839

Table 4. Performance of STAR over SPECweb96
benchmark

Table 4 shows data obtained for the SPECweb96
trace. One of the interesting observations from this
data is that a high number of the predictions (96%)
(rows 3, 5) made by STAR were correct. This means
that whenever STAR is removing a line, LRU is also
removing that line before it was referenced again. How-
ever, LRU takes much longer time before evicting the
line. STAR evicts these lines much earlier by pre-
dicting that these lines would be removed by LRU af-
ter a single-touch only. Another inference is that the
STAR replacement policy has an opportunity of re-
moving 18% (rows 3/1) of single-touches, and for every
correct prediction, LRU is waiting for a further 119K
(row 4) references before removing the line from the
cache. This averaged value gives an indication of the
time wasted by LRU before evicting a single-touch line.
From the above analysis we can see that STAR has a
large potential for improvement over LRU in the Inter-
net server environment of which SPECweb96 is a good
representation.

Table 5 shows the results obtained from the analysis

| S.No | Behavior

1 Total number of
times a line was
evicted from the
cache

2 No. times STAR
predictions are cor-
rect

3 Avg. mno. of cy-
cles gained for pre-
diction

4 No. of times STAR 6425
predictions are
wrong

5 Avg. frequency of 6.6 6.59
wrongly predicted
lines

6 Avg. age of lines
evicted after a miss-
prediction

[SPECweb99 | TPC-C |
197551 | 553929

36032 89639

137412 93488

18900

226441 71748

Table 5. Performance of STAR over SPECweb99, TPC-
C benchmarks

with the SPECweb99 and TPC-C benchmark traces.
In case of SPECweb96 which is a favorable workload
for the STAR algorithm, we see that STAR improves
performance by removing invalid lines faster than the
traditional eviction schemes. We have seen that both
SPECweb99 and TPC-C have almost similar behavior
when tested against LRU. The percentage of single-
touches is almost equal for both the workloads. How-
ever for SPECweb99 the data here shows that there are
a lot lesser number of predictions made, whereas for
TPC-C the data shows higher number of predictions,
with equally high number of incorrect predictions. The
proportion of incorrect predictions for the SPECweb99
trace is very low. This behavior indicates that, even
with similar types of workloads, the eviction process is
going wrong in both the cases. We can improve the per-
formance of SPECweb99 case by increasing the num-
ber of predictions made by STAR, which can be done
by decreasing the maturity age. This would increase
the number of predictions made. Since the percent-
age of miss-predictions is very low this change in the
maturity age parameter would not increase the miss-
predictions by much. In case of TPC-C, we have to in-
crease the maturity age since STAR is making a lot of
incorrect predictions while evicting lines. This would
allow STAR enough time before detecting the single-
touch references. This would decrease the number of
cycles wasted for every miss-prediction.

The loss due to miss-predictions done by STAR is
also very low compared to the cycles lost due to the
miss-predictions of LRU, shown in rows 5 and 3, re-
spectively. Since the number of miss-predictions are
relatively low, the average number of cycles lost due to
all the miss-predictions (row 6) will not be comparable
to the cycles gained by the correct predictions (row 3).

4. Performance Evaluation

In this section, we present our evaluation method-
ology for STAR and discuss its performance benefits
based on results obtained from an extensive set of sim-
ulation runs.

4.1. Evaluation Methodology

We modeled our STAR replacement scheme us-
ing a cache hierarchy simulation framework, called
CacheFlow2. This framework was originally developed
in the Microprocessor Research Laboratory at Intel
Corporation. Some details of the trace-driven method-
ology and cache hierarchy models used here are de-
scribed in [5]. For comparison purposes, a pseudo-LRU
[4] scheme was also modeled. The pseudo-LRU scheme
is a simplified implementation of the LRU replacement
policy. Pseudo-LRU uses a finite number of bits to
store the recent references to a block. An optimal LRU
scheme was also modeled for our study, which assumes
infinite buffer memory for keeping track of all the ref-
erences made to a cache block present in a set.

The simulation model takes traces in the form of
load and store references. Every reference has three
fields similar to the DinerolII trace format [15]. These
traces were extracted from benchmark traces collected
on commercial systems at Intel Corporation. The pro-
posed scheme was evaluated for three different commer-
cial workloads: SPECweb96, SPECweb99 and TPC-C.
The simulation results and analyses are covered in the
following subsection.

In the experiments, a unified, 32KB, direct-mapped
L1 cache was used. The L2 cache configuration was
1MB, 8-way set-associative with 64B line size, unless
otherwise specified.

4.2. Results and Analysis

Figure 2 shows the percentage of improvement in
the cache miss ratio obtained by using STAR algorithm
with respect to the pseudo-LRU scheme for the three
types of commercial workloads. The improvement is
neither uniform nor constant because of the access be-
havior of the different workloads. SPECweb96 shows
a high degree of improvement especially for smaller

20.00%

18.00% ——SPECweb96
8- SPECweb99

—4—TPCC
16.00%

LRU

3 14.00%

12.00%

10.00%

8.00%

6.00%

Improvement in Miss Ratio over p:

4.00%

0.00%

512KB 1MB 2MB amB
L2 Cache Size

Figure 2. Improvement obtained by STAR for the differ-
ent benchmarks.

caches. The improvement obtained for the TPC-C
workload is not very high but is still noticeable. The
small improvement factor in TPC-C is attributed to
the low percentage of single touches in the benchmark
due to the high locality observed in database queries.
Overall it can be inferred that the STAR scheme does
not under-perform for any of the workloads and gives
a good improvement for workloads with low temporal
locality.

115.00%

wPseudo LRU
BLRU
OSTAR

110.00%

105.00%

100.00%

95.00%

20.00%

Normalized Miss Ratio

85.00%

80.00%

75.00%

70.00%

512k8 MB MB amB aMB
L2-Cache Size

Figure 3. Improvement obtained by STAR for the
SPECweb96 benchmark.

Figure 3 shows the improvement obtained over the
normalized miss ratio for different cache sizes with the
SPECweb96 benchmark trace. Here, the miss ratio is
normalized with respect to the miss ratio of pseudo-
LRU. Performance improvement of about 15%-20% was
obtained for different cache sizes. An important ob-
servation is that the scheme is sensitive to the cache
size. The improvement in performance increases with

increase in cache size, which follows from the fact that
increasing the cache size increases the probability of a
line being a single touch. This increase in probabil-
ity will reduce the miss-predictions made by the STAR
scheme, thereby improving the performance.

Similarly further analysis are done to find an opti-
mal value of the maturity age for the SPECweb and
TPC-C workloads. It is assumed that the scheme per-
forms better for values close to the degree of associa-
tivity. When the maturity age is equal to the degree
of associativity, the scheme will have the same effect as
the pseudo-LRU algorithm used widely in most cache
systems. A high value of maturity age is required to
obtain better performance in SPECweb99 and TPC-
C because of the low percentage of single-touches in
these benchmarks. The high maturity age will allow
the STAR scheme more time before making any evic-
tions and hence reduces the number of miss-evictions.

Figure 4 shows the sensitivity of the scheme to the
changes in maturity age. The figure shows the improve-
ment obtained by STAR scheme in miss ratio with re-
spect to the pseudo-LRU scheme for a range of matu-
rity ages (0-7). The cache size is IMB, 8- way associa-
tive. The maximum maturity age is 7 at which point
the scheme behaves like the pseudo-LRU scheme.

350%

[—— SPECWengd —k=TPCC

3.00%
250%
200%

1.50%

Improvement over P-LRU
g

2

0.00%
0 1 2 3 4 5 6
-050%

1.00%

Workload Parameter

Figure 4. Sensitivity of Maturity age to the SPECweb99
and TPC-C traces.

Figures 4 and 5 indicate that the sensitivity of ma-
turity age is different for different workloads. In case of
the SPECweb99 and TPC-C benchmarks a high value
is needed for the maturity. But for the SPECweb96
benchmark where the percentage of single-touches is
much higher, the lowest possible value for maturity
age gives the best performance. We can see that a
maturity age value of 0 gives the best improvement for
SPECweb96 whereas a value of 6 gives the best perfor-
mance for the TPC-C and SPECweb99 workloads. Due
to the high amount of single-touch requests present in

the workload, low maturity age removes as many of the
single-touches aspossible.

19.00%

tes% —a— SPECweb%5

18.00%

& 1750%
]
=
S 1700%
£ 1650%
5 16.00%
H
2 1550%
£

15.00%

1450%

14.00%

Maturity Age

Figure 5. Sensitivity of maturity age to the SPECweb96
benchmark trace.

In case of the TPCC and SPECweb99 benchmark,
the locality of reference is relatively high. Therefore
there are lesser single-touch accesses. So an increased
maturity value gives better performance for these work-
loads.

In Figure 6, we show the sensitivity of the STAR
scheme with respect to the cache associativity. We in-
crease the degree of associativity of the cache, keeping
the size constant, from 4-way to 16-way. The graph
shows absolute miss ratio normalized with respect to
the miss ratio of Pseudo-LRU scheme for the 4-way set
associative case. It is observed that the improvement
obtained over the different degrees of associativity in-
creases as we increase the associativity. This is due
to the increased probability of finding a single-touch
line. Thus the performance of the STAR policy is im-
proved because of the reduction in the number of miss-
predictions.

105.00%

BPLRU

10000% OSTAR

95.00%

%0.00%

85.00%

Normalized Miss Ratio

£0.00%

75.00%

70.00%

Degree of associativity

Figure 6. Sensitivity of STAR to Cache Associativity.

The STAR scheme was also evaluated to study the
behavior with increasing line size. Figure 7 shows the
behavior of STAR for changing line size. We can see
that the improvement is almost constant with the in-
crease in line size. This is because changing the line
size changes the access behavior. However, it does not
change the time for which the line stays in the cache.

105.00%
BPLRU BLRU OSTAR
100.00%
95.00%

90.00%

85.00%

Normalized Miss Ratio

80.00%

75.00%

70.00%

£l 64 128
L2 Cache Line Size (Bytes)

Figure 7. Sensitivity of STAR to Cache Line Size.

Overall, with the selection of an appropriate matu-
rity age, which is based on the workload characteris-
tics and the cache configuration, the STAR algorithm
shows significant performance improvement for appli-
cations that have a high degree of single-touch refer-
ences. For other types of workload, although it may
not provide any significant performance improvement,
it never degrades the performance.

5. Conclusions

In this paper, we have proposed a new cache replace-
ment policy, called STAR, which improves the cache
performance by about 20% for workloads with a high
degree of network activity. STAR algorithm is very
suitable for workloads that have a large proportion of
single touch references. It tries to identify and evict
these lines from the cache as early as possible, thus re-
ducing the cache pollution. The implementation over-
head of the STAR algorithm is very minimal. For ap-
plications that do not have much of single-touch ref-
erences, STAR does not degrade the performance and
can be turned off if desired. Overall, the STAR algo-
rithm will be a very suitable candidate for improving
cache performance of the Internet servers.

References

[1] “An explanation of the SPECweb96 bench-
mark,” available online on the SPEC website at
http://www.specbench.org/osg/web96/webpaper.html

[2] A. Agarwal, J. Hennessey, M. Horowitz, “Column-
associative caches : a technique for reducing the miss-
rate of direct-mapped caches,” International Sympo-
sium on Computer Architecture, 1993, pp. 179-190.

[3] L. Barroso, K. Gharachorloo and E. Bugnion, “Mem-
ory System Characterization of Commercial Work-
loads”, International Symposium on Computer Archi-
tecture, pp. 3-14, June 1998.

[4] J. Hennessey and D. Patterson, Computer Architec-
ture: A Quantitative Approach, Morgan Kaufmann,
1996.

[5] R. Iyer, “Exploring the Cache Design Space for Web
Servers”, International Parallel and Distributed Pro-
cessing Symposium, Apr. 2001.

[6] R.Iyer, G.Janakiraman, R. Kumar and L. Bhuyan, “A
Trace-driven Analysis of Sharing Behavior in TPC-C”,
CAECW-2, 1999.

[7] L. John, T. Li and A. Subramanian, “Annex Cache: A
Cache Assist to Implement Selective Caching,” Journal
of Microprocessors and Microsystems, Vol.23, Issue 8-
9, pages 537-551, Elsevier Science, Dec.1999.

[8] N.P.Jouppi, “Improving direct-mapped cache permor-
mance by the addition of a small fully associative cache
and buffers,” Proceedings of the 17th International
Symposium on Computer Architecture. 1990 pp 364-
373.

[9] K. Kant, R. Iyer, and P. Mohapatra, “Architectural
Impact of Secure Socket Layer on Internet Servers,”
International Conference on Computer Design (ICCD
2000), Sept 2000.

[10] K. Kant and Y. Won, “Server Capacity Planning for
Web Traffic Workload,” IEEE trans. on knowledge and
data engineering, Oct 1999, pp 731-747.

[11] D. Lee, J. Choi, S. H. Noh, S. Lyul Min, Y. Cho and C.
Sang Kim, “On the Existence of a Spectrum of Policies
that Subsumes the LRU and LFU Policies,” Proceed-
ings of the 1999 ACM SIGMETRICS Conference, pp.
134-143, Atlanta, GA, May 1-4, 1999.

[12] P. Mohapatra, H. Thanthry and K. Kant, “Charac-
terization of Bus Transactions for SPECweb96 Bench-
mark,” 2nd Workshop on Workload Characterization
(WWC), Oct 1999.

[13] “SPECweb99 Design Document,” avail-
able online on the SPEC website at
http://www.specbench.org/osg/web99/docs/whitepa-
per.html

[14] Transaction Processing Performance Council, TPC
BENCHMARK - C Standard Specification, Revision
3.5, http://www.tpc.org/benchmark specifications/
TPC_C/tpc-c35.pdf. Accessed: Aug. 10, 2000.

[15] Dinero Cache
http://www.cs.wisc.edu/ larus/warts.html.

Simulator,

