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Abstract—The quality of mobile videos is usually quantified
through the Quality of Experience (QoE), which is usually
based on network QoS measurements, user engagement, or
post-view subjective scores. Such quantifications are not useful
for real-time evaluation. As a result, they cannot provide on-line
feedback for improvement of visual acuity, which represent
the actual viewing experience of the end user. We present a
visual acuity framework which makes fast online computations
in a mobile device and provide an accurate estimate of mobile
video QoE. We identify and study the three main causes that
impact visual acuity in mobile videos: spatial distortions, types
of buffering and resolution changes. Each of them can be
accurately modeled using our framework. We use machine
learning techniques to build a prediction model for visual
acuity, which depicts more than 78% accuracy. We present an
experimental implementation on iPhone 4 and 5s to show that
the proposed visual acuity framework is feasible to deploy in
mobile devices. Using a data corpus of over 2852 mobile video
clips for the experiments, we validate the proposed framework.

Index terms: Video Quality, Quality of Experience, Mobile
Video

I. INTRODUCTION

The popularization of smartphones and tablets has led to
mass content consumption as well as a flood of user generated
content in both wireless and wired networks. Mobile data
traffic will increase at a Compound Annual Growth Rate
of 61%, approaching 15.9 exabytes per month by 2018. An
increased proportion of this traffic is comprised of mobile
videos. In 2013, mobile video generated around 53% of mobile
data traffic and the trend will increase to 69% by 2018 [11].
This traffic includes various types of video services such as
progressive download, real-time video streaming, HTTP-based
streaming services and interactive telephony. In all these video
content services, the major concern is to transmit videos to
mobile devices in fluctuating network conditions yet ensuring
high fidelity or acuity. (In our discussion, we call these videos
‘Mobile Videos’).

Our goal in this work is to propose a framework for online
evaluation of visual acuity on smartphones or tablets. We
define video acuity as the perceptual experience of watching
the video itself [17] regardless of confounding factors such as
content type or user expectations [5]. We distinguish acuity
with user engagement [5] metrics such as viewing time which
may be influenced by other factors such as popularity of video,
video content and viewers’ mood. Acuity is close to video
distortion metrics, except that it is a statement of overall video
experience of the user, not a specific distortion. Video acuity is
best measured by subjective user assessments (such as Mean

Opinion Scores (MOS) or Differential MOS (DMOS)) of
perceptual video quality. However, MOS scores are post-view,
time consuming and distracting to the end-user, and reduce the
viewing experience itself. This necessitates the development of
an objective framework which can predict video acuity in an
online manner.

Some researchers have developed predictive models for QoE
using user engagement as a predicted variable [5]. These
models may not be helpful to network providers who want
to fine-tune their networks to improve this visual acuity for
the end user, irrespective of content type or users mood,
which are subjective and beyond their control. We want to
develop accurate video acuity models using online light-weight
computations on mobile devices. Developing such a model is
a challenging task because of following factors:

• Difficulty in analyzing video traffic in terms of spatio-
temporal content. Most video quality metrics require
original video or have huge computational cost, video
itself has huge file sizes, leading to high latency and cost
of computations.

• Understanding acuity requires subjective user evaluation.
Network or server level traces can only infer about user
engagement statistics (such as percentage of time viewed,
number of hits) but not on the objective user opinion
(unless explicitly collected).

Traditional approaches to video quality tend to map MOS
to QoS or video distortion metrics. However, most existing
QoS based models [15] or video distortion metrics [18] focus
on a single distortion or scenario. Moreover, existing video
metrics are designed to capture only spatial distortions, they
cannot be applied to HTTP/ TCP-based internet videos. It
is indeed very challenging, if not impossible, to derive a
video acuity metric for mobile videos. However, we want
to provide feedback of video acuity to service providers for
online network optimization. We will show in later sections
that how the proposed video acuity framework can be used by
service providers to analyze the impact of visual distortions on
the video acuity. A robust video acuity model can also be used
by end users to set a value for the video service according to
quality of reception instead of paying a fixed fee to cellular
and Internet service providers.

In this paper, our goal is to develop a comprehensive
framework that can objectively provide real-time quantification
of video acuity on mobile devices. Our proposed model enable
to support both UDP-based and HTTP-based video services
as a single model. The method proposed to detect freezing



effects and resolution-switch does not require any additional
implementation/ frameworks in network-level. The framework
involves identification of the factors impacting video acuity
and the corresponding metrics that can provide accurate quan-
tification of the impairments. Based on detailed insights, the
framework derives an approximate quantification of the impact
of distortions on visual acuity of mobile videos. We consider a
heterogeneous pool of 2500+ HD and regular mobile videos in
our experiments encompassing a range of network distortions,
content genres and application-type. Further videos were gen-
erated using real network testbeds and streaming experiments,
and subjective ratings were performed to recognize the impact
of different distortions over visual acuity; overall analyzing
more than 10 million frames of video data. Some of our key
observations are as follows:

1) Existing video quality metrics have high correlation to
QoE across a range of spatial distortions but not across
content. For example, the same video distortion over dif-
ferent content is measured differently by existing metrics.

2) Apart from total buffering, our experiments reveal that
intensity and position of buffering events are crucial for
estimating video acuity.

3) Visual acuity increases linearly with an increase in video
resolution. However, our experiments reveal that online-
switches-in-resolution can have nonlinear or negative
impacts on video quality.

4) A predictive model can be used to estimate video acu-
ity. Generating separate models for spatial distortion,
buffering and resolution-switching using machine learn-
ing technique gave us accuracy of 93%, 81% and 87%
respectively. A generic combined model gives accuracy
of 78%.

5) The proposed framework can run conveniently on smart-
phones.

The paper is organized as follows: Section 2 gives an
overview of motivation and related works. The heterogeneous
dataset used in the work is explained in Section 3. Section
4 gives an analysis of mobile video distortions to build a
prediction model. Section 5 gives the combined model as
well as smartphone app implementation. Even an old iPhone
4 model can conveniently run our app in the background with
full HD streaming and other processes.

II. MOTIVATION AND RELATED WORKS

The increasing volume of mobile video traffic motivates
us to obtain a metric for robust acuity assessment which
accurately maps objective scores to subjective video acuity.
The most precise method to measure acuity is to conduct
subjective assessments such as Mean Opinion Score (MOS)
ratings [3], but it is restricted to offline evaluation.

A. Requirements of a mobile video acuity metric

The increase in mobile video traffic necessitates the de-
velopment of a framework for robust quality assessment in
mobile videos. The desired qualities of a mobile video metric
are explained next.

Robust to video content and distortions: Many kinds of
distortions such as blocking, blurring, blackout, freezing or
jerkiness can be introduced during video delivery. A desired
metric should be robust to various distortions and video
contents.

Simple and Light : Limited resources of mobile devices are
not appropriate for heavy computational cost and complexity.
It may be difficult to apply psycho-visual models for acuity
assessment if they incur high computation cost.

Codec-Independent : With a plethora of codecs and con-
tainers available (such as H.264, MPEG and HEVC) and many
of them being proprietary, it is desired that the metric is
independent of codecs and universally applicable to all video
content.

Accuracy in estimating end-user QoE : The most signif-
icant factor in acuity assessment is the accuracy in estimating
user QoE. The most challenging problem in the existing
metrics and schemes is that one metric might be able to detect
and predict user QoE for certain conditions. However, they
are not able to show consistent results when applied across
various types of video properties such as resolution, frame rate,
encoding rate, size of GOP (Group of Pictures) and motion
speed.

No need for reference video : Original video is not avail-
able for ‘online’ evaluation scenarios, making it difficult to
estimate video quality, particularly in the presence of multiple
distortions. Most of the well established metrics such as PSNR,
SSIM , VSNR, VQM [14] need a reference video, therefore
they are not suitable for mobile videos.

B. Related Works

Most of existing works are restricted to detect designated
distortions, and limited to video display distortions such as
blocking, blurring or ringing. No Reference (NR) schemes
[26], [4] show inconsistency in results across various types
of video content. Full Reference (FR) schemes [24], [25] are
not suitable to be used for online quality assessment due to
non-availability of the source video. Reduced Reference-based
(RR) metrics [25], [9] have a low overhead compared to FR
metrics, but still require additional channels or systems to send
a partial original video reference. RR based metrics may be
useful in such a scenatio, although existing RR metrics are
not robust to distortion, not real-time and not light-weight for
mobile devices.

Chono et al. [10] use vector information of image features
and transmit its Slepian-Wolfe syndrome using an LDPC
encoder. However, it targets distributed source coding and has
high computation and communication overhead. Rehman and
Wang [22] proposed an RR metric using structural similarity
(SSIM) index. The proposed RR-SSIM shows high to medium
correlation across multiple image datasets. However, the com-
putation cost is 11 seconds per image, which is unacceptable
for mobile videos.

Mittal et al.[20], [19] proposed high accuracy performance
NR metrics, Blind/referenceless Image Spatial Quality Evalu-
ator (BRIQUE) and Natural Image Quality Evaluator (NIQE).



But their performance on videos hasnt been studied. BRISQUE
gives a score on spatial quality while NIQE gives naturalness
index.

Balachandran et al. [5] presented a data-driven video QoE
metric, but it measured user engagement (watch time or num-
ber of hits) as an indicator of video quality. This metric may
not be useful to network operators (to fine-tune their service)
as user engagement is affected by many other confounding
factors beside video acuity.

III. DATASET

To model video acuity, we took a data corpus of 2852 video
clips in this work comprised of videos from Youtube, LIVE
mobile dataset as well as locally captured videos transmitted
over a wireless network. The duration of each video clip is
approximately 30 seconds and analyzed on a per-frame basis
(making more than 10 million data points). We used three
different strategies to create the data corpus.
(a) UDPStream: First, we created a pool of 362 videos

which represent various wireless network induced distortions
(such as packet losses and delay) across 5 video content.
We set up a single-hop wireless testbed and implemented
middleware to introduce burst and uniform packet loss and
delay effects at the IP-layer by using IPFirewall [13]. Packet
loss is simulated in three ways: uniformly distributed loss,
bursty loss or a combination of both. The video streaming
sessions are established by VLC [23], FFmpeg [7] is used
for video coding. Details on parameters are specified in the
Table I. 50 HD videos from UDPStream were tested by
17 1 subjects on a smartphone using ITU single-stimulus (SS)
method [14].
(b) LIVE: 200 HD videos from the LIVE dataset [21]

have MOS scores averaged over 50 subjects each using
ITU single-stimulus method [14] with hidden references. The
videos are compressed using H.264 scalable video codec
(SVC) at four different compression rates/profiles (0.7 to 6
Mbps). For rate adaptation, four profiles are generated to vary
the rate dynamically within a video stream between two com-
pression rates. For temporal dynamics, the compression rate is
varied between multiple compression rates with different rate-
switching structures within a single video stream. Wireless
channel packet-loss is introduced using trace-based simula-
tion. Frame-freezes include live video freezes (due to packet
losses)leading to loss of temporal continuity after freeze, and
stored video freezes causing no loss of temporal continuity
after freeze (delay). Stored video freeze is introduced in three
profiles: 8 times for 1 sec each, 4 times for 2 secs each and
2 times for 4 secs each. The two datasets together form a
wide range of content (video type or genres, with a set of 17
different representative videos), GOP size, motion speed (slow
to fast action scene), duration, encoder, container, resolution
and frames-per-second.
(c) UTrailers: We have collected 2,280 popular video

HD trailers for the past 3 years (2011-2013) from Youtube.

1According to ITU-R BT.500-11 subjective assessment standard [14], 15
subjects would be enough for subjective quality evaluation

TABLE I
PROPERTIES OF VIDEO DATASET USED

Compression/Rate distortions: LIVE [21]
Type Value
Compression (R) 4 different compression rates
Rate Adaptation (S) 3 rate-switching to highest quality
Temporal Dynamics (T) 5 profiles with multiple rate

switches each (same resolution)
Freezing (F) 8 secs (4 variable profile)
Packet Loss (W) Uniform 4 QAM at SNR (15db);

plr≤ 1.19% for each rate (4)
UDPStream : Network Distortions

Packet loss (A) Uniform 0.1 ∼ 50%
Packet loss (B) Burst 90%, 2 ∼ 4 secs
Freezing Delay : 1 ∼ 4 secs

UTrailers (Youtube Trailes)
Content Geners All (30s playtime)
Duration 30, 60 secs
Resolution Full HD(1080p) HD(720p), oth-

ers(480, 360, 240)
Screen Size 3.7 ∼ 4.1 inch
No. applicants 162 (Age : 18 ∼ 60; Gender : M/F)

Overall content settings in dataset
Resolution 1080, 720, 480, 450, 360, 288, 240
GOP size 25, 15, 12
Frame per sec 50, 30, 24
Motion speed 1(rel.slow) ∼ 5(rel.fast)
Duration 9, 30, 60 secs
Diversity of content 17
Encoder mpeg4, mpeg2, H.264
Container avi, mp4, mp2, (m)ts, yuv
Number of Videos 2852 : 210 (LIVE) + 362 (UDP-

Stream) + 2280 (UTrailers)

The videos include most genres: action, adventure, drama,
sports, games, music videos, romance, thriller, animation, edu-
cation, etc. The collected video trailers include 90% of popular
movies released in the past 3 years. Each video trailer is
reproduced for each resolution type from 240p to 1080p. This
huge data set was evaluated by 183 people aged from 16 to
62 to measure MOS values depending on different resolutions
and freezing effects in the display of mobile devices. Over
183 users participated in the study and evaluated over 500
clips each. The mobile devices used for the subjective ratings
can support up to 720p (HD). The screen size of the mobile
devices are from 3.7 to 4.1 inches. This data collection and
processing task took over 120 days.

We choose a heterogeneous data corpus to cover the broad
range of mobile videos including different distortions, sizes
and content. The properties are summarized in Table I.

IV. INSIGHTS

We identify the main factors that affect the video acuity
in mobile videos: spatial distortions, freezing (buffering) and
video resolution. Spatial distortions are only present in UDP-
based services such as one-to-many video service, video chat
applications and live streaming services, while most popular
internet video services use TCP-based connections and have



TABLE II
ACCURACY PERFORMANCE TEST OF EXISTING METRICS IN THE FOUR

SCENARIOS : SVSD, SVMD, MVSD AND MVMD

Type TVM TVI Blck. Blur. BRIS. NIQE
SVSD 0.7129 0.8752 0.8085 0.7695 0.7259 0.2659
SVMD 0.8475 0.9145 0.8930 0.8425 0.8752 0.6321
MVSD 0.1359 0.6305 0.1077 0.1381 0.0814 0.1136
MVMD 0.0571 0.7395 0.0974 0.0403 0.0113 0.0876

no spatial distortions. Only freezing and resolution-switching
are experienced by the end users.

A. Insight on Distortions

Video connections over UDP are always vulnerable to
packet loss and delay/jitter. These network impairments def-
initely cause video distortions like blocking, blurring, par-
tial/whole blackout and color loss/change. However, existing
video quality metrics are designed to focus on a single
distortion. Therefore, they easily lose their accuracy when
they are exposed to different display impairments that they are
not designed to detect. By following experiments in the given
conditions, we test accuracy of the recent representative spatial
and temporal video metrics with various video distortion sets.

We configure four cases of video dataset depending on the
video content and type(/degree) of video distortions. Single
Video-Single Distortion (SVSD) is the case that different
degrees of a single type of distortion to a single video content.
In Single Video-Multiple Distortions (SVMD), we consider
the case when multiple distortions are applied across the same
video content. Multiple Videos-Single Distortion (MVSD) is
the case that different degrees of a single distortion are applied
across different videos. Multiple Videos- Multiple Distortions
(MVMD) is for a scenario where both the distortions and the
videos are variable.

The existing metrics work well with a single content or
single video, but the performance degrades when we vary
the content, shown in Table II. Temporal information-based
metrics (TVM or TVI) gives relatively higher correlation than
other metrics in most scenarios, but it is also not able to shows
consistent accuracy in all cases.
∗ Machine Learning model: Due to heavy computation

and high complexity, most spatial-based metrics and temporal
metrics based on motion-vector are not suitable for mobile
devices. Temporal information-based metrics cannot tell spe-
cific type of video distortions, but it is suitable for capturing
overall video distortions, as our experiments have shown in
Table II. Thus, we use frame-based temporal information by
difference of two consecutive frames [2] to capture temporal
information, called as Ti.

df =
1

HW

H−1∑
i=0

W−1∑
j=0

(Fn(i, j)− Fn−1(i, j))
2

Ti(n) = 10

fps∑
i=1

log10

(
c2

df (n)

)
where resolution size is represented with HW , fps for frame

TABLE III
PROPOSED MODEL GIVES IMPROVEMENT IN PERFORMANCE

IMPROVEMENT WHEN COMPARING VIDEOS ON ‘PER DISTORTION’ BASIS

Metrics / Dist. Type R S T W+A+B
WSNR 0.785 0.603 0.130 0.726
SNR 0.683 0.500 0.217 0.609

VSNR 0.812 0.583 0.324 0.790
VIF 0.867 0.629 0.077 0.876

MOVIE 0.819 0.742 0.157 0.802
TVI 0.806 0.699 0.305 0.768

SS-SSIM 0.667 0.517 0.237 0.660
MS-SSIM 0.734 0.637 0.310 0.738

NQM 0.822 0.545 0.242 0.852
UQI 0.498 0.269 0.279 0.656

VQM 0.712 0.540 0.340 0.763
Proposed 0.926 0.817 0.471 0.934

per second and c is for color depth. The Tis values obtained
from original video are compared with the Tid values of
reference video. The difference of two Ti values indicates
the video distortions, called as DTi. The DTi values are
accumulated, reported and compared with DTi of original
video per second. This difference will indicate the current
degree of user video quality experience during the video
service time. We call it TIPS (Temporal information score
Per Second).

DTi(t) =
|Tis(t)− Tid(t)|

Tis(t)

TIPSi(t) =
1

t

Tpt∑
t=1

{DTii(t)}

DC(df ) = 0, if df < 10−2

where Tpt for total playtime. No motion or freezing in a video
yields a value 0, called as discontinuity (DC), in calculating
differences (df ) in two continuous frames. For example, if
an original video has 5 DC and the stream video has 7
DC, the difference of 2 (7 − 5) DC indicates that freezing
distortions has occurred due to network delay or packet-
losses. DC enable to detect where and how long each freezing
happens by simply counting it (more specified in section of
freezing). Introduction of TIPS and DC does not require any
additional overheads or implementations in network layer like
tracking sequence number and subtraction of timestamps in
RTP packets of UDP stream and overheads for calculations of
packet arrival/delay/recover times in TCP-based connections.

Feature Vectors: To model distortions using a machine
learning model, we first select feature vectors:

• Tis : Ti of source video.
• Tid : Ti of destination video.
• DTi : Difference of DTis and DTid
• Tips : Ti Score per second
• DC : Number of discontinuity
• MOS : Subjective score
Feature selection was done using Information Gain [16]

criterion and computational analysis, details of which are
skipped for brevity.
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Fig. 2. Plot of MOS ratings for freezing events with
different frequency
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Fig. 3. Plot of MOS ratings for freezing events with
different position

Regression Tree: Our model is built using Bootstraping
aggregating (Bagging) [8], ensemble technique with reduced-
error pruning decision tree as the underlying regression model
to estimate MOS. The bagging ensemble technique is pre-
sented here because it was superior to models generated
using other techniques (e.g., multilayer perceptron, support
vector machines, linear regression, naive Bayes, reduced-error-
pruning decision trees and nave Bayes) in terms of predic-
tive accuracy. The bagging technique is an ensemble meta-
algorithm to improve the stability and accuracy in statistical
regression obtained by decision tree. The decision tree is based
on Information-theoretic criterion for selecting the nodes.
Once the tree is built, reduced error pruning is used, where
each node, beginning with the leaves, is replaced with its most
popular class. We divide the data for the model into n = 10
folds, where, n-1 folds are for supervised learning and one
fold is used to test the model for errors. The errors obtained
in a fold are added to the weights of nodes of next fold in
the training set. Ten-fold cross validation was used to evaluate
the model in order to ensure that the model was tested on
data that it had not seen while training, to minimize chance
for over-fitting. Statistical analysis was performed using Weka
3.6.10 and Matlab R2013a (Ver 8.1.0.604) software.

The proposed model is compared with different video qual-
ity metrics in each distortion categories, shown in Table III.
The abbreviations are explained in the Table I. This analysis
helps us to see that the proposed model has good expressive
power in terms of capturing the effects caused by different
distortions. Particularly, we observe a steep improvement in
the case of (W+A+B) distortions where correlation shows over
93% accuracy. Since packet-loss happens normally in bursty
ways, the lost video frames means missing information and
finally this degrades accuracy of a metric. We obtain similar
improvements on a ‘per video’ - SVSD or SVMD, but the
results are omitted of brevity. Figure 1 shows the plot for 250
HD videos with predicted values of our proposed model and
actual MOS values.

B. Insight on Freezing

The dominating HTTP-based internet videos like Netflix,
Youtube, Hulu, etc, do not experience the spatial distortions
such as blocking, blurring and color damages due to TCP
recovery schemes for packet losses and errors. Freezing is
the main distortion which can happen in the HTTP-based

video content services. Prior studies only use total freezing
time as a metric, not accounting for the type of freezing
events. Burst or uniform freezing as well as position of
freezing event (beginning or end of video) will impact acuity.
This motivates us to introduce two new factors in freezing
distortion - frequency (how it happens) and position (where
it happens).

Frequency: The first factor we consider is frequency of
freezing. For example - the same freezing event of total length
8 seconds can occur in two ways : 4 time×2sec-freezing or
2 time×4sec-freezing. In both cases, the fraction of video
freezing (length of freezing / total length of video) is same.
However, researchers have come across frequency effect in
word recognition tasks [6] which shows that repetition skews
the impression or perception of individual.

Position: The position of freezing can also be another factor
that affects visual acuity. Freezing can result in differences
on users’ evaluation depending on the position where freezing
happened. We gain this inspiration from psychological studies:
‘primacy effect’ - cognitive bias that primacy information pre-
sented in the beginning is likely to be recalled than information
presented later on, or ‘recency effect’ - earlier information is
easier to be recalled than later ones [12].

Setup / Observations: For frequency experiments, dif-
ferent freezing effects are distributed over the entire video
playback time with the same total freezing time (∼8sec, max
25%) but different combinations of intensity and frequency.
We consider three scenarios here : A (8×, 1sec), B (4×, 2sec)
and C (2×, 4sec).

In Figure 2, the results show that users are more sensitive
and uncomfortable to frequent − but − shorter freezing
events rather than less − but − longer freezing events. The
interesting thing is that the visual acuity difference between
[8×1sec, 2×4sec] is enough to change degree of user satis-
faction. This supports our hypothesis that frequency tends to
bring higher influence than intensity in visual degradation.

In the experiments for position factor in freezing, we split
each video into three granularities - BP (Beginning Position),
EP (End Position) and MP (Middle Position, not in BP and
EP). According to the plot diagram [1], first impression and
recent impression in a video are normally decided first 20%
and last 20% of video play timeline respectively. Thus, we set
BP for the first 20% of video playtime, EP for last 20% and
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Fig. 6. Plot of actual MOS ratings for each resolu-
tions (no resolution switches)

MP for the rest. A freezing effect is introduced in only one
of the three positions. The total freezing duration is 3sec out
of 30sec video. Figure 3 reports that freezing in start position
(BP) results in worse visual acuity than later-introduced ones.
This result is another example that supports the psycholog-
ical study of primacy effect [12]. Abandonment (or leaving
due to just changing-mind and content-disatisfaction) is not
considered in this experiment.
∗ Machine Learning model: Freezing is detected and mea-

sured by DC. Each freezing time (Tf ) and total freezing time
(Ttf ) can be derived as below:

Tf (i) =
|DCs(dfi)−DCd(dfi)|

{fps(i)|fps}

Ttf =

Tpt∑
i=1

Tf (i)

where DCs is for the number of DC in a source video,
DCd for a destination video, fps(i)(dynamic) or fps(fixed)
for frame per second and Tpt for playtime. DC is measured
and calculated every second so that it can track real timely
user’s video QoE depending on freezing effects. In Figure 4,
the graph in the bottom (received video) has 4 DCs when
network delays (2sec - 4 times) are given. The DC moves the
graph as long as the freezing motions are displayed due to
the given network delay conditions. This analysis enables to
detect exactly where and how long freezing events happens.
Features: From the above observations, we derive following
features for a machine learning model.

• Total freezing time : T̄tf
• Each freezing time : T̄f
• Frequency : Ḟf

• Position : BP( ~Pb), EP( ~Pe) and MP( ~Pm)
• Freezing ratio : F̃r ← T̄f

Tpt

• Subjective score : MOS

We combine all freezing datasets that are configured of
different combinations of freezing time [1s 1.5s 2s 3s 4s 8s],
frequency [1, 2, 4, 8 time(s)] and position [BP, MP, EP]. Total
643 subjective ratings were used to build our modeling.

Linear Regression : Following freezing model can be
obtained as output of the linear regression. The results are also
based on 10-fold cross validation. Let F̂AC give the estimated
value of acuity with freezing effects, using the following

TABLE IV
ACCURACY OF FREEZING EFFECT MODELING : REALTIME-TRACKING

USER QOE IN FREEZING EVENTS

Realtime-Tracking predicted MOS in Freezing
Correlation Coefficient 0.8175

Mean absolute error 0.2565

regression modeling:

F̂AC = α · Ḟf + β · T̄f + γ · ~Pb + δ · ~Pe + η · F̃r + λ (1)

for constants α(-0.2333), β(0.0598), γ(-0.8636), δ(0.1897)
η(1.5559) and λ(3.0551), showing that the position of MP
is irrelevant of freezing effect. We also test non-linear models
such as decision tree and naive Bayes, but they do not give
recognizable differences in performance. So, we choose a
linear regression technique. Table IV reports the freezing
model gives us over 81% accuracy in estimating visual acuity.
Figure 5 shows how users QoE degrades as network delay
conditions of Figure 4 are given. Our model enables to track
how users QoE reach to the final MOS value in the middle of
service, and this is validated by actual values obtained users
at each freezing event.

C. Insight on Resolution

Internet video offers multiple resolutions for each video
content depending on the network conditions between service
provider and end users. Resolution may impact visual acuity.
Previous work [5] has shown non-monotonic relationship be-
tween average bitrate and user engagement. Bitrate is usually
proportioned to video resolution, however, many factors such
as switches in resolution and video popularity, etc may affect
user engagement. In our work, we focus on video acuity and
conduct separate experiments to study the impact of (a) higher
resolution of video acuity and (b) online-resolution-switches
in video acuity. Thus, it is the first effort to study the impact
of resolution-change on user’s video watching experience.

Resolution switch: Assessment based on averaging resolu-
tions can not say how resolutions have been changed during
video playback time. The traditional method of ‘post-view’
is not suitable to predict real-timely visual acuity during
playback. This leads to missing interdependency/interaction
between resolution-switching.

For example, let us consider the following experiments
where we have a video played with resolution x for the
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Fig. 7. Compare User QoE in opposite cases of resolution-switches

first 15 seconds and resolution y for next 15 seconds. In the
given condition, we figure out how users react on resolution-
switching during video playback time. We select three types
of resolution mainly serviced in internet videos for mobile
devices - L (Low, 240p), M (Medium, 480p) and H (High,
720p). The applicants were requested to evaluate three MOS
values during playback time in the videos containing two
different resolutions. The first score is for the first part,
the second is for next part of video and last score is for
overall video quality (not average of the first and second
one). In order to prevent changing mind or abandonment
due to video content itself, applicants were requested not to
measure videos which are out of their interests. Applicants in
the experiments experience and evaluate 5 types of resolution
video clips respectively. The resolution 1080p is excluded in
this experiments because there are rare number of phones
which support screen size to display 1080p, and users do not
recognize between 720p and 1080p in mobile display.

In the case of no resolution-switches from start and end, it is
natural for users to have more satisfactions in higher bitrates
when no bitrate-switchings happen, shown in Figure 6. We
observed an increasing trend between MOS values and screen
resolution in the Figure 6. However, following observations
show that users’ satisfaction vary considerably depending on
how resolution have changed during the playtime.

Obervations Our results are plotted in Figure 7. Naive
refers to the MOS score by the users when there was no
resolution switch. For example - in Figure 7 (a) (left), part
1 of video clips, Naive refers to MOS score when a full L
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TABLE V
CORRELATION BETWEEN USER MOS AND PROPOSED MODEL IN

RESOLUTION-CHANGES

Realtime-Tracking predicted MOS in Resolution-switch
Corr. Coef. 0.871

Mean Abs.Err. 0.399

video was played for audience, and part 2 of video clips,
Naive refer to MOS score when a full M video was played for
audience. One may expect that a video with resolution-switch
from (L→M ) will have MOS score which is average of the
two. This is depicted as Naive in ‘overall’ legend. In another
set of experiments, the users gave us three MOS scores, one
for first half, one for second half and one for overall video.
The score for these blended videos are also shown in Figure 7
for all cases.

We make some key observations. Unlike the cases of freez-
ing, where we observed primacy effect, here we experience
that users tend to retain the last experience while watching
videos. In all the cases, increasing the resolution in second
half was helpful to boost MOS value, while a decrease in
resolution in second half leads to rapid degradation in MOS
than expected average value (Naive).
∗ Machine Learning model: Features From the above

observations, we derive following features for a machine
learning model :

• R{r1|r2} : set of two resolutions
• Or{r1 → r2} : order of two resolutions
• T{r1|r2} : played-time at each resolution
• Ti and DTi at R{r1|r2} : temporal information of each

resolution
• MOS : overall and instant subjective scores

For real application of a model in real world, it is significant
to detect resolution resolution-switch during playback time.
Figure 8 (a) draws Ti values of each resolution frame by
frame in the video (Need for Speed 2014), and (b) shows
distribution of Ti ratio values of videos. Ti values show the
consistent distance between resolutions, shown in Figure 8
(a). The small distances between resolutions become clearer
when it is presented by the proportion of each resolution to
1080p(max quality), shown in Figure 8 (b), which enable by
using classification algorithm to detect which resolution is in
service during the playback time.

Modeling We apply bagging regression tree to find
out accurate modeling for predicting better visual acuity in



TABLE VI
PERFORMANCE COMPARISON OF PROPOSED MODEL ACROSS ALL VIDEOS WITH ALL DISTORTIONS (GLOBAL; R+S+T+W+A+B)

Model WSNR SNR VSNR VIF MOVIE TVI SS-SSIM MS-SSIM NQM UQI VQM Proposed
Corr.Coef. 0.649 0.537 0.702 0.421 0.749 0.739 0.577 0.665 0.740 0.494 0.659 0.892

RMSE 0.677 0.751 0.628 0.562 0.589 0.571 0.719 0.662 0.597 0.751 0.682 0.412
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resolution-switching by the same way of our distortion mod-
eling. Table V reports that the proposed model for resolution
shows over 87% accuracy. Naive Bayes model does not show
better performance than decisionTree-based algorithm because
they do not find interdependent information between inputs. It
is also not suitable for linear regression to capture non-lineary
properties.

V. MOBILE VIDEO ACUITY

A real practical scenario in mobile video services necessi-
tates a robust and feasible model that can measure concurrent
complex distortions. We propose a comprehensive model with
the features derived by each model in the previous sections.

A. Acuity Modeling

In this section, we combine all factors causing various visual
impairments with newly derived features in order to make a
single framework that enables us to measure video acuity in
real-time. The vectors (V) from each model are denoted as
below: (duplicate feature vectors removed)

• Distortion (V) ← {Tis, Tid, DTi, Tips, DCs, DCd}
• Freezing (V) ← {F̂AC , T̄tf , T̄f , Ḟf , ~Pf and ~Pr}
• Res. (V) ← {R{r1|r2}, Or{r1 → r2}, T{r1|r2}}
• Format (V) ← {color depth (c), {fps(i)|fps}, Tpt}
• Subjective Score ←{MOS}

All types of distortions can happens discretely or simulta-
neously in practical scenario. It is required for a frame-
work to show the robustness in predicting user experience
when exposed to diverse distortions. Thus, we configure all
combinations of datasets which are represented and specified
by all factors mentioned in the each modeling. First, we
consider all combined spatial distortions with multiple videos
: MVMD (R + S + T + W and A + B) except events of
freezing and resolution changes. Table VI shows comparison
of the accuracy performances of video metrics and that our
proposed model shows more robust accuracy than the other
representative metrics (based on FR/ RR/ NR). Second, we
compare whole sets of distortions including freezing and
resolution-swtich. Since the other video quality metrics are not

TABLE VII
COMPARING MODELINGS WITH ALL COMBINED-FACTORS OF

DISTORTIONS

Model Proposed MLP LR DecisionStump
CorrCoef 0.7877* 0.6929 0.5905 0.4476

Mean Abs.Err. 0.5631 0.6738 0.8231 0.899
MLP (MultiLayer Perceptron) LR (Linear Regression)

able to capture freezing and resolution changes, we compare
our model built on bagging regression tree with other decision
tree algorithm and regression models such as Multi-Layer-
Perceptron (MLP), SMO, etc. We can identify how our feature
vectors behaves in different modelings and the accuracy of the
selected modeling. Table VII reports the accuracy of compared
models, and the proposed model is dominating with 78%
correlation which is higher than other schemes. Decision-based
algorithm, DS (decision stump) shows lower accuracy than
Linear Regression (LR) because simple decision-based rules
are not able to capture priorities obtained from interdependent
relationships of input factors. LR also could not show high
performance in predicting MOS when combining all features.
Figure 9 draws the example of actual and the predicted acuity
by our proposed model.

B. Acuity Application
In this work, we have proposed measuring visual acuity (due

to distortions, freezings and screen resolution). These obser-
vations help network/ service providers to learn the impact
of their streaming strategy (combined with wireless channel
effects) on the visual acuity to end user, and make necessary
changes. However, it is important that such computations are
feasible on the end devices.

We implement a middleware of TIPS-scoring in a server
side and application of Ti and DC in a client side, shown in
the Figure 10. The testbed is configured with a single wireless
hop between a content server and a mobile device. WLAN
configuration for the testbed is IEEE 802.11n 2.4GHz and
minimum end-to-end delay is 0.604 ms. FFmpeg [7] is used
for coding/decoding and videoLAN [23] is used for video
streaming connection. A Free BSD-based iMAC server (8GB,
3.2GHz Intel Core i3) was used for streaming to iPhone 4 (1
GHz Cortex-A8) and iPhone 5s mobile device.

We test different types of video content to calculate TIPS
computational time in this environment. We configure and run
the testbed under the scenario detailed in Figure 10. (1) The
implemented application (app) in iPhone 4/5 obtains video
information (fps, bitrates, etc) from the server when a video
streaming session is established. (2) With the frame-per-second
(fps) offered by the sever, the app can decide the capture-rate
to obtain video frame information loaded in memory. (3) The
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source and destination Ti and DC values are calculated and
sent to a server. (2-3) steps are repeatedly processed during
the playtime. (4) The server calculates feature vectors to be
applied in the proposed model. (5) Finally, it reports TIPS
score and predicted user QoE per second. The computation
time and memory usage includes loading the received video
frame to memory and pixel-wise computations to obtain Ti
and DC values. Table VIII reports computation time and mem-
ory usage in iPhone 4 and 5s. The computational complexity
and memory usage are directly proportional to the resolution
of video. However, even a full HD video (1920×1080 pixels)
can be processed in real time. It can be seen that our app
runs on iPhone4 conveniently in parallel with video streaming
application and can provide real-time feedback to the remote
streaming server.

TABLE VIII
COMPUTATION TIME FOR PROCESSING ONE SECOND OF VIDEO AT 30 FPS
AND MEMORY FOR RUNNING MVM IN MOBILE DEVICE (IPHONE 4 AND

5S)

Resolution Proc. Time(sec) Memory
iPhone 4 iPhone 5s Usage(Kb)

352*288 0.114 0.0789 2148
960*640 0.339 0.187 4101

1920*1080 0.592 0.386 6738

VI. CONCLUSIONS

In this work, we proposed a framework for end-user side
measurements which allows us to detect visual acuity. We
analyzed different mobile video distortions and extracted im-
portant features. From the observations, we showed that user
QoE varies depending on where and how long freezing hap-
pens and how resolutions switch. We have provided features
on how to detect freezing and resolution changes without
additional implementations or overheads, which enable to
detect realtimely display conditions to track the variation of
user QoE. We showed the feasibility of such computation on
mobile devices and proposed a bagged regression tree based
model for obtaining visual acuity.
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