
Dynamic Defense Strategy against Advanced
Persistent Threat with Insiders

Pengfei Hu∗, Hongxing Li∗, Hao Fu∗, Derya Cansever† and Prasant Mohapatra∗

∗Department of Computer Science, University of California,Davis, USA,
Email: {pfhu, honli, haofu, pmohapatra}@ucdavis.edu

†US Army CERDEC, USA
Email: derya.h.cansever.civ@mail.mil

Abstract—The landscape of cyber security has been reformed
dramatically by the recently emergingAdvanced Persistent Threat
(APT). It is uniquely featured by the stealthy, continuous, sophis-
ticated and well-funded attack process for long-term malicious
gain, which render the current defense mechanisms inapplicable.
A novel design of defense strategy, continuously combatingAPT
in a long time-span with imperfect/incomplete information on
attacker’s actions, is urgently needed. The challenge is even
more escalated when APT is coupled with theinsider threat
(a major threat in cyber-security), where insiders could trade
valuable information to APT attacker for monetary gains. The
interplay among the defender, APT attacker and insiders should
be judiciously studied to shed insights on a more secure defense
system. In this paper, we consider the joint threats from APT
attacker and the insiders, and characterize the fore-mentioned
interplay as a two-layer game model,i.e., a defense/attack game
between defender and APT attacker and an information-trading
game among insiders. Through rigorous analysis, we identify the
best response strategies for each player and prove the existence
of Nash Equilibrium for both games. Extensive numerical study
further verifies our analytic results and examines the impact of
different system configurations on the achievable securitylevel.

I. I NTRODUCTION

We are in a new era of Cyber security with the arising chal-
lenge from Advanced Persistent Threats (APT) [1]. Different
from the traditional Cyber security threats, APT attackersare
capable to adopt anyadvancedactions in astealthymanner
with a goal of long-termutility gain, instead of anyone-shot
benefit. Hence, these unique properties render the existing
security solutions [1] inapplicable for APT, since they are
confined by one or more of the following limitations: i) each
attacker has a discrete and limited set of actions for one
specified type of attacks (e.g., DoS attack and password-based
attack), violating the feature of “advanced” actions in APT
which could include the combination all possible types of
attacks; ii) the security game runs in a discrete-time fashion
and the defender and attacker take actions eitherconcur-
rently or alternately in each time slot, which are far from
the real practice for APT since the attacker/defender cannot
be accurately coordinated to make a move as the attacker
actscontinuously(not discretely) andstealthily1; and iii) the
security problem is modeled as aone-shotstatic game, which

1There is no way to know the opponent’s time to take an action and to
react accordingly eitherconcurrentlyor alternately.

cannot characterize thepersistent interplay among players
for their long-termutility gains, or arepeatedgame, whose
system status (e.g., how much portion of the system has
been compromised) remains static and cannot be impacted by
players’ behaviors.

To sum up the above, APT calls for a framework which
could characterize thecontinuous interplay of advanced
defense-attack on system resources withimperfect/incomplete
opponent’s actions in along time-span. This study involves i) a
model to accurately capture the continuously evolving process
of the system status and how it is influenced by attacker’s and
defender’s actions; and ii) dynamic defense/attack strategies
that judiciously and continuously take actions in order to
minimize/maximize the long-term system damage without
knowing the opponent’s behavior.

The challenge is further escalated when we consider the
threats from the insiders, which is an inevitable issue for cyber
security. The 2013 US State of Cybercrime Survey [2], which
is conducted by the U.S. Secret Service, CSO magazine and
Carnegie Mellon University Software Engineering Institute’s
CERT, states that23% of the electronic crime events are
caused by insiders while the damage/cost resulting from insid-
ers (34%) is even more severe than outsiders (31%). It implies
that insiders have more threat to the system/organizationsthan
the conventional outsider does.

As most insiders are driven by economic profits while
APT attacker is always well funded [1], insiders are prone to
be utilized for the APT attacks through information-trading.
Existing literature on insider threats merely focuses on the
insider-detection mechanism at the defender side [3], without
considering the insiders’ inherent profit-maximizing objectives
and their consequentially proactive and dynamic actions soas
to achieve their goals. Current efforts tackle the threats from
outside attackers and insiders independently and separately,
failing to capture the interconnection between them.2 To
the best of our knowledge, this is the first reported work
to investigate the joint interplay among defender, attacker
and insiders within one framework, by identifying the best
response strategies for each of them to pursue their long-term

2Without the outside attacker, the insider has no way to sell the information
and thus to make profits. Meanwhile, with the help of insiders, the outside
attacker could launch more effective attacks.
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objectives, respectively,i.e., minimizing (or maximizing) the
system damage for defender (or attacker) and maximizing the
profit gained from information trading for insiders. However,
it is nontrivial to bring insiders into the picture, and to evaluate
their impact. Each selfish insider will rationally and indepen-
dently decide its actiondynamically, i.e., to which extent the
inside information should be traded at each time point, in
order to maximize itslong-term gain from the information
trading. An over-aggressive transaction may lead to the risk
of exposure to the system defender, which results in a cost
of being fired or even sued, while an over-conservative action
may hurt its profit gain.

In this paper, we investigate the joint threats from theAPT
attackerand insidersover a long time-span within a general
framework. We characterize the interplay among defender,
attacker and insiders as a two-layer differential game in an
open-loop setting: i) the defense/attack game between the
defender and the APT attacker; and ii) the information-trading
game among multiple insiders based on the attacker’s needs.
We model the evolving process of the system status as a
differential equation defined over the actions by each player,
and identify the optimal defense/attack strategies for each
player in the defense/attack game for both static and dynamic
cases as well as the optimal information-trading strategies for
each insider in its dynamic case. Through rigorous analysis,
we prove i) the existence of the Nash Equilibrium for the
defense/attack game; and ii) the existence and uniqueness of
the Nash Equilibrium for the information-trading game among
insiders. Those results shed insights on the design of defense
strategies towards a securer system. The proposed framework
is also evaluated with numerical studies in practical settings.

The contribution of this paper can be summarized as fol-
lows,

⊲ As a first study in the literature, we consider the joint threats
from the APT attacker and insiders, and the impact of the
long-term objectives of defender, attacker and insiders ontheir
continuous and dynamic actions.

⊲ We propose a general framework of two-layer differential
game: one between the defender and the attacker, and the
other one among multiple insiders. Optimal response strategies
are identified for the defender and attacker in both static and
dynamic cases while the optimal information-trading decisions
are dynamically made for each insider, so as to optimize their
long-term objectives, respectively.

⊲ We rigorously analyze the proposed framework, and prove
the existence of the Nash Equilibrium for the defense/attack
game as well as the existence and uniqueness of the Nash
Equilibrium for the information-trading game.

⊲ Our numerical study further examines the impact of different
system configurations on the achievable security level.

The remainder of the paper is organized as follows. We
discuss related work in Sec. II and present the problem
model in Sec. III. Detailed algorithm design and performance
analysis are presented in Sec. IV. The algorithm performance
is evaluated via an empirical study in Sec. VI. Finally, we

conclude the paper in Sec. VII.

II. RELATED WORK

A. Advanced Persistent Threat

The cyber security domain has been changed dramatically
by a new class of threats, which is referred asAdvanced
Persistent Threatby industry. The first well known APT case
may beStuxnet[4], which is designed to modify industrial
Programmable Logic Controllers and to force them to diverge
from the normal behaviors by exploiting a vast majority
of security holes and tools. Another famous APT case is
Operation Aurora [5], which targets at Google and dozens
of other companies. The APT attacker can exploit the zero-
day vulnerability in the Internet Explorer. Cole [1] introduces
the definition of APT and the unique characteristics making
it different from traditional security issues. Dijket al. [6]
propose a game theoretic approach to model thestealthy-
takeoverproperty of APT and provide several guidelines for
the system design based on the analytic results.

B. Insider Threat

Insider threat is a major threat bringing severe damage to
the cyber security [2]. Martinez-Moyanoet al. [7] address
the insider threat through a dynamic model based on the
behavior theory and explain the model with the data related to
information technology security violations. Colwillet al. [8]
investigate several primary issues related to insider threat,
which include the nature of the loyalty and betrayal, cultural
factors, changing economic and social factors,etc. Based on
the above, proactive security actions rather than the reactive
actions should be taken to deal with the insider threats. A
proactive insider threat detection approach which combines
Structural Anomaly Detection from social and information net-
works and Psychological Profiling of individuals is proposed
in [9]. Mathewet al. [10] present a feature-extraction method
rather than the traditional query expression analysis to model
user’s access pattern which could be applied to detect the
insider attacks. A detailed survey on the proposed approaches
against the insider threats in the security research literature is
summarized in [3].

C. Game Theory in Cyber Security

Game Theory has been widely applied to solve a variety of
security and privacy issues in computer and communication
networks. A game theoretic model of the interaction between
a intruder and the operator of the smart grid is presented in
[11]. Alpcan and Buchegger [12] investigate the security issues
of the vehicular networks within a game theoretic framework
and identify the optimal defensive strategy respect to threats
posed by malicious attackers. Alpcan and Tamer [13] address
the intrusion detection problem in networks and formulate it
as a noncooperative game. They analyze the Nash equilibrium
and its implications behind. The security of networked control
systems (NCS) is addressed in [14] via integrating it with
the economics of security to deal with the interdependence of
security-related risks. Anderson and Moore [15] investigate the
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economics of information security and show that incentivesare
becoming as important as technical design in order to achieve
dependability.

Different from all the above discussions, this paper is the
first in literature to consider the joint threats from APT attacker
and insiders, and presents provably optimal response strategies
for each player in a two-layer security game.

III. PROBLEM MODEL

In this section, we present a general model of the joint APT
and insider threat, based on which we formulate the interplay
among the defender, APT attacker and multiple insiders as a
two-layer differential game in Sec. IV. Important notations are
summarized Table I.

A. System Model

We consider a system under the joint threats from APT
attacker and the insiders. There are four components in the
system: the system resource, one APT attacker, one defender,
andn insiders. The target of the threats is the system resource,
which could include the fire-wall, network, software and
operation system etc. Fig. 1 illustrates the interplay among
the defender, APT attacker and insiders.

Attacker

Defender

Resources

attack rate

recapture rate

...Insider 1 Insider 2 Insider n

u1(t)
u2(t)

un(t)

Compromised

Resources

Fig. 1. Illustration of the interplay among the defender, APT attacker and
insiders.

⊲ The APT attacker aims to obtain malicious gain from
the system by launching attacks and compromising partial/all
system resource. The cost per attack could decrease if the APT
attacker has inside information about the system, which can
be purchased from the insiders.

⊲ The insiders are selfishly and independently maximizing
their individual monetary profits via selling the inside informa-
tion (which could better assist the APT attacker to compromise
the resources) to the APT attacker.

⊲ Naturally, the system defender’s task is to recapture the
compromised resource so as to minimize the damage brought
by the APT and insider threats.

Here, we give a general resource model and normalize the
total system resource as the value of 1. Letx(t) ∈ [0, 1]
denote the fraction of compromised resources at timet, with
0 indicating a system fully under protection while1 for a

TABLE I
IMPORTANT NOTATIONS.

α Attack rate at which the attacker grabs the system
resources

β Recapture rate of defender to recover the compro-
mised resources

ẋ(t) Evolving rate of the system state at each time point
x(t) System state
cA(·) Instantaneous cost of attacker to launch attack
cD(·) Instantaneous cost of defender to recapture compro-

mised resources
Q(t) Information demand of attacker at timet
µi(t) Information sold by the insideri at time t
f(·) The function determining the information demand of

attacker based on the attack rate
p(t) The information price
p̂(t) The nominal price of information
ṗ(t) The variation of price at each time point
C(·) The risk of being detected by defender when selling

information
πi(·) Instantaneous profit of insider

completely compromised system. We callx(t) as thesystem
stateor system security levelat time t.

The state of the system is directly driven by the actions of
the defender (D) and APT attacker (A), and evolves according
to the following dynamics,

ẋ(t) = α · (1 − x(t))− β · x(t), andx(0) = x0, (1)

whereẋ(t) is the evolving rate of the system state at each time
point, α ∈ [0, 1] is the attack rate at which the attacker grasp
the resources,β ∈ [0, 1] (which is related with the amount
of traded information from the insiders, and to be discussed
in Sec. III-C) is the recapture rate of defender to recover
the compromised resource.(1 − x(t)) is the percentage of
resources under the defender’s control, thusα · (1 − x(t))
denotes the percentage of resources seized by the attacker at
time t; x(t) is the fraction of compromised resources, thus
β ·x(t) is the percentage of recaptured resources by defender.
The system boots up with an initial statex0 at time 0.

If the control ratesα andβ of the attacker and defender stay
constant, it indicates that they have no feedback on the system
states during the runtime of the system, and cannot adapt their
strategies accordingly. We take account of this scenario inthe
static casein Sec. IV.A. The more practical situation is that
the control actions of the attacker and defender may vary based
on the state of the system at different timet, which can be
denoted asα(t) andβ(t). This scenario will be addressed in
the dynamic casein Sec. IV.B.

B. Cost Model for Attacker and Defender

After the deployment of the system, the defender and
attacker will take a series of actions to minimize their own
cost over a long time-span. We model the costs for attacker
and defender as follows.

Attacker : For APT attacker, it can launch attacks to com-
promise the resource. By definition [1], APT attacker intends
to gain malicious benefits for along term from the targeted
system. Hence, it behavesstealthilyso as to avoid being caught
by the defender’s detection. Its instantaneous cost shouldbe



4

composed of two parts: a) the risk of being detected by
the defender, which is related to the attack rateα; and b)
the portion of secure resource, the complement of which
is the compromised resource or the attacker’s utility gain.
We use quadratic cost model, which is widely used [16], to
characterize the costs. The instantaneous cost of the attacker
is as follows,

cA(x(t), α, β, t) = rA(1− x(t))2 + qAα
2(1− x(t))2, (2)

whererA and qA are unit costs, which are positive constant
values for the secure resource and the risk of being caught. The
instantaneous cost function of the former one depends on the
state of the system, which is depicted by the first part of right
hand side of Eq. (2),i.e., rA(1−x(t))2. And qAα

2(1−x(t))2

is the expected cost of being detected by the defender when
launching attacks at timet.

Defender: For the defender, we assume that it can continu-
ously scanpart of the system3. Once compromised resources
are detected, the defender recaptures the resources,e.g., chang-
ing the password, refreshing the virtual machine, etc. The
defender’s objective is to minimize the damage brought by
the compromised resources. There are two components for the
defender’s instantaneous cost: a) the operational cost to scan
and recapture the compromised resources, which is related to
the recapture rateβ; and b) the damage of the compromised
resources. Again, quadratic model is utilized to model the
costs. The instantaneous cost of the defender is modeled as
follows,

cD(x(t), α, β, t) = rDx(t)
2 + qDβ

2x(t)2, (3)

whererD andqD are unit cost, which are constant values. As
shown in(3) by the partrDx(t)2, the cost of the compromised
resourcescD is related to the system status.qDβ2x(t)2 is
the cost when the defender takes action to recapture the
compromised resources at rateβ.

C. Profit Model for Insiders

Under the APT scenario, it is a common practice for
the attacker to obtain the foothold inside the system for
future attacks [1]. As APT attacker is well-funded and the
insiders always pursue higher monetary profits, it is an efficient
approach for the attacker to purchase confidential information
(such as passwords, etc.) from insiders in order to launch
attacks. LetQ(t) be the total information demanded by the
attacker at timet. It can be determined by the attacker’s attack
rateα(t), with Q(t) = f(α(t)). Here, we consider a general
model of functionf(·), which is a non-decreasing function of
α(t). Let the information sold by the insideri at time t be
ui(t) ≥ 0.

According to the linear inverse demand function [17] , the
nominal price of information at timet can be evaluated as
follows,

p̂(t) = A(Q(t)) −

n∑

i=1

ui(t), (4)

3As the system under APT scenario is commonly huge and complex, it is
too expensive for the defender to scan the whole system

whereA(·) is a non-decreasing function ofQ(t) and n is
the number of insiders in the current system. For simplicity,
we denoteA(·) as A. However, the nominal price is not
the current market price, at which the inside information is
traded. The reason is that, the market price is commonly sticky
[18] and cannot converge to the nominal price immediately
with the real-time updates on the information demand of the
attacker,i.e., Q(t), and available information at insiders,i.e.,∑n

i=1 ui(t). According to [19], the market price evolves with
the following dynamics,

ṗ(t) = s(p̂(t)− p(t)), (5)

where s ∈ [0,∞) is a constant value determined by the
stickiness of the market, and controls the convergence speed
to the nominal price.

As the defender monitors the system continuously, insiders
must take the risk, of being detected by the defender when
they sell information to the attacker. The instantaneous risk
(cost) function [20] of each insider is defined as follows,

C(ui(t)) = cui(t) +
1

2
ui(t)

2, ∀i ∈ [1, n], (6)

wherec is the unit risk (cost).c is under the influence of the
scan strategy of defender, that means if the defender adopts
more active detection strategy, the risk of selling information
for the insiders will be larger.

The instantaneous monetary gain for each insider by trading
inside information isp(t)ui(t). Hence, the instantaneous net
profit of the insideri is

πi(t) = p(t)ui(t)− (cui(t) +
1

2
ui(t)

2). (7)

IV. GAME BETWEEN ATTACKER AND DEFENDER

In this section, we present the solution to the defense/attack
game between the APT attacker and the defender in two
settings: a) the actions of each player are static,i.e., each
player cannot change their action to adapt the state of the
system; and b) the actions of each player are dynamic, which
means each player can dynamically change their control action
according to the state of the system to take the optimal actions.

A. Static Actions

In this subsection, we address the scenario where the rate of
each action is constant. All the rates are pre-configured before
the deployment of the system.

⊲ For the attacker, it would try its best to grab as much resource
as possible with the least cost of attacking over the long term.
Based on the instantaneous cost Eq. (2), the cost function of
attacker can be modeled as follows,

JA(α, β) = lim
T→∞

1

T

∫ T

0

cA(x(t), α, β, t)dt. (8)

⊲ The target of the defender is to protect its resources from
the attacker while minimizing the cost of recapturing the
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compromised resources. Based on Eq. (3), the cost function
of defender can be modeled as follows,

JD(α, β) = lim
T→∞

1

T

∫ T

0

cD(x(t), α, β, t)dt. (9)

Accordingly, we have the definition of the Nash Equilibrium
for this game as follows.

Definition 1: Consider the attacker-defender game defined
by the system dynamics (1) and the cost functions (8) and (9).
A set of strategies{α∗, β∗} constitutes a Nash Equilibrium if
and only if

JA(α
∗, β∗) ≤ JA(α, β

∗),

JD(α
∗, β∗) ≤ JD(α

∗, β).

In the dynamic system, we have assumed that the whole
system is fully under defender’s control at the beginning,
i.e., x(0) = 0. As Eq. (1) is a first order nonhomogeneous
differential equation with constant coefficients, there exists the
general solution to it. By solving it, we can derive the state
of system at timet as follows,

x(t) =
α

α+ β
(1− e−(α+β)t). (10)

By substituting Eq. (10) into Eq. (8), we can get the cost
function of the attacker as follows,

CA(α) = (rA + qA · α2)(
β

α+ β
)2.

The aim of the attacker is to minimize its cost function through
an optimal action. Hence, the optimization problem for the
attacker is

min
α

CA(α)

s.t. α ∈ [0, 1]

We solve the optimal control for the attacker with the
following lemma.

Lemma 1:The best strategy of the attacker to the defender
is,

α∗ =

{
rA

qA·β
rA/qA ≤ β,

1 rA/qA > β.

Proof: Taking the derivative ofCA(α) w.r.t. α,

dCA

dα
=

2β2

(α+ β)3
(qA · α · β − rA)

Let α = 0, dCA

dα
is negative. Thus there are only two situations

for dCA

dα
: (1) staying negative; or (2) striking the horizontal

axis once and only once at the pointα = rA
qA·β

. For the first
situation, it is obvious thatCA(α) is nonincreasing, thus it
reaches the minimum at the pointα = 1. For the second
situation, if rA

qA·β
≤ 1, CA(α) reaches the minimum at the

pointα = rA
qA·β

, otherwise, it arrives at the minimum atα = 1.

Similarly, The optimal control strategy for the defender is
found with the following lemma.

Lemma 2:The best strategy of the defender to the attacker
is,

β∗ =

{
rD

qD ·α
rD/qD ≤ α,

1 rD/qD > α.

Based on the Definition 1 and Lemmas 1 and 2, we can
derive the existence of Nash Equilibrium in the static case
with the following theorem.

Theorem 1:In static case, the Nash Equilibrium will fall
into the following four scenarios: (1)α∗ = rA/qA andβ∗ = 1,
when rA/qA < rD/qD < 1; (2) α∗ = 1 and β∗ = rD/qD,
when rD/qD < rA/qA < 1; (3) α∗ andβ∗ are on the curve
α∗ · β∗ = r/q, when rA/qA = rD/qD = r/q < 1; and (4)
α∗ = 1 andβ∗ = 1, whenrD/qD > 1 andrA/qA > 1.

Proof: The definition of Nash Equilibrium is the inter-
section of each player’s best response. Thus it is obvious to
derive this Theorem from Lemmas 1 and 2

Remarks: The instantaneous cost of each player includes two
categories: the cost incurred from uncontrolled resourcesand
the cost of actions. The constant valuesri and qi (where
i ∈ {A,D}) can be regarded as weights of each kind of
cost. Hence,rA/qA < rD/qD indicates that the defender
considers the first kind of cost more important than the second
compared with that of the attacker. Thus, the defender will tend
to decrease the compromised resources through recapturingat
a high rate. As its counterpart,rA/qA > rD/qD will result in
a higher attack rate by the APT attacker.

B. Dynamic Actions

In this subsection, we address the more challenging yet
practical scenario where the actions of the attacker and de-
fender could change along with the state of the system. In
this scenario, the strategies of each player is more flexibleas
it could change its actions continuously to achieve its long-
term goal. Here, the actions of the attacker and defender are
denoted asα(t) andβ(t), respectively, to emphasize that they
could change with time.

The cost function of each player in the dynamic case is
similar with that of the static case except that we only consider
the finite time horizon. The aim of the attacker is to grab as
much resource as possible with the minimum cost in the entire
time-span. Its cost function could be defined as follows,

JA(α(t), β(t)) =

∫ T

0

cA(x(t), α(t), β(t), t)dt. (11)

As contrary, the defender’s goal is to recapture the compro-
mised resources with the minimum cost in this time-span,i.e.,
the defender minimizes the following cost function,

JD(α(t), β(t)) =

∫ T

0

cD(x(t), α(t), β(t), t)dt. (12)

The Nash Equilibrium of this dynamic defense/attack game
can be defined as follows.

Definition 2: Consider the defense/attack game defined by
the system dynamics (1) and the cost functions (11) and
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(12). A set of strategies{α∗(t), β∗(t)} constitutes a Nash
Equilibrium if and only if

JA(α
∗(t), β∗(t)) ≤ JA(α(t), β

∗(t)),

JD(α
∗(t), β∗(t)) ≤ JD(α

∗(t), β(t)).

The necessary conditions for the existence of the Nash
Equilibrium and its corresponding optimal strategy for each
player are derived in the following theorem.

Theorem 2:Consider the defense/attack game defined by
the system dynamics (1) and the cost functions (11) and
(12). If a set of strategies{α∗(t), β∗(t)} constitutes a Nash
Equilibrium, andx∗(t), 0 ≤ t ≤ T is the corresponding state
trajectory, there exist two costate functionsλA(t) andλD(t),
such that

ẋ∗(t) = −
λA(t)

2qA
−

λD(t)

2qD
, x∗(0) = x0, (13)

λ̇A(t) = 2rA · (1 − x∗(t)) +
λA(t) · λD(t)

2qD · x∗(t)
,

λA(T ) = 0, (14)

λ̇D(t) = −2rD · x∗(t)−
λA(t) · λD(t)

2qA · (1− x∗(t))
,

λD(T ) = 0, (15)

and the optimal actions of each player should fulfill

α∗(t) = −
λA(t)

2qA · (1 − x∗(t))
, (16)

β∗(t) =
λD(t)

2qD · x∗(t)
. (17)

Proof: Using the Pontryagin minimum principle, the
Hamiltonian function for each player is defined as follows,

HA(x(t), α(t), β(t), λA(t)) = rA(1− x(t))2 (18)

+ qAα(t)
2(1 − x(t))2 + λA(t)[α(t)(1 − x(t)) − β(t)x(t)],

HD(x(t), α(t), β(t), λD(t)) = rDx(t)
2 + qDβ(t)

2x(t)2

+ λD(t)[α(t)(1 − x(t)) − β(t)x(t)]. (19)

Once the Hamiltonian function has been constructed, the
optimal action of each player should satisfy

α(t) = argminHA(x(t), α(t), β(t), λA(t)),

β(t) = argminHD(x(t), α(t), β(t), λD(t)).

To solve the above problem, we take the second order partial
derivative of Eqs. (18) and (19) w.r.t.α(t) andβ(t), then we
get ∂2HA

∂α2 = 2qA(1 − x(t))2 ≥ 0 and ∂2HD

∂β2 = 2qDx(t)
2 ≥

0. Due to the convexity, take the partial derivative Eqs. (18)
and (19) w.r.t.α(t) and β(t) and let ∂HA

∂α
= 0 and ∂HD

∂β
=

0, then we could obtain the unique solutions (16) and (17).
According to the Pontryagin minimum principle, the costate
function should satisfy

λ̇i(t) = −
∂

∂x
Hi(x(t), α(t), β(t), λi(t)) (20)

where i ∈ {A,D}. By substituting Eqs. (16) and (17) into
Eqs. (1) and (20), we could derive Eqs. (13)-(15).

Remarks: According to Theorem 2, the optimal actions of the
attacker and defender are only related to the system statex(t)
and system parameters. Each player does not need to know its
opponent’s action. Hence, our solution can model the unique
feature ofstealthybehavior in APT.

A series of conditions in Theorem 2 are the necessary
conditions that optimal actions of the attacker and defender
must satisfy. They could be applied to generate the candidate
solutions. Further, we require there are no conjugate points
in the set of Eqs. (13), (14) and (15). Next, we prove the
existence of the Nash Equilibrium for our dynamic game as
follows.

Theorem 3:Nash Equilibrium exists in the attacker-
defender game.

Proof: Substituting the candidate solutions (16) and
(17) into Eqs. (18) and (19) respectively, we could ob-
tain the Hamiltonian functionsHA(x(t), λA(t), λD(t)) and
HD(x(t), λA(t), λD(t)) which do not contain actions of at-
tacker and defender. Taking second order partial derivative of
the Hamiltonian functions w.r.t.x(t), we can obtain∂

2HA

∂x2 =

2rA > 0 and ∂2HD

∂x2 = 2rD > 0. Since the Hamiltonian func-
tions are convex w.r.t.x(t), the candidate solution constitutes
the Nash Equilibrium [21].

Even though Theorems 2 and 3 provide the necessary and
sufficient conditions for the solution of game between attacker
and defender, the optimal trajectory of system statex∗(t)
and the optimal actions of attacker and defender,i.e., α∗(t)
and β∗(t), cannot be solved explicitly since the differential
equations of state and costate are unsolvable. Here, we provide
an iterative numerical solution which is based on thesteepest
descentmethod to solve the game between the attacker and
defender.

We first divide the time interval[0, T ] into N subintervals
[t1, t2, · · · , tN ]. Based on Theorem 2 and its proof, we can
find that the optimal actions of attacker and defender,i.e., α∗

andβ∗, are obtained when both partial derivatives∂HA

∂α
= 0

and ∂HD

∂β
= 0 because of the convexity. Now supposing the

partial derivatives are not equal to0, i.e. the actions are not
optimal, we should update each action at the direction of its
steepest descent in each iteration, which means theith round
of action should be updated to the(i+ 1)th round as follows,

α(i+1)(tk) = α(i)(tk)− τ ·
∂HA

∂α
, (21)

β(i+1)(tk) = β(i)(tk)− τ ·
∂HD

∂β
, (22)

whereτ is the step size andk = [1, 2, · · · , N ]. The iteration
terminates when|∂HA

∂α
| < ǫ and |∂HD

∂β
| < ǫ, whereǫ is the

error tolerance. In order to update the action of attacker and de-
fender, the state and costates trajectory{x(i)(tk)}, {λ(i)

A (tk)}

and{λ(i)
D (tk)} in the ith round should be calculated first. We

can numerically integrate the state differential equations (1)
from time t1 to tN , with the initial statex(i)(0) = x0. As the
costates at timet = 0 are unknown, the differential equation of
costates (20) should be integrated backward from timetN to
t1. The initial costatesλ(i)

A (tN ) andλ(i)
D (tN ) can be calculated
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according to Eqs. (16) and (17). Algorithm 1 summarizes this
numerical approach.

Algorithm 1 Steepest Descent based Algorithm
Require: initial system statusx0.
Ensure: α∗(t), β∗(t), x∗(t).

1: Dividing the time interval [0, T ] into N subintervals.
Randomly generating the initial controls of attacker and
defender at each time slot:{α0(tk)} and{β0(tk)}, where
k = 1, 2, · · · , N .

2: while |∂HA

∂α
| > ǫ or |∂HD

∂β
| > ǫ do

3: Integrating the system state dynamics from0 to T
according toEq. 1 with the initial statusx(i)(0) = x0

and store the the trajectory{x(i)(tk)}, where k =
1, 2, · · · , N .

4: Integrating the costates backward according to Eq. (20)
with the initial valueλ(i)

A (tN ) = −2qA · α(i)(tN )[1 −

x(i)(tN )] andλ(i)
D (tN ) = 2qD · β(i)(tN )xi(tN ), storing

the costates{λ(i)
A (tk)} and {λ

(i)
D (tk)}, where k =

1, 2, · · · , N .
5: Updating the controls of attacker and defender accord-

ing to Eqs. (21) and (22).
6: end while

Theorem 4:Once the the system becomes steady, the best
strategies of the attacker and defender in dynamic the case are
as follows,

α∗
s =

{
rA

qA·βs

rA/qA ≤ βs,

1 rA/qA > βs.
(23)

β∗
s =

{
rD

qD ·αs

rD/qD ≤ αs,

1 rD/qD > αs.
(24)

whereαs andβs are the actions in the steady state of system.
The stable system state is as follows,

xs =
αs

αs + βs

, (25)

Proof: When the system is under steady state, the fraction
of compromised resources will not change any more,i.e.
ẋ(t) = 0. According to Eq. (1),αs ·(1−xs(t))−βs ·xs(t) = 0.
Hence, we can obtainxs = αs/(αs + βs).

In the steady state, no one changes its strategy, for the
defender,i.e., β̇s = 0. By differentiating Eq. (17) w.r.t.t and
let it be 0,

β̇s =
λ̇D · xs(t)− λD · ẋs(t)

2qD · x2
s(t)

= 0.

Substituting Eqs. (15), (1) andλD = 2qDβsxs(t) (according
to Eq. (17)) into the above equation, and after simplification,
we could obtain

−rD ·xs(t)+qD ·β2
s ·xs(t)+2qD ·αs ·βs ·xs(t)−qd ·αs ·βs = 0.

After substituting xs = αs/(αs + βs) into the above
equation and necessary simplifications, we can obtain−rD ·

αs + qD · αs · βs = 0. Hence, we can arrive at Eq. (24).
Similarly, we could prove Eq. (23).

V. GAME AMONG INSIDERS

In this section we present a model of the interaction among
insiders and their best responses to obtain the maximum
individual profits over the long term.

Base on the instantaneous profit Eq. (7) of the insideri, its
long term profit should be

Ji(ui(t),u−i(t)) =

∫ T

0

e−ρt[p(t)·ui(t)−c·ui(t)−
1

2
ui(t)

2]dt,

where ρ is a discount factor with constant value andu−i

denotes the actions of all the other insiders.
The aim of the insideri is to maximize its overall profit,

max
ui

Ji(ui(t),u−i(t))

s.t. ṗ(t) = s · (p̂(t)− p(t))

p(0) = p0

The best strategy to this maximization problem in the game
should be a Nash Equilibrium, where no one could increase his
profit unilaterally without impairing the others,i.e. the amount
of information sold by each insider is the best response to the
others.

In order to reach the Nash Equilibrium, each insider should
find its best response with respect to the others with the
following lemma.

Lemma 3:The best response of each insider to the others
is as follows,

ui(t) =

{
p(t)− c− λi(t) · s p(t) ≥ c+ λi(t) · s,

0, p(t) < c+ λi(t) · s.
(26)

Proof: In order to find best strategy of the insideri, we
should at first construct the Hamiltonian,

Hi(p(t), ui(t),u−1(t), λi(t)) = e−ρt[p(t) · ui(t)− c · ui(t)

−
1

2
ui(t)

2 + λi(t) · s · (A(t) −

n∑

j=1

uj(t)− p(t))],

whereλi(t) = µi(t)e
ρt and µi(t) is the costate. Taking the

partial derivative ofHi w.r.t. ui(t), we have that

∂Hi

∂ui

= e−ρt(p(t)− c− ui(t)− λi(t) · s).

If we take the second order partial derivative ofHi w.r.t.ui(t),
we could easily find that it is concave as∂

2Hi

∂u2

i

< 0. Thus, let
the partial derivative ofHi be 0, we could get the optimal
action for the insideri.

Lemma 3 provides the necessary conditions that the optimal
strategy of each insideri should satisfy. However, the best
response of the insideri cannot be determined according to
Eq. (26) sinceλi(t) remains unknown currently. Thus we
should try to either eliminate or determine the value ofλi(t).
As λi(t) keeps changing along with costateµi(t), it is really
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hard to get the analytical solution ofλi(t). Thus we try to
eliminate it.

Theorem 5:In the stable information market, the amount
of information sold by each insideri is

u∗
i (t) =

(s+ ρ)(A −
∑

j 6=i uj(t)− c)

3s+ 2ρ
(27)

Proof: According to the Pontryagin maximum principle,
the costate is as follows:

µ̇i(t) = −
∂Hi

∂p(t)
= e−ρt[λi(t) · s− ui(t)]. (28)

By differentiatingλi(t) = µi(t)e
ρt, we have that

λ̇i(t) = µ̇i(t) · e
ρt + ρ · µi(t) · e

ρt. (29)

Substituting Eq. (28) into Eq. (29), we have that

λ̇i(t) = (s+ ρ) · λi(t)− ui(t). (30)

By differentiating Eq. (26), substitutinġpi(t) andλ̇i(t) with
Eqs. (5) and (30), respectively, substitutings·λi(t) with (p(t)−
c− ui(t)) according to Eq. (26), we have that

u̇i(t) = s[A−

n∑

j=1

uj(t)− p(t)]− s[(s+ ρ) · λi − ui(t)]

= s[A−

n∑

j=1

uj(t)− p(t)]− (s+ ρ)(p(t)− c− ui(t))

+ s · ui(t).

Since the amount of information sold by the insideri will
not change at the stationary status,i.e. u̇i(t) = 0. Thus we
could obtain

u∗
i (t) =

(s+ ρ)[p(t)− c]− s[A−
∑

j 6=i uj(t)− p(t)]

s+ ρ
.

(31)
As the price will not change at the stationary status,i.e.
ṗ(t) = 0, we could obtainp(t) = p̂(t). Substitutingp(t) in
Eq. (31) byp̂(t) in Eq. (4), we can obtain the optimal amount
of information sold by each insider.

If we look into the insiders’ game, the solution structure of
the insiders’ game is symmetric. By applying the symmetry
u∗
i (t) = u∗

j(t), it is easy to obtain the Nash Equilibrium for
the insiders’ game according to the Theorem 5.

Corollary 1: The optimal amount pf information that each
insider should sell to attacker at the Nash Equilibrium is

u∗
i (t) =

(s+ ρ)(A− c)

(N + 2)s+ (N + 1)ρ
. (32)

Remarks: According to Eq. (32), it is obvious that the action
of each insider is closely related to the information demandof
attackerA and the unit risk costc. The information demand is
determined by the attack rateα, which means if the attacker
wants to achieve a high attack rate, it should purchase a large
amount of confidential information from the insiders to support
its attack,i.e. largeA. The unit risk costc is determined by
the detection strategy of the defender. If the defender scans
the system at a higher rate, the insider must take more risk to
sell confidential information,i.e. c is larger.

VI. N UMERICAL STUDY

In this section, we examine our proposed framework with
numerical study under different settings of system configura-
tions.

A. Defense-Attack Game in Static Case

For static case, we identify the Nash Equilibria of the de-
fense/attack game in two representative system configurations
as follows,

• Configuration 1: rA/qA < rD/qD, e.g., rA = 2, rD =
8, qA = qD = 10. With Fig. 2(a), we can see that the
attacker and defender can reach the unique equilibrium{α∗ =
0.2, β∗ = 1} according to the Theorem 1. In this scenario, the
defender achieves full speed of scanning and recapturing. This
result echoes our remark in Sec. IV that the defender is more
actively taking actions to recapture the compromised resources
in this setting.

• Configuration 2: rA/qA > rD/qD, e.g., rA = 8, rD =
2, qA = qD = 10. As shown in Fig. 2(b), the attacker and
defender can reach the unique equilibrium{α∗ = 1, β∗ = 0.2}
according to Theorem 1. In this scenario, the attacker launches
attacks at its full speed. This result matches our remark
in Sec. IV that the attacker will actively compromise the
resources in this setting.
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Fig. 2. Nash Equilibrium in Static Case

B. Defense-Attack Game in Dynamic Case

As proved in Theorem 4, the Nash Equilibrium under steady
state in dynamic case is identical with that in static case.
Hence, we selectively present the evolution of both system
state and optimal actions for each player in the setting of
rA/qA < rD/qD, due to limited space.

We setrA = 2, rD = 8, qA = qD = 10. The attacker and
defender will arrive the unique equilibrium{α∗ = 0.2, β∗ =
1} and the system will reach its stable state atxs = 0.1667
according to Theorem 4. We apply the Algorithm 1 to calculate
the system state trajectory and the optimal actions of attacker
and defender at each time point. We set the step size of action
updateτ to be0.001 in each iteration and the error tolerance
ǫ = 0.01.

Fig. 3 shows the actions of attacker and defender at each
time point by our Algorithm 1. We can find that the action on
stable status of attacker,i.e., α∗, is 0.2 and that of defender,
i.e., β∗, is 1, which are consistent with the result derived from
Theorem 4. Fig. 4 shows how the system state evolves to its
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stable status. The stable state is0.1667, which also matches
the result derived from Theorem 4.
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Fig. 3. The actions of attacker and defender

C. Information-Trading Game

As discussed in Section V, the optimal amount of informa-
tion sold by each insider is affected by the attacker’s demand
and the defender’s detection strategy. We setA(D(t)) =
500α(t)2 sinceA(·) is an non-decreasing function with respect
to α(t), the number of insidern = 2 and the unit risk cost
c = 10. If the converge speeds → ∞ (the current market price
converges to the nominal price immediately), Eq. (32) will be
u∗(t) = A−c

N+2 . Fig. 5 shows how the amount of information
sold by the insider changes with the attacker’s attack rate
(as shown in Fig. 3(a)). When the attack rate decreases, the
information sold by insiders decreases accordingly.
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Fig. 5. Insider’s best response

VII. C ONCLUSION

This is the first reported literature that investigates the joint
threats from APT attacker and insiders. We characterize thein-
terplay among defender, APT attacker and insiders with a two-
layer differential game framework,i.e., a defense/attack game
between the defender and APT attacker and an information-
trading game among the insiders. Through rigorous analysis,
we identify the best response strategies for each player via
optimizing their long-term objectives, respectively, andprove
the existence of the Nash Equilibrium for each game. Exten-
sive numerical study further evaluates the impact of different
system configurations on the achievable security level. The
results in this paper can shade insights on practical system
design for higher security levels facing the joint APT and
insider threats.
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