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Abstract—As a massive number of the Internet of Things
(IoT) devices are deployed, the security and privacy issues in
IoT arouse more and more attention. The IoT attacks are
causing tremendous loss to the IoT networks and even threatening
human’s safety. Compared to traditional networks, IoT networks
have unique characteristics, which make the attack detection
more challenging. First, the heterogeneity of platforms, protocols,
software, and hardware exposes various vulnerabilities. Second,
in addition to the traditional high-rate attacks, the low-rate
attacks are also extensively used by IoT attackers to obfuscate
the legitimate and malicious traffic. These low-rate attacks are
difficult to detect and can persist in the networks. Last, the
attackers are evolving to be more intelligent and can dynamically
change their attack strategies based on the environment feedback
to avoid being detected, which makes it more challenging for the
defender to discover a consistent pattern to identify the attack.

In order to adapt to the new characteristics in IoT attacks, we
propose a reinforcement learning based attack detection model
that can automatically learn and recognize the transformation
of the attack pattern. Therefore, we can continuously detect IoT
attacks with less human intervention. In this paper, we explore
the crucial features of IoT traffics and utilize the entropy-based
metrics to detect both the high-rate and low-rate IoT attacks.
Afterward, we leverage the reinforcement learning technique to
continuously adjust the attack detection threshold based on the
detection feedback, which optimizes the detection and the false
alarm rate. We conduct extensive experiments over a real IoT
attack dataset and demonstrate the effectiveness of our IoT attack
detection framework.

Index Terms—Internet of Things, Intrusion detection, Rein-
forcement learning, Anomaly detection, IoT security.

I. INTRODUCTION

Based on the report from [1], there will be 75 billion Internet
of Things (IoT) connected devices in the world by 2025. The
growth of IoT devices has exploded over the past ten years.
IoT techniques have been applied to a variety of fields, such as
smart home, smart city, and smart industry. The IoT networks
deployed dramatically enhance the productivity, quality, and
efficiency of work and also creates substantial economic
profits. For instance, an IoT application can automatically
open the home window or the air conditioner once the indoor
temperature exceeds a threshold, which makes our lives more
automatic without human intervention.

The immense network comprising of IoT devices is inter-
related and independent with the current Internet. But, the
corresponding security and privacy solutions do not keep up
with the increasing scale of IoT devices. The vast commercial
market also earns the attention of attackers. The attackers

attempt to explore and launch a variety of attacks in IoT
networks, which may cause enormous economic loss and pose
a severe threat to security and privacy. However, the unique
characteristics in IoT networks make it more challenging to
provide comprehensive security and privacy solutions.

First, in order to maintain a long life cycle and combat
with the limitation of computations and battery capacity,
most IoT devices have to be compromised with security and
privacy issues. Some IoT devices adopt weak encryption or
even no encryption process. Meanwhile, due to no consistent
standard, there are many IoT platforms and communication
protocol proposed in the IoT network. The common IoT
platforms include Samsung SmartThings [2], Google Home
[3], Apple HomeKit [4], etc. These platforms also use different
wireless communication protocols, such as WiFi, ZigBee, Z-
Wave, BLE, etc. However, the heterogeneity of platforms and
communication protocols exposes various attack interfaces,
thereby making it considerably challenging for a defender to
safeguard against the attacks [5].

Second, most IoT devices transmit the data in a relatively
low rate. In order to avoid being detected, the attackers launch
the intrusion with a low-rate trait and produce malicious traffic
that blends in the normal traffic, which is challenging to be
detected with superior disguise. Furthermore, with the rapid
development of Artificial Intelligence and Machine Learning,
the attacker is gradually possessing the capabilities of learning-
automation and becoming more smart. In order to delay the
detection time, the attacker can study the feedback from the
environment and dynamically alter their attack vectors or
launch a new evolved attack to avoid intrusion detection.
The detected attack pattern by the defender will be invalid
immediately, and the defender has to make an instantaneous
response and recognize the new attack pattern fast.

Currently, most existing detection approaches leverage the
traditional anomaly detection model [6] without considering
the unique characteristics in the IoT domains. Most detection
methods do not consider the diversity of attack interfaces
and can only detect very few attack types. Some researchers
use deep learning [7]–[9] to implement the network intrusion
detection. But the computation power and time cost of these
approaches are too expensive to be executed on a simple
IoT gateway. Also, the existing detection approaches are
not sensitive to low-rate attacks. Moreover, these solutions
cannot adapt to the learning-automation attacks in IoT [10],



[11]. The expensive detection process of attack patterns may
be immediately invalid if the attackers continuously change
their intrusion strategies. Therefore, we propose a generalized
solution that can detect a variety of attacks by analyzing
the features of IoT traffic. A lightweight detection model is
designed using an entropy-based detection approach, which is
more sensitive to low-rate attacks and has a low computation
cost. More importantly, we propose a reinforcement learning
based IoT attack detection framework that can detect the
evolving IoT attacks with more effectiveness.

Contribution: In summary, our contributions break down
into the following aspects:
• We thoroughly explore all the unique attack charac-

teristics in IoT networks, such as the low-rate attack,
and propose a lightweight entropy-based attack detection
approach that can efficiently detect a variety of attacks.

• To resist the more intelligence of IoT attacks, we propose
a reinforcement learning based attack detection frame-
work in IoT networks, which can automatically adjust
the attack detection threshold and fast discover the attacks
even with the continuous transformation and evolutionary
of IoT attacks.

• To the best of our knowledge, we are the first to incor-
porate reinforcement learning to develop a novel attack
detection framework in IoT networks. Our approach can
provide smarter defenses with less human supervision,
which can greatly facilitate the current research in IoT
security.

• We design and conduct extensive experiments on a ∼ 60
GB IoT dataset involving a dozen IoT devices in the
market and various types of IoT attacks. The evalua-
tion demonstrates that our proposed IoT attack detection
framework has th capability of adapting to the new attack
characteristics and exhibit significant improvement of
system utilities.

Road map: The rest of the paper is organized as follows.
In Section II, we discuss the adversary model for IoT attack.
Section III describes the IoT attack detection framework
including the model and algorithm. We present our evaluation
in Section IV. Related work and conclusion are presented in
Section V and VI respectively.

II. ADVERSARY MODEL

In this work, a typical IoT network (such as smart home,
smart industry, smart city) is considered, where the IoT devices
are first connected to the IoT gateway and then connected
to the Internet thereby forming a vast IoT network. The
adversary scans the IoT devices and networks, and explores
the existing vulnerability that IoT networks have exposed.
The exposed attack interfaces could include the bugs in IoT
platform, the weak encryption vulnerabilities in wired and
wireless communication protocols, the defects of IoT devices’
hardware and software, etc.

We divide the attack types into two categories: (1) direct
attacks and (2) reflection attacks. The direct attacks to IoT
include TCP/UDP flooding, ARP spoofing, Ping of Death, etc.

The reflection attacks include TCP SYN, Smurf, SNMP, etc.
Some attacks attempt to consume all the available resources
in IoT devices by attacking the network protocols in different
layers, rendering the services of the IoT system unavailable.
Some other attacks can exploit the security vulnerabilities of
the IoT networks and try to compromise other devices in the
network or inject false information in the system.

Moreover, most attacks need to persist in the IoT network
for an extended period in order to operate effectively, such as
DDoS attack. To persist in the network, the attacks launched
by the adversary usually have two properties: stealth and
resilience. The adversary produces malicious traffic with no
difference with legitimate traffic, thereby remaining elusive,
such as low-rate attacks. On the other side, some attackers
become more intelligent and can transform or evolve their
attack procedures via observing the feedback from the envi-
ronment, which could make it more challenging to identify the
IoT attacks and sustain the resilience.

Our goal is to design an attack detection framework that
considers the unique attack characteristics in IoT. The detec-
tion framework can identify IoT attacks with high superiority.
For instance, the low-rate attacks sneak their malicious traffic
into normal traffic, thereby avoiding detection. Furthermore,
the defense strategies also need to be upgraded and evolved
as the development of learning-automation for attackers. The
adversary could transform their attack strategies or develop a
new attack approach based on the feedback of the environment.
The more intelligent and flexible attacks significantly increase
the difficulties of defense. An efficient defensive scheme to
mitigate attacks and secure IoT systems should be designed
and implemented with considering the new attack characteris-
tics in IoT.

III. IOT ATTACK DETECTION FRAMEWORK

In this section, we mainly describe the components of our
attack detect framework in IoT networks, which is shown in
Figure 1. First, we revisit the information theory for anomaly
detection and propose to use the entropy-based metrics to
distinguish the benign and malicious traffic in IoT networks.
Then, we investigate the performance of distinct features that
are utilized for IoT attack detection. Due to the emergence
of learning-automation attacks, as shown in Figure 2, the
classification boundary between normal and malicious traffic
may move when the attacker changes its attack parameters,
such as attack rate and type. Therefore, we introduce a rein-
forcement learning model to our attack detection framework to
continuously update the classification boundary, thereby well
adapting to the new IoT attacks.

A. Information Metrics for IoT Attack Detection

Information metrics are adopted widely to discover the
anomalies in intrusion detection fields [12], [13]. In informa-
tion theory, entropy measures the randomness of an informa-
tion variable. The value of entropy tends to be larger when
the information variable shows to be more random. On the
contrary, when the amount of uncertainty for the information
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variable is small, the entropy will have a relatively low value.
The low entropy value demonstrates the concentration of
distribution for information variables, which could reveal that
there may exist an anomaly in the current system.

In this work, we attempt to apply the entropy-based ap-
proach to IoT anomaly detection. Shannon and Reyi entropy
are the two typical metrics adopted in the information theory
to measure the dispersion and concentration for the feature
variable. We consider a discrete probability distribution:

P (X) = {p(x1), p(x2), ..., p(xn)}
n∑
i=1

p(xi) = 1 (1)

The variable X could be a feature that take the discrete
values of {x1, x2, ..., xn}. p(xi) represents the probability that
X takes value xi. Then the Renyi entropy of order α is defined
as:

Hα(X) =
1

1− α
loga

( n∑
i=1

p(xi)
α
)

(2)

When α −→ 1, Hα(X) converges to Shannon entropy:

Hs(X) = lim
α→1

( 1

1− α
loga(

n∑
i=1

p(xi)
α)
)

=

n∑
i=1

p(xi)loga(
1

p(xi)
) (3)

The Shannon entropy of X can also be regarded as the ex-
pected value of loga( 1

p(xi)
) with the probability mass function

p(xi). The value of the entropy Hs(X) reflects the randomness
of the probability distribution and reveals that the feature
has a more dispersed or concentrated property of probability
distribution.

In addition to measure the randomness of feature variable,
the extent of changes between assumed and observed distribu-
tion could also be measured for discovering some anomalies.
Let us use two discrete probability distribution U and V for
the feature variable X . The information divergence between
distribution of U and V of order α could be denoted as:

Dα(U ||V ) =
1

1− α
loga

( n∑
i=1

u(xi)
α

v(xi)1−α
)

(4)

When α −→ 1, Dα(U ||V ) converges to Kullback-Leibler
divergence:

DKL(U ||V ) = lim
α→1

1

1− α
loga

( n∑
i=1

u(xi)
α

v(xi)1−α
)

=

n∑
i=1

u(xi)loga
u(xi)

v(xi)
(5)

In order to measure the randomness of the probability distri-
bution only, which is independent of the number of distinct
values of the feature variable, we need to normalize the
entropy by dividing it with loga(N0), where N0 is the number
of distinct values for information variable. Then the entropy
will be re-defined as follows:

Hns(X) =

∑n
i=1 p(xi)loga( 1

p(xi)
)

loga(N0)
(6)

Then the values of the entropy will fall in the range of (0, 1).
The Shannon entropy and Kullback-Liebler relative entropy

could be both utilized for the attack detection in IoT networks.
The information metric can overcome the limitations of other
intrusion detection methods and can well adapt to the IoT
attack detection scenario. We analyze the advantages of em-
ploying information metrics to IoT attack detection as follows:
• The typical IoT attacks could be detected through ana-

lyzing the networking and application layer traffic. IoT
gateway is the interface that bridges the IoT devices and
IoT networks, which can aggregate a considerable amount
of traffic. The entropy-based approach is more suitable for
flow-based attack detection.

• Nowadays, there is a trend that most computations are
moving to the edge in order to significantly reduce the
latency of services. Compared to the massive computation
power in the cloud, the edge usually has relatively low
computation power. The entropy-based attack detection
approach requires a lower computation cost and can be
deployed in the edge and even on the IoT gateway.

• As more attacks have characteristics of covertness, the
intrusion detection approach is required to have the
capabilities of identifying the low-rate attack types. The
entropy-based approach is more sensitive and can well
distinguish the difference between legitimate traffic and
malicious traffic using a minimum number of attributes.

• Due to the lower computation cost, the entropy-based
approach can detect the attack in a real-time fashion.



Furthermore, multiple instances can be running simul-
taneously due to its excellent scalability, which can be
leveraged to monitor different types of IoT attacks. Such
an approach also shows the capability of integration
into our advanced reinforcement learning based attack
detection framework.

The above advantages will be further assessed and demon-
strated in the evaluation section. Next, we start to analyze the
features in IoT networks that could be used for the attack
detection via entropy-based anomaly discovery.

B. Feature Extraction for IoT Attack Detection

We have introduced the entropy as the method to measure
the feature variable and discover the potential IoT attacks. Let
us take a ARP spoofing as an example to explain how the
entropy works to detect the attack. Then, we try to explore all
the features that could unveil a variety of attacks.

ARP spoofing is a typical attack occurring in the IoT
networks. The attacker sends falsified ARP (Address
Resolution Protocol) messages over a local IoT network
resulting in the link of the attacker’s MAC address with the
IP address of a legitimate IoT device on the network. Once
the attacker’s MAC address is bound to an IP address of an
authenticated IoT device, the attacker will begin receiving
any data that is intended for that IoT device, which can
enable the attacker to collect the users’ private data and also
intercept, modify or even stop data-in-transit. Suppose we
use the feature variable X to represent the number of packets
transmitted with different protocols during a time window t.
For each protocol xi, we can calculate the probability:

p(xi) =
# pkts transmitted with protocol xi
Total number of pkts transmitted

(7)

The normalized factor is loga(N0), where N0 is the number
of active networking protocols observed during the measured
time window. In the window, due to the increased number of
ARP packets transmitted caused by ARP spoofing, the proba-
bility distribution may show the characteristic of concentration
resulting in the decrease of the entropy value.

If the value of entropy is below the preset threshold θ∗:

Hns(X) =

∑n
i=1 p(xi)loga( 1

p(xi)
)

loga(N0)
< θ∗ (8)

That may indicate the presence of an anomaly and alert the
defender. Furthermore, ARP spoofing attacks are often used
to facilitate other IoT attacks such as Denial-of-service (DoS)
attacks. DoS attacks can utilize ARP spoofing to link the
set of IP addresses from multiple IoT devices with a single
target’s MAC address. As a result, all the traffic that is intended
for many IoT devices will be redirected to the target’s MAC
address, overloading the target with traffic. Such attacks are
also similar to the TCP/UDP flooding, which immediately
flood the requests to the target IoT devices and disable their
services. To detect such kinds of attacks, the IoT gateway is
the ideal place to aggregate the traffic and conduct the analysis.

In this work, we consider to detect a variety of attacks in
IoT networks, including direct attack and reflection attack.
The direct attack could be further categorized into network
layer attack and application layer attack. Thus, we introduce
more features to improve the capability of detection for various
attacks.

For a IoT device in the network, it could work as a source
address and send packets to multiple destination addresses.
Also, it can be regarded as a destination and receive packets
from other hosts with different source addresses. For a unique
IoT device, we can calculate the probability that target device
is the destination:

p(xi) =
# pkts transmitted from source address xi

Total number of pkts received
(9)

And also calculate the probability that target device is the
source:

p(xi) =
# pkts transmitted to destination address xi

Total number of pkts sent
(10)

On the other hand, the packets transmitted from different
ports can reveal some anomaly information used for attack
detection. For the TCP/UDP flooding attack, some traffic flows
are concentrated on a specific set of ports, resulting in that the
following entropy value of port feature will be decreased to a
level that causes for alarm:

p(xi) =
# pkts transmitted with port xi

Total number of pkts transmitted
(11)

However, for the PortScan attack, the attacker will send
probe packets to random destination ports instead of a couple
of ports, which will make the probability distribution more
random, and therefore increase the entropy value. Once the
entropy value exceeds a threshold Hns(X) > θ∗, it will also
imply a potential attack. However, for simplification, we do
not describe this case in our model.

Based on Formula 8, the threshold θ is used to determine
whether there has appeared an IoT attack. In most work, the
value is pre-defined based on expert experience or historical
observation. However, the pre-defined threshold will be im-
mediately invalid if the attacker changes their attack vector
or switch its attack approach. For instance, the attacker may
transform its high-rate attack to a low-rate attack, which may
increase the miss detection rate if the defender still uses its
preset threshold.

Therefore, dynamically optimizing the threshold based on
the feedback of the detection is a better approach to increase
the intrusion detection rate significantly. Furthermore, as the
attackers evolve to be more intelligent, the fixed threshold
cannot catch up with the dynamic changes of the attacks.
Next, we will introduce reinforcement learning to our attack
detection model to adapt to the new trend of attack detection.

C. Augmented Attack Detection via Reinforcement Learning

1) Why do we need Reinforcement Learning ?
Reinforcement Learning(RL) [14] is an algorithmic method

for solving sequential decision-making problems wherein an
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agent (or decision-maker) interacts with the environment via
iterative processes to learn how to respond under different
conditions, which is exhibited in Figure 3. Formally, the agent
seeks to discover a policy that maps the system state to an
optimal solution. Our goal of the work here is to train the
agent to learn a policy that maximizes the total number of
IoT attacks detected over time, thereby greatly increasing the
system utility.

For IoT attacks, in order to persist in the IoT networks
and obtain more attack profits, the attackers have to own the
properties of stealth and resilience. In order to maintain the
sneak of attacks, the attacker may leverage various methods
to obfuscate the observable behaviors of attacks and evade de-
tection. For instance, the attackers can periodically change the
spatiotemporal properties of the traffic generated by attacks.
With the development of AI and ML, the attackers have a
trend to be more intelligent. Once the attacker finds that the
specific attack is detected, the attackers could immediately
and automatically adjust their attack strategy and continue to
pursue attacks against IoT networks, leading to the possession
of good resilience. The AI technique can even assist the
attacker to automatically develop new attacks, which require
the defender to have an advanced attack detection capability.

However, a defender typically has constraints on the number
of available resources that can be used for attack detection,
such as the limited computation power and human interven-
tion. The defender’s objective is to minimize the attack gain
of the attacker using a limited number of resources, while the
goal of the attackers is to obtain the greatest attack benefits
by using fewer resources. Such a scenario can be modeled as
a Markov Decision Processes, which could be solved using
reinforcement learning technique.

2) Problem Statement
Suppose the attackers can launch a variety of attacks de-

noted by attack vector A = (a1, a2, a3, ..., an). The thresholds
used to decide the corresponding attacks in time slot t can
be represented by T t = (θta1 , θ

t
a2 , θ

t
a3 , ..., θ

t
an). The elements

in the attack vector are being observed simultaneously and
continuously. Specifically, in time t, if the observed entropy
Ht
ai for attack ai about a feature exceeds the current threshold

θtai . The IoT attack detector sends an alert to the administrator.
The detection results can be be positive (identify the malicious
traffic as a attack) or negative (identify the malicious traffic
as not an attack). The detection results for each subject may

TABLE I: Environment Feedback

True Positive: P0 − C0 False Positive: −C0 − C1

False Negative: −C2 True Negative: P1

or may not match the subject’s actual status, which could be
summarized as the following four cases:
• True Positive(TP): Malicious traffic identified as an attack
• False Positive(FP): Benign traffic falsely identified as an

attack
• True Negative(TN): Benign traffic identified as normal
• False Negative(FN): Malicious traffic falsely identified as

normal
For the above different cases, there will be distinct utilities
triggered by the environment. If the IoT attack agent reports a
potential attack and hands it to the upper layer for further
examination, the cost will be denoted as −C0. Finally, if
the reported alarm is identified as an attack, the detection
system will receive the profits denoted as P0. Otherwise, if
the reported attack is identified as a false alert, the system
will get a penalty C1. If the real attack is not identified and
let it pass through, the system will also get a penalty C2. The
last case is that the legitimate traffic is also detected as normal.
The corresponding profit that can be obtained is denoted as
P1. The ultimate system utilities for different cases are shown
in Table I.

Now we calculate the accumulated occurrences for each
case during a time period T comprising of n time slots
(t1, t2, t3, ..., tn). We use NT

11 to represent the number of
authenticated true attacks. The number of false alarm is
denoted as NT

12. The number of real attacks but missed is NT
21.

NT
22 is used to denote the number of authenticated benign

traffic flows. Then, in time period T , the complete reward
obtained from the environment is:

RT = (P0−C0)∗NT
11−(C0+C1)∗NT

12−C2∗NT
21+P1∗NT

22

(12)
where

NT
11 +NT

12 +NT
21 +NT

22 = n (13)

Then, the hit rate ΥT and false alarm rate ΘT could be
computed as follows:

ΥT =
TP

TP + FN
=

NT
11

NT
11 +NT

21

(14)

ΘT =
FP

FP + TN
=

NT
12

NT
12 +NT

22

(15)

The system state in time period T could be represented as:

ST = (ΥT ,ΘT ) (16)

In this work, we model the attack detection in IoT networks
as Markov Decision Processes. The goal is to maximize the
utility of IoT attack detection system RT via optimizing the
threshold θai for detecting the specific attack type ai.

θ∗ai = arg maxRT
θai
≥0

(17)



In order to maximize the system utility, the feature threshold
needs to be appropriately chosen. We desire the detection
system not to miss the detection of some attacks. On the
other hand, we also do not want the system to report many
false alarms, which may require massive human interven-
tions. We need to stimulate the system to conduct attack
detection carefully and accurately with corresponding rewards,
thereby significantly reducing human interventions. Therefore,
we propose a reinforcement learning-enabled attack detection
approach to guide the defender’s sequential decision-making
process over time.

3) Reinforcement Learning based Attack Detection Model
To tackle this problem, we propose to formulate the problem

as a Markov game G using reinforcement learning, which
is defined by a tuple G = (S,A,P,R), where S,A,P,R
are the sets of states, joint action space, transition probability
functions, and reward functions respectively [15].

The detailed definitions are given as follows:
• State: S , {s1, s2, ..., sA} is the state space of the

IoT attack detection agent. The system state sT in time
period T included in S is denoted as siT = (ΥT ,ΘT ),
which represents the hit rate and false alarm rate with the
threshold θai in time period T . In order to compress the
state space, we chunk the continuous values of (Υ,Θ)
and convert it to the discrete value pairs: (ΥT ,ΘT ) ∈
{(Υi,Θi), i = (1, ...,A)}. A is the size of the state space.

• Actions: A , {a1, a2, ..., aB} is the action space of the
IoT attack detection agent. Here, we split the threshold
range for attack type θai into B discrete values. The action
AjT (j ∈ {1, ...,B}) specifies the selected threshold for the
attack detection in time period T .

• Reward function: R , S × A → R are the reward
functions representing the utility of IoT attack detection
agent obtained after the specific action is executed in
a certain state. The agent attempts to choose the best
action (namely threshold) based on its temporal state to
maximize its expected discounted reward:

∑∞
d=0 γ

drt+d.
The reward rt is defined as the utility when the agent
executes the action at in state st.

• State transition probability: P , S ×A → [0, 1] is the
transition probability of the system. p(st+1|st, at) gives
the probability of transiting to st+1 given a action at is
taken in the current state st.

In our model, the attack detection agent starts at some initial
state si ∈ S. After observing the current state, the agent selects
the action aj ∈ A and the agent will receive the corresponding
rewards together with the new observation. At the same time,
the system will transit to a new state s′ ∈ S with probability
p(s′|s, a). The procedure is repeated at the new state and
continues for a finite or infinite number of stages. The agent
tries to find its optimal policies to maximize the expected long-
term average rewards. In the context of IoT attack detection,
the attack detection agent attempts to continuously optimize
the threshold used for attack detection in consecutive time
periods and strives to increase the detection rate and decrease

Algorithm 1: IoT Attack Detection with Q-learning
Input: learning rate α, discount factor γ, ε-greedy,

number of time slots N in a episode, initialize all the
Q table entries Q(s, a) to zero, initialized state s.

repeat
Start a new episode.
Observe current system state s = (Υ,Θ) ∈ S.
Select a threshold θ∗ = arg max

a∈A
Q(s, a).

for i← 1 to N do
Compute the entropy value via equation 3.
if Hns(X) < θ∗ then

Let the traffic pass through.
else

Report the potential IoT attack alarm .
Further screen the alarm by Defender.

end
end
Obtain the reward r and transform to a new state
s′.

Update the table entry for Qt+1(s, a) to
Qt(s, a)+α

[
rt(s, a)+γmax

a′
Qt(s

′, a′)−Qt(s, a)
]
.

Replace s with s′.
until Attack detection is terminated;

the false alarm rate thereby maximizing the long-term average
system utility.

4) IoT Attack Detection via Q-Learning
In a reinforcement learning process, an IoT attack detection

agent can learn its optimal policy (namely threshold) through
interaction with its environment. In particular, the agent first
observes its current state, and then takes action, and receives
its immediate reward together with its new state. The current
state is the attack detection rate and false alarm rate under the
present detection threshold. The selection of a new threshold is
executed as action and will lead to the updated system reward
with the new detection and false alarm rate which is regarded
as a new state. The observed information, i.e., the immediate
reward and new state from the environment feedback, is also
used to adjust the agent’s policy, and this process will be
repeated until the agent’s policy approaches to the optimal
policy. In reinforcement learning, Q-learning [16] is the most
effective method and widely used in reinforcement learning.
In the following, we will discuss how to use the Q-learning
algorithm to implement IoT attack detection. In Q-Learning
Algorithm, we aim to find an optimal entropy threshold θ∗

for the attack detection agent to maximize the system utility.
Accordingly, we first define value function Vθ : S → R that
represents the expected value obtained by the threshold θ from
each state s ∈ S.

Vθ(s) = Eθ
[ ∞∑
t=0

γrt(st, at)|s0 = s
]

= Eθ
[
rt(st, at) + γVθ(st+1

∣∣s0 = s
]

(18)



TABLE II: Description of IoT Attack Dataset.

IoT Devices WeMo motion, WeMo Switch, Samsung smartcam, TP-Link smart plug, Netatmo Camera
Chromecast Ultra, Amazon Echo, Phillips Hue bulb, iHome smart plug, LiFX bulb

Attack Types Direct Attack Reflection Attack
ARP spoofing, TCP SYN Flooding,
UDP Flooding, and Ping of Death SNMP, SSDP, TCP SYN, and Smurf

Attack Parameters Number of Attacks 200 times Every Attack Time 10min
Attack Rates 1, 10, 100 pkts/second Time Span 16 days

If we denote Q∗(s, a) , rt(st, at) + γEθ[Vθ(st+1)] as the
optimal Q-function for all state-action pairs, then the optimal
value function can be written by V∗(s) = max

a
{Q∗(s, a)}.

Now the problem is reduced to find optimal values of Q-
function, i.e., Q∗(s, a), for all state-action pairs, and this
can be done through iterative processes. In particular, the Q-
function is updated according to the following rule:

Qt+1(s, a) = Qt(s, a)+

αt

[
rt(s, a) + γmax

a′
Qt(s, a

′)−Qt(s, a)
]

(19)

In Formula 19, the learning rate αt is used to determine
the impact of new information to the existing Q-value. The
learning rate can be chosen to be a constant, or it can
be adjusted dynamically during the learning process. The
algorithm yields the optimal policy indicating an action to
be taken at each state such that Q∗(s, a) is maximized for
all states in the state space, i.e., θ∗(s) = arg max

a
Q∗(s, a),

which is displayed as a Q-Table. The detailed procedures are
described in the Algorithm I. Our model continually updates
the feature vectors for various attacks encountered such that
it can recognize changing attack patterns. Our model also
memorizes and retains the knowledge of previous attacks
learned. Once the attacker changes to the attack pattern that
appears before, our model can fast identify it without executing
the reinforcement learning iterative process.

IV. EVALUATION

In order to verify the effectiveness of our IoT attack detec-
tion framework, we design and conduct extensive experiments
to thoroughly evaluate our approach over an IoT attack dataset
from a real IoT platform [17]. First, we use the real IoT attack
traces to analyze the performance of our proposed entropy-
based anomaly detection features and models. Then, we use
a real scenario that the attackers alter their attack patterns
among 200 attacks to avoid intrusion detection. We apply our
reinforcement learning-based attack detection model to this
scenario and demonstrate our technique is capable of learning
and recognizing changes in attack patterns, allowing it to
adapt to intelligent or dynamically changing attacks unlike
traditional static threshold models. We show the evaluation in
detail as following.

A. Data Set

The IoT dataset [17] is generated by a IoT platform com-
prising a TP-Link gateway connecting with ten IoT devices,
such as TP-Link smart plug, Samsung smart-cam, WeMo

motion sensor, etc. The vulnerabilities of these devices are
investigated and identified first, and then a variety of attacks
are launched including direct attacks, such as ARP spoofing
and TCP flooding, and reflection attacks, such as SNMP and
Smurf. A total of 200 attacks are launched to different IoT
devices and that last for 16 days. The entire packet traces of
benign and malicious traffic are stored in 30 pcaps files and
each pcaps contains the traffic traces with a size of 2 − 3
GB over a day. Also, the attacks are launched with three
rates 1, 10, and 100 packet-per-second (pps), which can reveal
the attack effect for both low-rate and high-rate. For each
device, the attacks with different types and rates are launched.
The detailed parameters about the dataset are described in
Table II. The low-rate attacks confuse the distinction between
benign and malicious traffic, and the transformation of attack
type and rate also significantly boost the difficulty of attack
detection. The properties of the dataset can thoroughly exam
the performance of our IoT attack detection technique.

B. Entropy-based feature analysis

There exist some research works that apply entropy analysis
to anomaly detection in cybersecurity. However, they use the
traffic traces from traditional Internet mainly comprising of
computers and servers to conduct analysis. There is no work
that considers the unique characteristics of IoT networks and
uses the real IoT dataset for attack detection via using the
entropy-based technique. In this work, we revisit the entropy-
based anomaly detection approach and explore the effect when
it is applied to IoT attack detection.

We evaluate the detection effect of various features we
propose in Section III-B. The IoT attacks can be launched
in different layers that may impact the traffic for distinct pro-
tocols. So the distribution of protocol-related packets between
normal and malicious traffic is likely to be distinct. If the
distribution of packets concentrates on a certain protocol, that
may indicate the presence of an attack. Figure 5a shows the
distribution of packets for protocols (ARP, DNS, ICMP, TCP,
and TLSv1) with and without attacks. The attacks include
ARP spoof, TCP SYN, and Smurf. The data of the Figure is
computed based on the trace set on 06/01/2019 for TP-Link
smart plug. For the benign traffic, the distribution of packets
about different protocols displays randomness resulting in the
low entropy value. But the three attacks display the less
randomness and more aggregation for some protocol, which
will lead to the larger entropy value. Figure 5b displays the
distribution of packets under four distinct IP addresses with
and without attacks. The attacks include TCP SYN, TCP SYN
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(a) TP-Link smart plug
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(b) Samsung smartcam
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(c) WeMo power switch
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(d) WeMo motion sensor

Fig. 4: Time series of entropy data for four IoT devices with different features.
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Fig. 5: Distribution of transmitted packets from different
protocols and IP addresses with and without IoT attacks.

Reflection, and Ping of Death. The Figure reveals that the
attacks lead to the explosion of packets in some IP address,
which also results in much larger entropy value and manifests
potential anomaly.

Moreover, we compute the entropy values of features with
5 min period using the traffic traces from TP-Link smart
plug, Samsung smart-cam, WeMo power switch on 06/01/2019
and WeMo motion sensor on 06/02/2019, which is shown in
Figure 4. The four attacks, namely ARP Spoof (layer: L2D),
TCP SYN (layer: L2D), TCP SYN Reflection (layer: W2D2W)
and TCP SYN Reflection(layer: L2D2L), are launched to the
first three devices. Another four attacks, namely UDP Flood
(layer:L2D), SSDP (layer:D2W), SSDP (layer:L2D2L) and
UDP Flood (layer:W2D) are launched to the WeMo motion
sensor.

Figure 4 labels all the launched attacks, and we have some
findings from the figure. As shown, the entropy of IP and
protocol are sensitive to most attacks and can achieve a good
detection effect. However, for the UDP Flood attack, the
difference of entropy values for benign and malicious traffic
is not apparent, which is revealed in Figure 4d. Nevertheless,
the entropy of port between benign and malicious shows a
more substantial difference, which can be better utilized for
detecting the attack. The benefit of entropy is that it can detect
the attack even with the low-rate attack. For the ARP spoofing
attack, we can find that the entropy of IP and protocol is
still able to show the apparent fluctuation even with relatively
lower transmission rates. For the WeMo power switch, the
difference of entropy values between normal and malicious
seems not to be much apparent than other devices, but the

threshold can be still appropriately chosen to distinguish the
normal and anomaly traffic. Therefore, we combine features
and build the feature vectors to detect the attacks robustly.
Next, we evaluate our reinforcement learning-based detection
technique that dynamically chooses the threshold for feature
vectors to determine the attacks.

C. Performance of reinforcement learning model

Our reinforcement learning-based attack detection technique
is to optimize the feature threshold to determine the attack
continuously. The new trend that the attacker is evolving to be
more intelligent requires the defender to develop the capability
to adjust their defense strategy based on the variation of
attacks. The traditional method relies on data statistics to
determine a proper threshold at a given time. However, such
method requires more human interventions to choose a new
threshold once the attacker changes their attack patterns. Our
approach can smartly and automatically detect attacks with
less human supervision, and also significantly lower the delay
of detection.

We design experiments to analyze the performance of our
proposed RL-based IoT attack detection and compare it with
the traditional attack detection with static threshold models.
For the experiments, we set the values of parameters P0, P1,
C0, C1, C2 in Table I to be 14, 12, 0, 3, and 15. The parameters
define the penalty and reward that our reinforcement learning
model can obtain. For the parameters about Q-Learning, the
values of α, γ and ε are set to 0.1, 0.8 and 0.9 respectively. We
stimulate the model to report the alarm accurately. If the model
reports one alarm that is identified as an attack. The model
can obtain the appropriate incentive. Otherwise, it receives the
corresponding penalty.

We maintain a threshold vector for the same type of devices
to store the threshold for each feature used for detecting the
anomaly. Different types of IoT devices may have a distinct
threshold vector due to the heterogeneity of their firmware,
driver, and software. Figure 6 shows a snapshot of the feature
threshold at some point for TP link plug and Samsung camera,
respectively. The feature index denotes a part of the features
we propose in Section III-B. For the same IoT device, the
thresholds for each feature are also distinct. For static threshold
models, the threshold vector is determined at the beginning and
will not be changed unless human intervenes. Our learning
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mization for attack detection.
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Fig. 8: Comparison of system
utility with and without RL.

agent continuously optimizes and updates the threshold vector
for attack detection with much less human intervention. The
continuously changing threshold for the feature IP address over
a day is displayed in Figure 7. Because we change the type
of attacks and also adjust their attack rate, the corresponding
boundary to distinguish benign and malicious traffic may
be changed, leading to the variation of the threshold. The
vertical dotted lines in the figure label the time point the
attacker changes its attack type or attack rate. As shown,
the reinforcement learning model can automatically adapt to
the transformation of attacks and make adjustments for the
threshold accordingly.

The utility of the IoT attack system is significantly improved
because of the better detection and false alarm rate resulting
from the continuous optimization of the threshold. We inves-
tigate the state-of-the-art work about IoT attack detection. We
are the first to introduce the reinforcement learning technique
to the detection model. Most research works like [8] use
machine learning or deep learning to train an attack model
and use it for future detection. We still regard them as
the static statistics model because they do not continually
update their model. We apply the static statistics model and
our reinforcement learning model to detect the attacks for
four devices. For each device, a certain number of attacks
are launched with different attack patterns. Figure 8 shows
the utility comparison over a day for the four devices. The
system utility can achieve an average 54.7% increase across
four devices when using the reinforcement learning technique
compared to systems without it. With the change of the IoT
attack pattern, the static threshold may gradually deviate from
the optimal value resulting in bad detection rate and high false
alarm rate, which will significantly reduce the system utility.
Our reinforcement learning model is robust to the change of
the IoT attack pattern and can dynamically update the feature
threshold and significantly boost the attack detection rate to
98.5%. Our IoT attack detection framework can also be widely
applied for other intrusion detection fields and facilitate the
current research in IoT security and reinforcement learning.

V. RELATED WORK

A. IoT security and privacy
As the development and broadly deployment of IoT net-

works, more and more vulnerabilities involved in IoT plat-
forms, applications, protocols, and hardware are being exposed

to the attackers, which causes the critical security and privacy
issues. [18] proposes a mechanism to protect the users from
insecure devices states via monitoring the IoT behaviors and
their corresponding platform apps. Fine-grained context iden-
tification [19] is introduced in the IoT platform to analyze the
sensitive actions, thereby providing effective access control.
SmartAuth [20] uses Natural Language Processing (NLP) to
extract the security information from an IoT app’s description,
code, and annotations, and then compare to the real actions
that the app performs.

The communication protocols, such as ZigBee, Z-Wave,
and BLE, that are used in IoT networks also bring out some
security and privacy issues. For instance, the BLE protocol
fails to hide the device’s presence from the adversaries [21],
which will lead to severe threats, such as user behavior
tracking and inference of sensitive information. HoMonitor
[22] monitors the encrypted wireless traffic and analyze to
check if the behaviors are matched with the app’s description.
In the aspects of hardware and software, the fingerprinting
technique [23] is proposed to secure the authentication and
communication of IoT devices.

B. Machine learning in IoT networks

In order to develop a secure, robust, and optimized solution,
machine learning is introduced and now is widely adopted to
solve issues in IoT networks [24]. [9], [25] uses the machine
learning technique to detect the attacks in IoT networks. IoT
Sentinel [26] analyzes the networking traffic and uses the
classification algorithms to identify the types of devices, which
enables enforcement of rules for constraining the communi-
cations of vulnerable devices. A deep neural network-based
framework is proposed in [27] to implement the real-time
nodes authentication in wireless networks.

In addition, due to the excellent learning characteristics,
reinforcement learning is more suitable for some networking
scenarios. [28] proposes an RL-based scheduler that can
dynamically adapt to traffic variation, and various reward
functions set by network operators, to optimally schedule
IoT traffic. [29] provides a security solution that uses deep
reinforcement learning for signal authentication of IoT sys-
tems. [30] proposes a spoofing detection mechanism in wire-
less networks that also leverages reinforcement learning to
increase detection accuracy. [11], [31] also propose a deep
reinforcement learning-based intrusion detection model for



the traditional network. As we can see, there is no research
work considering the characteristics of intrusion in modern
IoT networks. We explore the attack characteristics in IoT
networks and propose a dynamical intrusion detection model
that can adapt to the transformation of intrusion strategies from
attackers.

VI. CONCLUSION

In this paper, we explore the unique characteristics and
trends of attacks in IoT networks. We argue that the tradi-
tional intrusion detection approaches in cybersecurity cannot
well adapt to the IoT scenario. Due to the heterogeneity of
platforms, protocols, software, and hardware, diverse vulner-
abilities are exposed to attackers resulting in the increased
complexity of anomaly detection. Meanwhile, the new emerg-
ing low-rate attacks obfuscate the boundary between benign
and malicious attacks. Furthermore, the attacker is evolving to
have the capabilities of altering the attack strategies and even
developing a new attack based on the environment feedback,
which requires the defender to have a quick response. There-
fore, we propose an entropy-based attack detection framework
integrating the reinforcement learning model, which is more
suitable for the IoT context. We conduct extensive experiments
over a real IoT attack dataset and demonstrate the efficiency
of our IoT attack detection approach.
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