Performance Study of RAID-5 Disk Arrays with Data and Parity Cache

Sunil K. Mishra and Prasant Mohapatra
Department of Electrical and Computer Engineering
lowa State University, Ames, lowa 50011
Email: {smishra, prasant}@iastate.edu

Abstract

Disk array architectures such as RAID-5 have be-
come an acceptable way for designing highly reliable
and high-performance storage systems. However, one
major drawback of a RAID-5 disk array system is that
an update to a data block may involve four disk ac-
cesses. Such a high overhead is especially undesirable
for workloads with high update rate as in transaction
processing. In this paper, we present a new scheme for
improving the write performance of disk arrays using
controller cache to store data as well as parity infor-
mation. We have developed a trace-driven model to
stmulate cached disk arrays for transaction processing
environment. We have studied the effect of caching
parity information at the controller level along with
caching data. The simulation results show a consid-
erable improvement in response time of data and par-
ity cached disk array over disk arrays with only data
caching. The improvement in response time for disk
array employing parity cache is about 10%-20% for the
parameters used in our study.

Key Words: Data Caching, Disk Arrays, Parity
Caching, RAID-5, Response Time.

1 Introduction

In the last few years, the performance of processors
has been growing steadily, and with multiprocessor or-
ganizations, the processing power of computer system
has been increasing at a rapid pace. However, the In-
put/Output (I/0O) performance has not kept pace with
the gains in the processing power. The large dispar-
ity between the I/O subsystem’s performance and the
processing power is becoming a bottleneck in several
computational problems. To achieve high I/O capac-
ity and speed, disk array architectures have been pro-
posed. Disk arrays of small diameter disks often have
substantial cost, power, and performance advantages
over large drives. These disk arrays have low cost
and use simple encoding scheme to provide high data
reliability while preserving most of the performance
advantages. For these reasons, redundant disk arrays,
also known as Redundant Array of Inexpensive Disks

(RAID), are strong candidates for nearly all on-line
secondary storage systems [1].

Parity encoding is used as a means for data encod-
ing and storing redundant information in RAID level
3 through 5 [1]. Implementation of parity encoding is
simple and cost-effective. RAID-5 disk arrays exploit
the low cost parity encoding to provide high data re-
liability. Data is block interleaved over all disks so
that large files can be fetched with high bandwidth.
The parity information is also rotated to avoid hot
spot for random write requests. However, a data up-
date needs four disk accesses for updating data. A
small write needs preread of the old value of the user’s
data, overwriting this with new user’s data, preread of
the old value of the corresponding parity, then over-
writing this parity block with the updated parity. In
contrast, mirrored disks simply write the user’s data
to the two disks, and requires two disk accesses, while
non-redundant disks need only one disk access. Such a
high overhead in writing a data block in a RAID-5 or-
ganization is particularly unacceptable for workloads
that require several update operations.

Several schemes have been proposed recently to re-
duce the write overhead of RAID-5 disk arrays [2]-
[12]. One of the ways to reduce this write overhead of
RAID-5 is to cache or buffer data blocks at the con-
troller level cache [3, 4]. Among other schemes, parity
logging [6], floating parity [7], informed prefetching
and caching [8] have shown to provide some degree of
improvement in reducing the write with modest over-
head.

In this paper, we propose a new scheme to store
user’s data and parity information in the cache. A
part of cache is used to store parity information and
is called the parity cache. Rest of the controller cache
memory is used for caching user’s data blocks, and is
called data cache. The use of parity cache reduces
actual disk write latency when the cached data is
destaged. With only data caching, a write operation is
done in the cache if the block is present or free cache
space is available. But, when the cache need to be
destaged to accommodate a new block, four disk ac-
cesses are still required. Use of parity cache reduces
this latency as preread of old parity and writing of

new parity is delayed. This approach improves the
performance in an environment that experiences an
increase in disk accesses for a transient duration, such
as during the peak hours of transaction processing.
Read and write caches are not implemented separately
in our study, but are implemented as a unified data
cache. Extensive study on read and write caching has
been done by Menon [10]. Here, we intend to study
the effect of parity cache on the response time for a
write operation. We have developed a trace-driven
simulation model to study the effect of the use of par-
ity cache. The simulation result shows considerable
improvement in performance as compared to the data
caching (read and write caching) schemes.

The rest of the paper is organized as follows. In
Section 2, we review some of the existing performance
improvement schemes. Section 3 describes the simu-
lation model and underlying the assumptions. In Sec-
tion 4, we present the trace driven simulation results
followed by conclusions in Section 5.

2 Background

In this section, we discuss the data and parity
placement schemes followed by the performance im-
provement techniques proposed for the RAID-5 archi-
tecture.

2.1 Data and Parity Placement

The RAID-5 array consists of N identical disks,
where data blocks are interleaved across the NV disks.
A set of blocks on each disk with the same location
constitutes a stripe. Each stripe has a parity block,
which is the XOR of all of the other data blocks in
the same stripe as shown in Fig. 1. The stripe width,
W5, defined as the number of data blocks in a stripe,
is N — 1. If any one disk fails, the array is still opera-
tional, since the failed data can be restored by XOR-
ing data from all of the other disks. The overhead for
the reliability is that each write operation requires up-
dating of the desired data block as well as the parity
block.

Consider a write request that updates less than
N — 1 disks in a stripe. There are two procedures
for calculating the new parity block for this stripe.
The first procedure reads the old data blocks from the
disks being updated and XORs them with the old par-
ity block for that stripe. The result is the new parity
block which is written on the parity disk. This is typ-
ically referred to as the “read-update procedure” for
a write request. The second procedure reads the data
blocks from the other disks from the same stripe that
are not being updated and XORs them with the new
data blocks that are being written. Chen and Towsley
[16] have shown that the first procedure performs the

DISK 1 DISK 2 DISK 3 DISK 4
BLOCK
D, Dy Dy Py 1
2
Dy Dy Pz Dy
3
D3 P3 D3 D3
4
Py Dy Dy Dy
5
D5 Ds Ds Ps
D D Pg D 6
6 6 6
7
b7 Py b7 D7
8
Pg Dg Dg Dg
RAID Level 5

LEFT-SYMMETRIC PARITY

Figure 1: RAID-5 block interleaving and left-
symmetric parity placement. Shaded blocks indicate
the parity blocks for that stripe.

best for the transaction type workload that is consid-
ered in this paper; hence, we consider only the first
procedure in this paper.

The major performance bottleneck of RAID-5 disk
arrays is the high overhead for small writes. Each
small write requires four separate disk I/Os, two to
read the old data and old parity, and two to write the
new data and new parity. These performance penalty
of RAID-5 disk arrays relative to non-redundant and
mirrored disk arrays are prohibitive in applications
such as on-line transaction processing (OLTP) that
needs many small writes. In OLTP workload, the re-
quest file/record size is usually small and limited to
a few blocks only, where each block consists of few
contiguous sectors.

2.2 Caching Schemes

Buffering and caching, which are commonly used in
I/0 system to reduce latency, can also be used in disk
arrays. Write caching intercepts a user’s write before
the write is done on the disk, and the write operation is
done on the cache. With write caching several blocks
can be written sequentially, thereby reducing several
small writes to a full stripe write. To avoid data loss
under system failure, non-volatile cache memory is
necessary to prevent the loss of buffered data. Data
caching further exploits the opportunity to overwrite
previous updates. Under high workload, the buffer
space gets full quickly needing frequent destage of
buffered data. In this case, the response time is the
same as a non-cached disk array and is still four times
worse than the non-redundant disk array.

Read caching is widely used in the disk drives, by
using read ahead policy, to improve the response and

throughput when reading data. In a RAID-5 disk ar-
ray, read caching can be used with the added advan-
tage that preread of old data, required for generating
new parity image, may be avoided [10].

As parity is computed over many logical blocks,
parity caching exploits both temporal and spatial lo-
cality. By caching parity information, the parity up-
date request can be deferred and sometimes preread
of old parity can be avoided. In case of a forked re-
quest, without any cache, the parity update request is
generated after the last forked request is served. This
is done to reduce the workload of the disk contain-
ing the parity block. So, parity image for each of the
forked requests has to be stored at the controller level.
However, if parity cache is present, all the forked re-
quests can be served separately (using any scheduling
algorithm) and the parity image can be maintained in
the parity cache. This results in reduced buffer space
required at the controller level as only one block is
required for the entire stripe. As in RAID-5, a disk
array having G disks per parity string with N blocks
per disk contains N/G blocks of parity information,
parity cache size should be about 1/G times the size
of write cache. Use of parity cache reduces the data
cache size, which may increase data miss ratio. How-
ever, the use of a small amount of parity cache shows
a considerable improvement in the response time as
shown in this work.

2.2.1 Caching Location and Size

Among important parameters for cached disk ar-
rays are the size of cache, cache block size, and its
location. All modern disk drives use cache to improve
throughput. In RAID architecture, the controllers are
connected to a number of disks. So caching in the
controller would help reduce the response time and
improve the throughput. Caching at controller level
has many advantages - cache coherency is achieved
since the controller sees the I/O streams from all hosts
and since data from multiple hosts resides in the con-
troller cache. The cache pollution at the controller
level is minimized as only the more frequently used
portions of the prefetched data from each drive reside
in the controller cache. Again, the cache can be effi-
ciently divided among different disk drives based on
their utilization and workload pattern.

In general, the performance of a disk array im-
proves with the increase in cache size. However, the
increase in performance is not linear. Finding a proper
size of cache is important because of its higher cost as
compared to the magnetic storage. To achieve an op-
timum cost-to-performance ratio, cache size should be
0.1 to 0.3 percent of the total disk storage [3]. A de-
tailed study of cache size and block size, fetch block
size has been done by Reddy in [2].

2.2.2 Caching and Replacement Policies

Cache write policies and cache replacement poli-
cies are two significant factors that affect the perfor-
mance of a cache-based organization. Two different
widely used write policies are write-back and write-
through. Other variants of these policies, write-behind
and write-free policy, are discussed in [5]. Use of write-
back reduces the number of disk writes exploiting the
temporal locality of data access pattern and is widely
used in all types of cache.

When a cache is full, to accommodate new data,
the old data in the cache need to be destaged (the
term flushed is also widely used). Thus selection of
a suitable destaging scheme is crucial when the type
workload has a wide fluctuation in its access pattern.
The widely employed schemes are random replacement
(RR), least recently used (LRU), most recently used
(MRU), most frequently used (MFU) and least fre-
quently used (LFU). The use of different replacement
algorithms is studied in [3, 5, 11]. The most widely
used scheme, LRU replacement scheme, has been used
in the study of cached RAID controller by Karedla et.
al [3] and by Menon [10]. As the LRU scheme has
been shown to demonstrate better performance than
the other schemes, it has been used in our simulation
study.

2.3 Parity Logging

Stodolsky et. al [6] have proposed parity logging to
reduce the update penalty of small writes in RAID-5
disk arrays. This scheme delays the preread of old par-
ity and write of new parity to the disks. Instead, an
parity update image, which is the difference between
the old and new parity, is temporarily stored in a log
manner on a disk. Delaying the actual parity update
allows the parity to be grouped together in large con-
tiguous blocks that can be updated more efficiently.
When the log disk fills up, parity update image is read
to memory in a large sequential read along with the
old parity information from different disks, and the
new parity is generated. Then the new parity is writ-
ten in a large sequential write to disk. Parity logging
reduces the small write overhead from four accesses to
a little more than two accesses, which is nearly same
as in mirrored disk arrays. The overhead in this case is
an extra log disk and the additional memory required
while generating new parity. Even though Parity Log-
ging provides sufficient savings in number of disk I/Os
for a disk write, the update of data still needs two disk
accesses. This access time may result in a long wait
period for many requests, during the high I/O arrival
rate for a transient time.

2.4 Floating Parity

Floating parity scheme reduces small write update
penalty to a little more than single disk access time on
average [7]. It is a greedy approach of writing parity
to the disks. Floating parity scheme clusters parity
stripes into cylinders; each containing a track of free
blocks. Whenever a parity block needs to be updated,
the new parity block can be written on the rotation-
ally nearest, unallocated block following the old parity
block. To efficiently implement floating parity, how-
ever, directories for the locations of unallocated blocks
and parity blocks must be stored. Also, it needs more
free space in each disks, and thus has high overhead
cost.

2.5 Informed Prefetching and Caching

The improvement in response time as obtained by
caching is solely dependent on the cache hit ratio. The
use of a large cache does not result in proportionate
increase in the hit ratio as the file size increases. A
new technique, informed prefetching and caching, has
been investigated by Patterson et. al in [8]. In any
given application, the access pattern is predictable;
thus, it is possible to inform the file system about the
access pattern based on the predictability of an appli-
cation. Each application gives a hint as to their future
demands on the file system. Although this scheme en-
hances the performance, it is not always possible and
convenient to predict the future demand on a file sys-
tem.

3 Caching Parity

Parity cache can be used in conjunction with the
data cache to reduce the number of disk accesses re-
quired for a write operation. In general, if there is no
data cache at the controller level, use of parity cache
can reduce the number of disk accesses by 1 to 2 for
each write operation. However, the average response
time is still governed by the data update time which
needs two disk I/Os.

For a non-cached RAID-5 disk, a data block read
time is (S¢+ R)+(2R/ D) where Sy is the seek time for
disk containing data, R is the average rotational delay,
D is the block size in sectors [6]. The term (Sq + R)
corresponds to the time taken until the head is over
the requested data sector. Average rotational delay
can be assumed to be half the revolution time. A data
write operation is done immediately following a data
read operation. Thus a data write operation does not
have any seek time. The wait period is the rotational
delay until the data sector is under the read/write

head which is (2R — 2R/ D). The block read or write

time corresponding to actual block transfer time is
2R/D. So, a write operation will take (Sg + R) +
(2R/D) + (2R — 2R/ D) + 2R/ D disk seconds, which
is equal to Sz + (3 + 2/D)R seconds.

A parity update request is generated only after the
old data is read and parity image is generated. Par-
ity image is referred to as the XOR of olddata and
newdata. Assuming that the disk containing parity is
ready to serve the parity update request, and the time
taken to XOR the data and parity is negligible, parity
update time will be (Sg+ R) + (2R/D)+ (S, + R) +
(2R/D) + (2R — 2R/ D) + 2R/ D disk seconds, which
equals to Sg + Sp + (4 + 4/D)R seconds.

With only parity caching, the above expression re-
duces to Sq + (3R + 2R/ D) seconds, if there is a hit
in the parity cache or free blocks are available.

In RAID-5 architecture, the data is block-
interleaved. So any request for larger than a block size
is forked and sent to different array controllers. For
a write request, if the controllers are not using any
aggressive scheduling policy to synchronize all forked
write operations together, then each forked write re-
quest will generate a parity update request at a dif-
ferent time instant for the same parity block. This
increases the workload seen by the disk containing par-
ity, and the response time increases. This problem can
be obviated by the use of a suitable scheduling policy
in which all the forked requests are served at the same
time. A considerable computation and communication
is required at the controller level to implement an ef-
fective scheduling scheme. A simple solution to take
care of this scenario is to use parity cache at the con-
troller level. A part of the controller cache is set aside
for caching parity. Although, it results in a reduction
of data cache size and hence an increase in miss ratio,
there is a significant reduction in the response time of
a write request consisting of more than one block. Use
of parity cache is suggested for workload consisting of
write requests to more than one block. Furthermore,
the use of parity cache can sometimes eliminate the
read of the old parity.

4 Simulation Model

We have developed a detailed disk array simula-
tor to study the response time of cached RAID-5 disk
array under OLTP workload.

4.1 Model Assumptions

The trace driven simulator used to evaluate the
performance of the cached RAID-5 disk array is based
on the following assumptions.

e The disk array modeled is RAID-5 using left sym-
metric parity distribution [14], as it has shown to
have the best performance.

e The I/O arrival process to the disk array is as-
sumed Poisson. Furthermore, it is assumed that
requests are of OLTP type, where small amounts
of data are frequently accessed. The number of
data stripe units in an I/O request is less than
or equal to the number of data stripe units in a
stripe, Ws — 1. Such distribution can be modeled
using quasi-geometric distribution [16]. Let

n=1,

0-’
Pn — _(1_ -1
{ (1 - U)(l_pp)gl(lf)p)ws—u 2<n<W, -1

where P is the probability that number of data
stripe units requested is n, o is the probability
of single block access, and p is the parameter of
geometric distribution.

e The OLTP workload is predominantly read re-
quest, and the ratio of reads to writes ratio for
such systems is typically 2 or 3 to 1.

e I/O request are uniformly distributed over all
disks. With equal probability any disk in the ar-
ray can be the starting disk of a multiple stripe
unit request.

e Each controller can serve one disk request at any
time, and a disk can service only one request at
a time. Other requests wait and are served in
first-come first-served (FCFS) order.

e The controller cache is fully associative and uses
LRU replacement scheme.

e Once a disk request comes to the bottom of that
queue, it is served immediately, and if it is a write
operation, parity update is given highest priority
at the disk containing parity block. The write
synchronization model uses after read-out (AR)
policy described in [16].

e The parity update cannot preempt any other re-
quest being served. It must wait until that re-
quest being served is finished. The disk maintains
a separate high priority queue for parity updates.

4.2 Disk Array Simulator

The simulator has four main components: syn-
thetic trace generator, controller cache and queue han-
dler, disk queue handler, and a model of disk behavior.
Fig. 2 shows a schematic diagram of the cached con-
troller used in our simulator.

Synthetic Trace Generator: Because of the unavail-
ability of the actual traces for the OLTP workload, we

1/0 REQUESTS

PARITY DATA PARITY DATA

ue [HE e

— _‘l

Priority] ReaiWiite Priority

PARITY DATA

1 Read/W
fite
Disk Queve (] [DiskQueve Disk Queue] [DiskQueue

Figure 2: Cached Disk Array Model

use synthetic traces to evaluate our proposed scheme.
Synthetic traces have the flexibility that those can be
altered to emphasize on certain aspects, such as the
trace arrival rate.

The synthetic trace generator has been tailored to
generate traces as seen in OLTP environments. In
OLTP, the fetch size of typical requests are smaller
in size, typically limited to few blocks. Since RAID-
5 uses block interleaving, a request to more than a
block is forked to different disks in the logical parity
group. The simulator uses quasi-geometric distribu-
tion, as described earlier, to determine the fork-size
of a request. In OLTP, the hit ratio in the controller
cache is fairly high. Ramakrishnan et. al [13] have
shown from actual trace analysis that number of read
and write to a block in transaction processing is fairly
high, and the same block is accessed often within a
period of time. We have modeled this behavior to
generate synthetic traces. Trace generator randomly
(uniform disk access pattern) distributes the work-
load among all disks in the array, and the requests
are put in the controller queue. The input parame-
ters for trace generator that can be varied are number
of I/Os per second, read-to-write ratio, read-hit ratio,
and write-hit ratio. To model the effect of cache size,
the read-hit ratio and write-hit ratio can be varied in
proportion with the cache size.

Controller Queue and Cache Handler: This unit
serves the queued requests, maintains the cache co-
herency and acts as an interface between user requests
and disks. FIFO scheduling policy is used to serve the
queued requests and write-back policy, and LRU re-
placement scheme is used for write and parity caches.
Cache handler also marks blocks dirty or clean de-
pending on the status of the cache block, and main-
tains the cache coherency. For parity cache, along with
the flag for dirty/clean, another flag is used to repre-
sent whether the block is an old parity block or the

parity image. This flag is used to determine if preread
of old parity is required. When the cache becomes full,
the least recently used parity block is destaged, and
this request is queued in the disk I/O parity queue.

Disk Queue Handler: For a disk read, the queue
handler accesses the requested disk, and reads the
block. For a write request, it finds out where the parity
block is located. After the old data is read, if required,
two requests are generated - one data write request to
the same block, and another parity update request
which is sent to another controller. We have assumed
that all these controllers are connected through a bus
for parity image transfer, and there is no contention.
The parity image is updated by the cache handler if
the block is already present or the parity cache is not
full. Otherwise, it destages the bottom of the parity
cache (the LRU block). This destage request goes to
the disk parity queue. As described earlier, parity up-
date requests are given higher priority, and a separate
parity queue is maintained. Since disk preemption is
not allowed, a parity update request is serviced imme-
diately if the disk is free, else after the disk serves the
current request.

Disk Behavior Model: We have used the disk be-
havior model used in RAIDSIM, a disk array simulator
derived from the Sprite operating system disk array
driver [14].

The seek time is a function of track separation and
modeled as a polynomial equation [15],

. 0, if x =0,
seekTime(z) = { ar—14+bz—1)+¢, ifx>0
where z is the seek distance in cylinders and a,
b and ¢ are chosen to satisfy the single-cylinder-
seek-time, average-seek-time and max-stroke-seek-
time constraints. The parameters a, b and ¢ are ap-
proximately given by the following formulas [15]:

(—10minSeek + 15avgSeek — Smax Seek)

‘- (3v/numCyl)

b (TminSeek — 15avgSeek + 8maxSeek)
(3numCyl)

¢ = minSeek

The disk drives used in our simulator are IBM 0661
3.5” 320MB SCSI disk drive whose characteristics are
given below [6].

Geometry: 949 Cyl., 14 Tracks/Cyl., 48 Sectors/Track
Sector Size: 512 bytes

Revolution Time: 13.9 ms

Seek Time: 2.0 + 0.01 x dist + 0.46 x Vdist ms

Tack Skew: 4 sectors

Since the disk accesses are random, only the seek
time and actual block transfer time has been incorpo-
rated into our simulator. For rotational delay, uniform
distribution has been hypothesized. Head switch time
has not been incorporated for simplicity. The SCSI
bus, between disks and the controller, is not modeled
in our simulator. It is assumed that to avoid bus con-
tention, a controller connected to several disks can
issue an I/O request to one disk at a time. Only after
that request has been served, the controller can access
other disks.

For a cached controller, when the cache is empty,
all read accesses are served by the disks, which result
in higher transient response time. In our simulator,
we allow the the simulation to continue for a certain
amount of time, until the cache is nearly full, before
the response time is recorded to compute the average
response time.

5 Results and Discussions

The effect of write caching is simulated for com-
parison with parity caching while keeping the total
cache size constant. The simulation results show that
the parity caching has a better response time than the
RAID-5 disk array with only data caching. A small
amount of cache can be used for caching parity to
avoid reduction in hit ratio in the data cache.

For each simulation run, we have used 10,000 traces
after simulator initialization, and the result is aver-
aged over ten independent replicated results to achieve
high confidence interval. In our simulation we have
used the following data unless otherwise mentioned in
the figures.

Disk Array Size:

Work Load Parameters:
Single Block access Prob, ¢: 0.5
Geometric Dist. Parameter, p: 0.7

4x(8+1P)

Read ratio: 0.75
Write ratio: 0.25
Read-hit ratio: 0.5
Write-hit ratio: 0.9
block size: 4 (2KB)
I/Os per second: 400
Cache Parameters:
Block search time: 100 us
Sector read/write time: 100 ps

Since with only parity caching, the data blocks are
updated for every write (involving two disk I/0s), we
used data caching along with parity caching to inves-
tigate the gain in performance. Fig. 3 shows the av-
erage response time with respect to different 1/O ar-
rival rate for data cached and data with parity cached

0.055 T T T

T T
4*(8+1) Disk Array

Avg. Response Time ———>
o o o
o =3 =3 =3 o o
S o @ 1) = o
a @ & R & &

=3
o
~

0.015, 0 Write (5000) Cache 1

+ Write §4800) & Parity (200) Cache
0.01 . . | 1 f .

. .
[¢] 100 200 300 400 500 600 700 800 900 1000
|0s/Sec ———>

Figure 3: Average response time for disk array with
data cache, and data with parity cache.

0.026 4*(8+1P) Disk Array

0.025

Average Response Time
o © o ©

S o o o o

o R R R ®

S B B ® R

0.019.]

N
=1
S
<3

1000
5000 1500

Total Cache Size Parity Cache Size

Figure 4: Effect of different sizes of cache on response
time.

disk arrays. As the arrival rate increases, the response
time increases. At a higher arrival rate, the increase
in response time is significant as the waiting time in
the queue is no longer negligible. This can be seen in
Fig. 3 for I/O arrival rate of 600 I0s/sec or more. It
can be observed that the data and parity cached ar-
ray has about 10%-19% better response time than the
data cached array at an arrival rate between 500-1000
I0s/sec. At a lower arrival rate, the improvement in
response time is even higher.

In Fig. 4, we show the effect of different size of
cache on average response time. The total cache size
is kept constant while varying the parity cache size.
The size of cache used in the simulation is less than
what should be used in actual systems. Increasing
the cache size makes it difficult to run the simulation
within an acceptable time. However, the comparative
result presented here is fair for any cache size. It is
observed that, as the total cache size increases, the

response time does not improve proportionately. So,
increasing the cache size beyond a certain size does
not yield much improvement in response time. A small
size of parity cache helps in reducing the response time
by as much as 18% as demonstrated in Fig. 4. But,
as the parity cache size is increased, the write cache
size decreases and so does the hit ratio. Hence, the
response time increases gradually with higher parity
cache size. Hence, only a small size of parity cache
size should be devoted for caching parity.

0.045 T T

T T T T T T
4%(8+1) Disk Array
0.041 o g
0.035F~ . _ o B
Tk
/‘\ S ©)
{003 S B
2 o, °
£ 0025 T R
3 M ©
2 N
o ~
2 0.02F . ° g
2 <
['4 A
B EN
50.0157 ~_o© R
-
~._©
001 0 Data (5000) Cache * 7
>0
0.005 + Data (4800) & Parity (200) Cache A
. . .

0
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
Read Hit ratio --—>

Figure 5: Effect of read-hit ratio on response time.

0.035 T T T T T T T T T

=3

o

@
T
L

0.025 T (] il

Avg. Response Time ———>
/

o
o
N

b o Data (5000) Cache R~ g

x Data (4800) & Parity (200) Cache

0.015
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
Write Hit ratio ———>

Figure 6: Effect of write-hit ratio on response time.

The cached controller’s performance is mainly de-
pendent on the hit ratio. This is particularly true for
the case of read and write cache. In Fig. 5, we show
the effect of read hit ratio on the average response
time. With reduced hit ratios, the response time in-
creases considerably. The write-hit ratio is assumed
to be 0.90, and I/O arrival rate is kept fixed at 400
10s/sec. With read-hit ratio near zero, the response

time is fairly high. With read-hit ratio equals to one,
the response time reduces to nearly the access time of
cache. As the read I/O is predominant in this type
of workload (we have assumed read to write ratio of
3:1), with lower read-hit ratio, more blocks need to be
destaged, hence results in higher response time. Fig.
6 shows the effect of write-hit ratio. There is a signif-
icant reduction in response time with write-hit ratio
varying from 0 to 1.0. However, the read-hit ratio
plays an important role as any read miss results in
a disk access. As the performance degrades rapidly
with very low hit ratios, use of cached controller or
LRU scheme may not be effective in an environment
that does not have much locality of reference in the
access pattern.

6 Conclusions

We have presented a simulative study of RAID-
5 disk arrays with data caching and parity caching.
The results show that RAID-5 disk arrays with data
and parity caching have 10%-20% better response time
than RAID-5 with data cache alone. The hit ratio is
an important deciding factor for the use of cache in
RAID-5 disk array for different workload environment.
Our study confirms this claim. Our future work is
involved with the investigation of the following issues.
The write-free schemes should be used for destaging
and different replacement policies should be employed
for different workloads. As our model uses unified read
and write caching, further investigation is required on
an efficient use of parity caching in conjunction with
separate read and write caching. Also many other
latency hiding techniques can be used in conjunction
with the cached RAID-5 disk arrays. Further study
is required to find an efficient way to combine these
techniques along with the caching schemes.

References

[1] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz,
and D. A. Patterson, “RAID: High-Performance,
Reliable Secondary Storage,” ACM Computing
Surveys, Vol. 26, No. 2, pp. 145-185, June 1994.

[2] A. L. N. Reddy, “A Study of I/O System Orga-
nization,” Proc. of the 19th Annual International
Symposium on Computer Architecture, Vol. 20,
No. 2, pp. 308-317, May 1992.

[3] R. Karedla, J. S. Love, and B. G. Wherry,
“Caching strategy to improve Disk System Per-
formance,” IEEE Computer Magazine, pp. 38-46,
March 1994.

[4] J. Menon, and D. Mattson, “Performance of
Disk Arrays in Transaction Processing Environ-

ments,” International Conference on Distributed
Computer Systems, pp. 302-309, 1992.

[5] D. Kotz, and C. S. Ellis, “Caching and Write-
back policies in Parallel File Systems,” Journal
of Parallel and Distributed Computing, pp. 140-
145, 1993.

[6] D. Stodolsky, G. Gibson, and M. Holland, “Parity
Logging Overcoming the Small Write Problem in
Redundant Disk Arrays,” Proc. of the 20th An-
nual International Symposium on Computer Ar-
chitecture, pp. 64-75, 1993.

[7] J. Menon, J. Roche, and J. Kasson, “Floating
Parity and Data Disk Arrays,” Journal of Parallel
and Distributed Computing, pp. 129-139, 1993.

[8] R.H. Patterson, G.A. Gibson, E. Ginting, D.
Stodolsky, and J. Zelenka, “Informed Prefetching
and Caching,” Symposium on Operating System
Principles, pp. , Dec. 1995.

[9] P. S. Yu, K. Wu, and A. Dan, “Dynamic Par-
ity Grouping for Improved Write Performance of
RAID-5 Disk Arrays,” International Conference
on Parallel Processing, Vol. 2, pp. 193-196, 1994.

[10] J. Menon, “Performance of RAID5 Disk Arrays
with Read and Write Caching,” Distributed and
Parallel Databases, Vol. 2, pp. 261-293, 1994.

[11] J. T. Robinson, and M. V. Devarakonda, “Data
Cache Management Using Frequency-Based Re-
placement,” ACM Performance Evaluation Re-
view, Vol. 18, No. 1, pp. 134-142, 1990.

[12] K. Treiber and J. Menon, “Simulation Study
of Cached RAID5 Designs,” High Performance
Computer Architecture, pp. 186-197, 1995.

[13] K.K. Ramakrishnan, P. Biswas, and R. Karedla,
“Analysis of File I/O Tracesin Commercial Com-
puting Environments,” ACM Performance Eval-
uation Review, Vol. 20, No. 1, pp. 78-90, June
1992.

[14] E. K. Lee, and R. H. Katz, “Performance Con-
sequences of Parity Placement in Disk Arrays,”
ASPLOS-1V, pp. 190-199, 1991.

[15] E.K. Lee, and R.H. Katz, “An Analytic
Performance Model of Disk Arrays,” ACM-
SIGMETRICS, pp. 98-109, 1993.

[16] S. Chen, and D. Towsley, “The Design and Eval-
uation of RAID 5 and Parity Striping Disk Ar-
ray Architectures,” Journal of Parallel and Dis-
tributed Computing, pp. 58-74, 1993.

