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Abstract—Synchronizing videos over file-hosting services on
personal cloud such as Dropbox, Box or Onedrive leads to
wastage in bandwidth and storage, which can be critical, while
using mobile devices. Users can alternatively download the
video on-the-go, but that leads to high latency, depending on
network bandwidth and video file size. In contrast, adaptive
video streaming allows near-real-time viewing by streaming
the best possible quality in a given network condition. This
feature is achieved by keeping multiple versions of video in
cloud, leading to additional costs in cloud storage. Moreover,
current solutions can only support a small set of bitrates,
leading to abrupt switches in video resolution especially when
the network condition is unstable, as often experienced by
mobile users. This paper introduces Vsync, a framework for
cloud based video synchronization for mobile devices. A video
content is streamed using a cloud-based real-time transcoding
and transmission framework to provide smooth video quality.
Built over prediction models for video transcoding sessions and
a QoE based adaptive video streaming protocol, Vsync is able
to obtain the improvements of 37 ∼ 80% than other compared
schemes. The dataset and evaluation was done on a pool of
220K video clips.

Index terms - Mobile Video Streaming, Transcoding, MPEG-
DASH, Cloud Service, Mobile Video Quality

I. INTRODUCTION

The ability to backup and store photos, videos, documents
and personal content in the cloud file-hosting services, and
automatically synchronize them across multiple devices have
radically changed the ways people use personal devices. The
rapidly increasing growths in the adoption of multiple devices
by users along with the growing Internet access is a major
factor in the transition to cloud-based services that can provide
ubiquitous access to content and applications through any
device at any location. With the help of cloud services,
people can simply store various types of files, connect easily
them from different multiple devices and also share them to
others over Internet. Beyond storage, recently the cloud service
providers have started offering availability, multi-platform
support, security, app-integration, and more. According to
reports [3], the industry will have more storage space in inter-
nal/private cloud service environments such as Box, Dropbox,
Google Drive, and One-Drive than in traditional environments
by the end of 2016. The global cloud storage traffic is expected
to grow from about 2 exabytes (EB) annually in 2014 to 19.3
EB by 2018 at a CAGR of 56%.

Cloud based file storage services have been popular, because
it allows users to view and share content over their mobile
devices on-the-go. However, video content is still not that
much popular in cloud stroage. Video content increases the
demand for storage than any other content due to its larger
size. This naturally leads to intensive network bandwidth

consumption to synchronize the heavy video files in all devices
connected to cloud service. However, the mobile devices are
ill-suited for syncing heavy data and files like video contents
due to the limitations such as battery, low/unstable network
bandwidth, local disk space and other resource shortages.
Best selling iPhone 5s/6has usual capacity of 16 GB memory,
which can be lower for lower-end smartphones. However, 1
hour of HD movie may easily consume 2 GB of memory [4].
Moreover, it may take hours to synchronize over a typical
broadband connection [4] consuming lots of bandwidth and
battery resources. Moreover, synchronizing by downloading
the video contents as a regular file does not allow receivers
to play immediately. If the video file is of high quality or
large duration, the start time (initial buffering time) will be
very large, leading to irritation in end-users. A UDP-based
realtime streaming service can be instead used, to reduce
initial buffering time. However, UDP-based streaming suffers
from video artifacts and poor video quality in low bandwidth
scenarios.

Dynamic adaptive streaming over HTTP (referred to as
MPEG-DASH or simply DASH) is getting popular as it
supports different bitrates to adapt with given network band-
width [15]. DASH-based schemes also allow near-real-time
viewing of videos. However, such TCP/HTTP based adaptive
streaming schemes require storing multiple resolution versions
of videos in the server side, leading to more space and
additional costs in the case of a cloud storage service. Another
limitation of using DASH-based schemes is that it can only
support a small set of bitrates and resolutions, leading to abrupt
switches in video resolution especially when the network
bandwidth is unstable, as often experienced by mobile devices.
Absence of the consideration of user quality of experience
(QoE) in adaptive bitrates changes gives a lower Mean Opinion
Score (MOS) [6].

In this work, we introduce the notion of Vsync, a frame-
work for cloud based video synchronization for mobile de-
vices. Unlike general DASH-based schemes, which uses mul-
tiple video copies on the server, Vsync proposes to use
real-time video transcoding scheme in allocation with video
streaming service, to support a large number of bitrates and
provide best possible video quality of experience (QoE) to end
users. The proposed real-time transcoder is able to supply the
best available video QoE, as well as a smooth transition in
video resolution to improve visual experience. Unlike DASH-
based service providers such as Youtube and Netflix, which use
caches and multiple versions of video to optimize the video
delivery [16], we use a single copy of video in server (at
highest quality) to save memory resources in personal-cloud.
This is justified for personal cloud, since the video will be
viewed by a few users for a few times only. One big hurdle



in developing a video streaming scheme based on real-time
transcoding with quality guarantees is variable transcoding
time (TT) and transcoding size (TS), in addition to uncertainty
of network bandwidth. To overcome it, we build predictive
models for TT and TS using machine learning approach over
features generated using codec parameters. We further develop
a data-driven mobile-video QoE model to estimate video QoE
delivered in mobile device under given video resolution, and
develop an adaptive video streaming algorithm that provides
a performance guarantee on long-term average QoE, under
reasonable assumptions on transcoding and network dynamics.
Vsync is able to obtain higher resolutions, less rebuffering
events and higher QoE. The dataset and evaluation was done
on a pool of 220K video clips. The main contributions of this
work are summarized below:
• VSync : The paper proposes a cloud-based realtime

transcoding and video delivery framework based on
DASH protocol () to provide on-demand and smooth
video streaming service to mobile users.

• A predictive model is developed to estimate video
transcoding time (TT ) and transmission size (TS) from
video and codec parameters with 96% and 99% correla-
tion accuracy with 5-15% error.

• A predictive model is developed to estimate video QoE in
mobile devices for the given video playback resolution.
It has 81% correlation to actual subjective ratings.

• An adaptive video-streaming algorithm is proposed,
which provides a performance guarantee on long-term av-
erage QoE and outperforms DASH by [37.54 ∼ 67.359]%
in various experiment conditions.

• VSync framework can run conveniently in smartphones.
File-hosting services such as Dropbox and OneDrive can
use VSync to optimize user experience for video service.

The paper is organized as follows. Section II discusses
the motivation and related works on video streaming and
transcoding. Section III provides an overview of the VSync
system and the dataset we use. The transcoding model and
our machine learning approach for estimating transcoding time
and transcoded size are detailed in IV. The adaptive video
streaming algorithm is presented in Section V. In Section VI,
we evaluate the performance of VSync with real experiment
and compare it with DASH implementation [1]. We conclude
the paper in Section VII.

II. BACKGROUND

In this section, we provide an overview of existing works on
video streaming services and video transcoding services, and
highlight the deficiencies of current video delivery services in
the context of mobile video streaming.

A. Video Streaming Services
We first review the possible approaches to share uploaded

video content to various mobile devices. The large file size
of videos discourages us to synchronize them all-the-time like
other file contents.

Conventional Downloading: Once a video content is down-
loaded in the local space, a user can play and enjoy with full
playback-controls like FF (Fast Forward), RW (Rewind) or
skip. However, any portion of video cannot be accessed till
fully downloaded in the local disk, leading to start delay. TCP-
based Progressive Download (PD) splits video file into multi-
ple segments which are progressively downloaded. It reduces

the start time, but does not support multiple quality levels
of video. UDP based streaming schemes over RTP/RTCP
is handy to transmit content in real-time and support large
video file size. However, its lossy nature is barely acceptable
for cases of high quality video contents services.Unlike UDP-
based delivery, TCP-based Adaptive streaming schemes can
offer reliable transmission with the recovery mechanism of
TCP. DASH also allows adapting video quality to network
conditions by keeping multiple copies of video in cloud
and streaming the best possible quality in a given network
condition [15], [29]. However, keeping multiple copies leads
to extra storage overhead, which may not be economically
viable for personal cloud where a video is often viewed by a
few users for a few times. Moreover, this cost cannot be easily
shifted to the end users. There have also been recent works on
using video caching in wireless networks [13], [5]. However,
although video caching is an attractive solution for video-on-
demand services, it is not as efficient for personal cloud where
the hits per video is orders lower than the millions. Moreover,
in our context, the videos are often private and caching them
may not be appropriate or economically feasible.

Vsync: Vsync uses an adaptive scheme to stream best visual
quality to the end user based on device support and network
bandwidth. It uses a visual QoE model to maximize perceptual
video quality at end user. It keeps high quality video source at
server end and transcodes the video at real-time to the desired
video quality, based on video content, transcoder and network
bandwidth.

B. Video Transcoding
Some commercial cloud service vendors such as Amazon

Web Services (AWS), Bitcodin and Spritdsp support transcod-
ing service to allow a user to make different resolutions for
uploaded video files. A user can enjoy video contents in differ-
ent devices having different resolution sizes. For example, an
iPhone 4 user with a small resolution size (640×960p) cannot
play a video content of 1280 × 1080p, requiring downsizing
resolution/bitrates. Zencoder provides a transcoding service
with different pricing rules and also supports RackSpace Cloud
files. AWS provides an Elastic Transcoder that runs video
transcoding jobs using the Amazon Elastic Compute Cloud
(Amazon EC2) and stores transcoded video content files in
Amazon Simple Storage Service (Amazon S3). The mentioned
service providers do not support realtime transcoding schemes
on a user on-demand video service.

There are a few recent works on cloud-based dynamic
scheduling of video transcoding [19], [18]. Some authors
consider autmatic tuning of encoding cost [18] or parallelizing
transcoding [30], [17] but they focus only on video uploads.
Most of them focus on transcoding uploaded mobile videos and
not on real-time streaming. In addition, none of these work
consider the joint transcoding and video delivery service with
network dynamics taken into account. For example - H. Ma
et al. [19] propose dynamic scheduling for video transcoding,
but consider only video upload.

III. VSYNC OVERVIEW

The previous section outlined some deficiencies of existing
video delivery services for video delivery to mobile devices
from personal cloud. In this section, we give an outline of the
Vsync framework, and discuss how it achieves the goals of
(a) high user Quality of Experience (QoE), and (b) efficient
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Fig. 1. Vsync framework.

space utilization in cloud and mobile device. Figure 1 gives
an overview of Vsync framework. (1) User uploads video to
the cloud. (2) Media Presentation Descriptions (MPDs) and
Segmentation takes place at this stage. (3) Whenever a user
requests for video in mobile device, a connection is established
with video streaming service/repository in cloud. (4) The
server estimates the available Network bandwidth and obtains
current buffer-occupancy. This is done iteratively for each
segment with the subsequent steps: (5) The video streaming
service estimates the appropriate video resolution for the next
segment based on network bandwidth, buffer-occupancy as
well as estimates of transcoding time and transcoded file size,
in order to maximize user’s QoE. (6) Video is transcoded and
transmitted to the mobile device.
Vsync achieves high QoE through the real-time video

transcoding scheme. The real-time transcoding provides best
available video QoE, as well as a smooth transition in video
resolution to improve visual experience. This is enabled by
an accurate estimation of the transcoding time and transcoded
size of video segments via machine learning (Sections IV),
a data-driven mobile video QoE model, and an adaptive
scheduling algorithm for joint transcoding and transmission
under network dynamics (Section V).

Dataset: We collected over 220K video clips (of 6K
movie contents released in last 3 years) from Youtube. The
video contents include all genres: adventure, drama, sports,
action, fantasy, game, animation, music video, movie trailer,
education, documentary and romance. The downloaded video
clips have resolution of 1080p and are reproduced with other
4 types of resolutions of 240p, 360p, 480p and 720p by using
tools of ffmpeg and Sony Vegas pro 12 trial version. We used
fixed audio bitrate of 64kbps. The details of this dataset are
given in Table I

IV. VSYNC TRANSCODING MODEL

Vsync uses real-time transcoding so that a content server
can transcode video segments according to availability of
network resources and user’s device capacity to maximize
QoE. The length of each segment is limited to 10 seconds
(similar to DASH standard). However, unlike DASH-based
scheme which selects and streams pre-encoded and pre-
uploaded copy of videos, Vsync uses an algorithm (discussed
in next subsections) to decide the best resolution and bit-
rate for the video segment. These parameters are then passed
on to a video transcoder along with original high quality
video content. The transcoder transcodes the video to desired
resolution and the video segment is delivered to the mobile
device. The pearson correlation between TT and L is high

TABLE I
VSYNC VIDEO DATASET

Total # of Video Clips 220154
Total # of Video Contents 6188

Display Aspect-Ratio 16:9, 5:4, 4:3
Resolution Range (H) [168 ∼ 1080p]

GOP [4 ∼ 180]
Configuration # of B [1, 5]
Configuration # of P [1, 3, 5, 7, 8, 14, 19, 25, 29]

Frame rate 23.976, 24, 25, 29.97, 30
Audio bitrate (bps) 64

Segment Duration (sec) [1, 2, 3, 5, 7, 10]
Segment size (bytes) [21,921 ∼ 9,040,536]

Color Depth 8, 16bit
Encoder (codec) mpeg4, H.264

Codec profile MP4, H.264(base and High profile)
Container avi, mp4
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Fig. 2. Relation between transcoded size and transcoding time

(0.8721) but a linear regression gives high error (> 60%). The
relationship between TT and TS is plotted in Figure 2(c).
A small correlation (0.5027) was found between the two.
These results are obtained over the large pool of our initial
dataset, and are thus representative of video-data streamed over
Internet. To understand the confounding factor in this case, we
tried to study the role of video codec parameters in TT and
TS.

To effectively decide the best resolution for the video seg-
ment, the streaming algorithm needs estimate of (1) Transcod-
ing Time (TT ) and (2) Transcoded file Size (TS). Accurate
prediction of TS of a segment is important in order to calculate
transmission time in the given network bandwidth to meet the
deadline for playback of a receiver. However, TT and TS
vary with different videos as they depend on the content and
compression codec parameters of the video. For example, slow
motion video segment has much smaller size than the faster
one. To proceed forward, we need to build a prediction model,
which can estimate TT and TS based on available codec and
content parameters.

Intuitively, one would assume that TS and TT depend on
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Fig. 3. Plot of TS (Left) and TT (Right) with increase in GOP size (Example
segments of movie Blackfish)

the duration of trancoded segment. The larger the segment
duration, the larger the values for TT and TS. To validate this
assumption, we conducted experiments using VLC streaming
player (transcoder) and study the plot between TS and dura-
tion. Based on the standard ISO/IEC 23009-1of MPEG DASH,
the media segment (duration) can vary (2∼10sec for short, 10
or longer for long duration). Segments of duration 1,2,3,5,7
and 10 seconds were considered, because these are the popular
range of segment sizes for adaptive streaming algorithms.
Figure 2(a) shows the results. There is a positive correlation
between duration and TS (pearson correlation coefficient was
0.5961). However, the relationship is not linear. A similar trend
was obtained when we plotted TT versus duration. These
results are plotted in Figure 2(b). In video coding, GOP refers
to Group of Picture frames (successive) of a video which
are coded together. Thus, a larger GOP size would facilitate
compression and reduce TS. A larger GOP size may increase
complexity of predictive coding technique (such as MPEG)
and increase TT . Our experiments validated our assumptions.
Figure 3 shows the variation of TT and TS with increase in
GOP size for a sample video. The same trend is true for other
videos in our pool. There is an exponential decrease in TT
with increase in GOP size while the vice-versa is true for TT .
The plot of TT is not smooth, may be due to variation in GOP
configuration (such as ratio of B to P frames : NB

NP
).

To account for these and other confounding factors, we build
machine-learning based models to predict TT and TS. The
confounding factors and L values are used as input features to
the algorithm. Related codec parameters are listed in Table II.

A. Estimating Transcoding Time (TT )

TT doesn’t have a linear dependence on TS or TS duration
or other video codec parameters. It varies with different video
properties such as color depth, fps, GOP size and B and P
frame configuration. TT for ith segment (Si) is estimated by
the following relation:

TT (Si)← Φ(vSi
1 , v

Si
2 , v

Si
3 ......v

Si
n ) (1)

where Φ represents the machine-learning model and vSi
i rep-

resents feature vectors. Feature Vectors: The feature vectors
vSi
i for segment Si are enumerated below:
1) L : Playtime of a segment.
2) CP : Codec profile (MP4, H.264/264+).
3) fps : Video frame rate; (frame per second)
4) NB , NP : Number of video frame type B and P
5) Ngop : Size of GOP; Ngop ← (NB +NP + 1)
6) Rs : Resolution size; (H)
7) sz : Segment size

TABLE II
VIDEO CODEC PARAMETERS

Symbol Meaning
H , W Frame height and width
fps Frame rate of video
Ra, Rv Audio bitrate, Video bitrate
Ovh Overhead ratio of codec
r Frame Ratio r = H/W
Rpix Pixel rate, Rpix = H ×W × fps

Rb Video bitrate, Rb =
Rpix

CP

BPP Bits per pixel, BPP = Rb
Rpix

× 103

Cd Color depth, Cd = log2 (BPP × 103)
Rtb Total bit-rate Rtb = (Rb +Ra) × (1 +Ovh)

szi Size of ith video segment, sz(i) = Rtb(i) × L

CP Codec Profile, CP =


8000 for H264+

7000 for H264
5000 for MP4
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Fig. 4. Comparisons between actual and predicted values of TT and TS

Regression Tree: Our model is built using Bootstrap
aggregation (Bagging) [9], an ensemble machine learning
technique built over reduced error pruning decision trees as
the underlying regression model [14]. The bagging technique
is an ensemble meta-algorithm to improve the stability and
accuracy in statistical regression obtained by decision tree.
The decision tree is based on information-theoretic criterion
for selecting the nodes, and it auto-selects the most important
feature vectors vsii at top of tree. Once the tree is built, reduced
error pruning is used, where each node, beginning with the
leaves, is replaced with its most popular class. We divide the
data for the model into n = 10 folds, where, n-1 folds are for
supervised learning and one fold is used to test the model for
errors. The errors obtained in a fold are added to the weights of
nodes of next fold in the training set. Ten-fold cross validation
was used to evaluate the model in order to ensure that the
model was tested on data that it had not seen while training,
to minimize chance for over-fitting. Statistical analysis was
performed using Weka 3.6.10 [28] and Matlab R2013a (Ver
8.1.0.604) software.

Our model shows high correlation between TT and actual
TT values (96%) with low error (see Table III). Figure 4(a)
shows the distribution of predicted and actual TT values using
our model.

B. Estimating Transcoded Size (TS)
Like TT , TS also has dependence on multiple features.

Hence, we model it using a bagging regression tree.

TS(Si)← Π(vSi
1 , v

Si
2 , v

Si
3 ......v

Si
n ) (2)



where Π represents the machine-learning model and vSi
i

represents feature vectors.
Feature Vectors: The feature vectors vSi

i for segment Si
are same as those for Φ() with the following additions:

1) Cd : Color depth
2) TT (i) : Estimated Transcoding Time (from Φ())
3) TBS(i) : Transcoded bytes/second; TBS(i) = sz

TT (i)

Regression Tree: A bagging regression tree based on
reduced error pruning was built with 10-fold cross-validation
approach. The proposed model shows 99.7% correlation with
actual with a small relative absolute error (4.3%)on our dataset
comprising over 220K video clips. The results are shown in
Table III and Figure 4(b). Accurate estimation of TS and TT
is critical to estimation of network delay.

TABLE III
BAGGING REGRESSION TREE MODEL FOR TT AND TS

Type TT TS
Correlation Coefficient 0.9614 0.9966
Relative absolute error 15.018% 4.288%

Root Relative Squred Error 27.5072% 8.179%

V. VSYNC STREAMING SERVICE

A. QoE Metric
We design a QoE metric for TCP-based video. QoE for

TCP-based delivery is dependent on (a) video resolution [12]
and (b) freezing events [10]. In our streaming model (discussed
in next subsection), buffer occupancy maximization or freezing
minimization is considered as an independent goal. Thus, the
QoE model considers video resolution and video content infor-
mation as inputs. Video content information is modeled using
Temporal Variation Metric of received video (TVMk), which
has been shown to efficiently model temporal information in
video content across varied network conditions [10]. Formally,
the QoE value for the i-th segment with resolution Hi and
temporal information TVMr

i is defined as follows.

QoEi = α · TV Iri + β ·Hi + γ (3)
Hi ∈ [240p, 1080p] (4)

Dataset: A subset of 2200 HD video clips form our dataset
for QoE experiments. It was collected from real-world movie
trailers collected over Youtube. Each video clip is reproduced
for following resolutions: 240p/360p/480p/720p/1080p. This
huge data set was evaluated by 183 people aged from 16 to
62 to give subjective ratings depending on different display
resolutions in mobile devices. Subjective ratings vary from
1 (poor quality) to 5 (best quality). Our test was performed
according to the ITU single-stimulus (SS) method [23]. The
standard videos with the five different scores were shown and
trained to the viewer at the beginning of the test. During the
test, only the videos to be scored were shown without any
display of the standard videos.

Results: Using linear regression, we obtained the following
values: α = 6.5789, β = 0.002 and γ = −4.5598. The model
shows 82% correlation to actual scores. This model is chosen
as a representative QoE model for video streaming service.
B. Streaming Modeling

We consider an extension of the adaptive streaming mod-
els in [15], [29] by incorporating real-time transcoding. For

TABLE IV
PERFORMANCE OF LINEAR REGRESSION MODEL FOR QOE

Type Value
Corr. Coef. 0.8206

Rel. Abs. Error 55.253%
Root Rel. Abs. Error 57.023%

TABLE V
NOTATIONS IN VIDEO STREAMING MODEL

Symbol Meaning
N number of segments
L playtime of a segment
T time horizon for downloading all the N segments
Ct network bandwidth at time t
Ĉt average network bandwidth up to t
C long-term average network bandwidth
Bt occupancy of playback buffer (in seconds) at time t
Bmax size of playback buffer (in seconds)
Ri bitrate of i-th segment

simplicity, we ignore Start-Segments in this and the next
section, which can be easily incorporated into our algorithm.
We formulate the QoE maximization problem from a single
user’s perspective. Extension to multiple users competing for
transcoding and transmission is part of our future work.

A video stream is modeled as a sequence of N video
segments (or chunks), each containing L seconds of video.
For each segment i, the content serve picks a bitrate Ri from
a set R = [Rmin, Rmax]. The segment is then transcoded
according to the bitrate chosen and transmitted to the user. For
simplicity, we assume that any bitrate between Rmin and Rmax

is supported, which is a reasonable assumption since video
segments are generated by the content server at real-time. At
the user side, video segments are downloaded into a playback
buffer. Let B(t) ∈ [0, Bmax] denote the buffer occupancy at
time t, defined as the total play time (in seconds) of unviewed
video in the buffer. Bmax is assumed to be relatively large
(but finite), which is reasonable for DASH style downloading
based streaming service. Table V summarizes the notations
used.

To maximize the efficiency, the transcoding and transmis-
sion of video segments are parallelized. Transcoded segments
are first saved in a queue, and then transmitted to the user in
a FIFO order. We assume that the server decides the bitrate of
segment i and starts transcoding the segment once it finishes
transcoding segment k−1. 1 Let ri denote the time at which the
server starts to transcode the i-th segment. Let si and ti denote
the time at which the server starts and finishes to transmit the
i-th segment, respectively. We assume that the server delays
the transmission when the playback buffer at the client is full.
It follows that si ≥ max{ri+1, ti−1}. That is, the server can
start transmitting segment i only if it has finished transcoding
segment i and also finished transmitting segment i−1. Without
loss of generality, we assume r1 = 0. Define T , tN to
be the time horizon for downloading all the N segments.
For any segment with bitrate R, let TT (R) and TS(R)

1If the transcoding time is typically less than the transmission time of a
segment, transcoding can be delayed so that decision making can be based
on more recent information. For simplicity, we will not consider this in our
algorithm.



denote its real transcoding time and transmitted segment size,
respectively, which are unknown before transcoding, but can
be estimated. We assume that µ(R) , TS(R)

LR ∈ [µ1, µ2] for
any R ∈ [Rmin, Rmax], where µ1 and µ2 can be estimated
for a given video stream (see Section VI). Let Ct denote the
bandwidth perceived by the player at time t. We have

TS(Ri) =

∫ ti

si

Ctdt (5)

ti − si =
TS(Ri)

Ci
(6)

where Ci = 1
ti−si

∫ ti
si
Ctdt is the average downloading speed

over the period [si, ti]. We further have the following dynamics
for the playback buffer, where (x)+ , max(x, 0):

B(ti) =

[
B(si)−

TS(Ri)

Ci

]+
+ L (7)

B(si+1) = [B(ti)− (si+1 − ti)]+ (8)

Our objective is to design an online scheme at the server
side that chooses the bitrate for each segment to maximize
the user-perceived average quality-of-experience (QoE), i.e.,
1
N

∑N
i=1QoEi, with the additional objective of minimizing the

number of rebuffering. Since Ri = W × Hi × fps/CP , we
have QoEi = αTVMr

i +βHi+γ = αTVMr
i + β×CP

W×fpsRi+γ.
We assume that β×CP

W×fps is a constant for a given video stream.
Then the QoE value is a linear function of the bitrate with a
constant coefficient.

The main challenge of the problem is due to the uncer-
tainty of Ct. We make a mild assumption on Ct in this
paper. Let C , limT→∞

1
T

∫ T
0
Ctdt denote the long-term

average bandwidth perceived by the player. We assume that
the limit exists and C is finite. Define ρ(R) , TT (R)

TS(R)/C
, and

ρ , max{maxR∈R ρ(R), 1}. That is, ρ is defined as the worst-
case ratio between the transcoding time and transmission time
of a segment (under C) if this ratio is larger than 1; otherwise,
ρ is set to 1. Intuitively, C/ρ can be viewed as the “effective”
average network bandwidth taking into account the overhead
due to transcoding. We observe that ρ(R) is upper bounded by
1 in our experiment setting (see Section VI); hence transcoding
does not introduce extra overhead. We consider a general ρ so
that our algorithm applies to any transcoding and networking
conditions.

C. Adaptive Streaming Algorithm

In this section, we propose an online algorithm that achieves
a close to optimal performance with a low rebuffering proba-
bility, adapting the framework in [25], [11]. Since the QoE
value is a linear function in bitrate with a constant coef-
ficient, we focus on maximizing the time average bitrate
1
N

∑N
i=1Ri. TVM

r
i is temporal information of original video,

which remains constant for the segment in consideration. The
performance bound that we obtain can be easily translated
into a bound on QoE. We note that while focusing on average
performance, our algorithm also ensures a smooth video
quality when the buffer size is relatively large.

We first observe that, when N →∞ (or equivalently, T →
∞), the maximum achievable average bitrates when there is
no rebuffering is upper bounded by C/µ1, even if Ct is known

in advance for the entire time horizon T .

Theorem V.1. For any sequence of {R1, ..., Ri, ...} where
there is no rebuffering, limN→∞

1
N

∑N
i=1Ri ≤ C/µ1.

Proof. Assuming there is no rebuffering, we must have NL ≥
T − t1 + L, since the video player can start to play the first
segment after t1, and can start to play the last segment after
T . It follows that

1

N

N∑
i=1

Ri
(a)

≤
∑N
i=1

∫ ti
si
Ctdt

µ1NL

(b)

≤
∑N−1
i=1

∫ si+1

si
Ctdt+

∫ tN
sN

Ctdt

µ1NL

=

∫ T
0
Ctdt

µ1NL
≤

∫ T
0
Ctdt

µ1(T − t1 + L)

where (a) follows from (5) and the assumption that TS(Ri)
LRi

≥
µ1, and (b) follows from the fact that si+1 ≥ ti. Therefore,
lim
N→∞

1
N

∑N
i=1Ri ≤ lim

T→∞

∫ T
0
Ctdt

µ1(T−t1+L) = C/µ1.

Since the average bitrate is upper bounded by Rmax, we
assume that C ≤ µ1Rmax in the following discussion for sim-
plicity. We also assume that the real time bandwidth is always
sufficient to support the minimum bitrate, i.e., Ct ≥ µ2Rmin

for any t, which can be easily relaxed. According to the
above theorem, the upper bound can be obtained if we can set
Ri = C/µ1 for i ≥ 1. For a finite buffer size, however, this is
not always possible due to fact that the buffer can occasionally
be empty. Moreover, this strategy may increase the rebuffering
probability and also reduce QoE.

Let Ĉt = 1
t

∫ t
τ=0

Cτdτ denote the average bandwidth up to
time t. To achieve close to optimal bitrates while maintaining a
very low rebuffering rate, our online algorithm adapts bitrates
by taking into account both Ĉt and B(t (learned from the
end users). For any segment i, Ri is chosen according to
the following rules (see Algorithm 1): (1) Ri is bounded by
Rmax; (2) If the current buffer has at least one segment, i.e.,
B(t) ≥ L, Ri = (1−ε)

ρµ2
Ĉt. Intuitively, Ri is chosen to match

the “effective” bandwidth Ĉt/(ρµ2) with both the overhead
from transcoding and the inaccuracy of estimated transcoding
size taken into account. The extra factor (1− ε) is introduced
to reduce the chance of rebuffering, where ε is a parameter
that can be adjusted; (3) If the current buffer does not have
one or more segments, then Ri is further reduced by a factor
B(t)/L to reduce the chance of rebuffering.

Algorithm 1 Adaptive Transcoding and Streaming
For i = 1, 2, ...

1: t← time finishing transcoding (i− 1)-th segment;
2: Ĉt ← 1

t

∫ t
τ=0

Cτdτ ;
3: Ri ← min{Rmax,

(1−ε)
ρµ2

Ĉt,
B(t)
Lρµ2

Ĉt}

Note that due to the uncertainty of Ct, Algorithm 1 cannot
avoid rebuffering surely. We first consider the case when the
playback buffer is unbounded. The following theorems shows
that the algorithm achieves a close to optimal average bitrate
as t approaches to infinity.
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Theorem V.2. When the buffer size is infinite, Algorithm 1
achieves an expected bitrate of at least (1−ε)2

ρµ2
C as t → ∞,

with the probability of rebuffering approaches to 0.

Proof. The theorem follows from a similar argument in [11].
We provide a proof sketch here for completeness. First, by
the definition of C, for any ε > 0, there exists time t1, such
that (1 − ε)C ≤ Ĉt ≤ (1 + ε)C for all t > t1. Moreover, if
we consider the playback buffer as a queue, then the service
rate is upper bounded by (1−ε)

ρµ2
Ĉt, while the average arrival

rate is lower bounded by 1
ρµ2

C, which is strictly greater than
the service rate for t > t1. Therefore, the playback buffer will
build up and limt→∞ P

(B(t)
L > (1− ε)

)
= 1. It follows that

limi→∞ P
(
Ri >

(1−ε)2
ρµ2

C
)

= 1. A similar argument shows
that once the buffer occupancy is large enough, and by the
assumption that Ct ≥ µ2Rmin for any t, the probability of
rebuffering approaches to 0 as t→∞.

On the other hand, when the buffer size is finite but large
enough, the probability of rebuffering can be estimated by
limt→∞ P (B(t) = 0) ≤ exp(−γ∗Bmax) where γ∗ is a
positive constant, following a similar argument in [11]. This
result holds when the network bandwidth process Ct is i.i.d. or
Markovian, and under some more general settings [22]. This
implies that under these settings, by taking Bmax = O(ln 1

δ )
with δ relatively small, the rebuffering probability is bounded
by δ almost surely, and furthermore, Algorithm 1 achieves an
expected bitrate of at least (1−δ)(1−ε)2

ρµ2
C almost surely. By

taking ε = δ, this is no worse than a factor (1−δ)3µ1

ρµ2
of the

optimal according to Theorem V.1.

VI. EXPERIMENTS & IMPLEMENTATION

In this section, we have implemented VSync over DASH
[1], evaluate the performance and compare it with normal
DASH implementation [1] (called as DASH). We show that
VSync achieves a better QoE under various network condi-
tions. In particular, we show that while DASH can occasion-
ally provide higher video resolution, it also introduces more
rebuffering and a lower overall QoE perceived by end users.
In contrast, VSync maintains a low rebuffering rate and a
smooth video quality.

Experiment Setup : In order to evaluate VSync frame-
work, we configure our testbed between a server that measures
network conditions, does transcoding and other computations;
and a client that receives the video segments and plays them
during the given video streaming session. In our scenario, we
assume that the server has a copy of the original video content.
It is already split into multiple segments (10 sec each) with
Media Presentation Description (MPD) files that elaborate the

required video properties used in the service time. When the
user double clicks on the video, the cloud server receives the
service request and the current buffer occupancy from the
client, and estimates the network bandwidth (BW) for the
connection. Based on the video segment properties, the es-
timates of transcoding time (TT ) and Transcoded/Transmitted
size (TS) are obtained as a function of the resolution (H).
These inputs are then provided to the streaming algorithm
which decides the resolution for video that maximizes QoE.
The playtime of each segment are fixed at 10sec in this work.
A segment is processed in the transcoding-thread and enters
the queue of transmitter of the server. The transcoding and
transmission are done in an asynchronous pipeline, meaning
that the transmission begins once the transcoder outputs a seg-
ment. In the process of transcoding, the segment can be split
into smaller segments to be encoded by multiple processors
(upto 3), and merged into a single segment to be sent. The local
buffer size (Bmax) is bigger than the video content streamed.
The segments arriving at the client are stored and automatically
loaded into the the video player buffer for playback. A Free
BSD-based iMAC (16GB, 3.2GHz Intel Core i7) is used as
a server and connected to wired network connection. The
receivers are tested in different wireless network conditions
(IEEE 802.11n). The video contents are randomly chosen from
the video pool. The codec/encoder/transcoder/decoder used
in this implementation are implemented using FFmpeg [8]
and VLC [24]. We evaluate two variants of VSync. The
first version, called VSync Ĉt, uses the estimated average
bandwidth Ĉt as in Algorithm 1, while the second version,
called VSync Ct, uses the instant bandwidth Ct instead
of Ĉt in Algorithm 1. Based on the standard of MPEG-
DASH [26], [1] we also implemented DASH and compare
it with both VSync versions for streaming performance.
MPEG-DASH server has the video in 5 different resolutions:
240p, 360p, 480p, 720p and 1080p. A DASH client receives
segments which is best-fit to current network bandwidth. They
are uploaded to the server and dynamically selected during
streaming. Thus, DASH has a competitive edge over Vsync
that it saves time and complexity of accommodating real-time
transcoding procedure. Our results are measured over 6∼20
measurements per streaming request and averaged out.

Evaluation Metric : Vsync aims at providing optimal user
experience while watching videos in personal cloud. Thus, we
evaluate its performance in terms of video QoE. To model
QoE, we use raw measurements of video resolution delivered,
total rebuffering and user QoE as evaluation metric.

We choose a recently published QoE model2, called as
visual acuity [6], to estimate QoE received by the end user.
The visual acuity model was preferred over other visual quality
models [7], [27], [21], [20] because (1) it models both freezing
and resolution related impairments observed in TCP-based
video delivery, (2) it gives a single score which matches
closely to subjective ratings, (3) it is validated over large
pool of 3000 Youtube video clips, and (4) it has superior
performance than existing models.

Validating the streaming model: In the last section, we
made some assumptions regarding the streaming model. The

2This QoE model is different from the previous simplified QoE model,
which was used by streaming service in the cloud. Unlike that model, this
QoE model has higher accuracy (89%) and is based on receiver-side (mobile
device) measurements during playback.
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Ĉt

Ct

(a) Resolution Switches at each segment

2 4 6 8 10
0

2

4

6

8

Segment #

R
e

b
u

ff
e

ri
n

g
 T

im
e

 (
s

e
c

) 
p

e
r 

e
v

e
n

t

DASH

VSync C 

VSync C Ct

Ĉt
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first one was regarding the minimum and the maximum range
of µ, which characterizes the uncertainty of transcoded seg-
ment size under different bitrates. The second assumption was
regarding ρ, the worst-case ratio between the transcoding time
and transmission time under the average network condition. In
over 300+ live streaming sessions, we found that µ is largely
restricted in the small range [0.89,1.13]. This indicates that the
uncertainty of transcoding size has only a minor effect on the
performance of our adaptive streaming algorithm. We further
observe that ρ is largely small and is around 0.177 ± 0.105.
The value of ρ approached the range [0.5,1.0] in some poor
network conditions only. This implies that by parallelizing
transcoding and transmission, transcoding does not introduce
extra overhead in our experiment setting. Figure 6 gives a
plot of the observations made about these variables in live
streaming sessions.

Response to network conditions: Figure 5 gives a zoom-
in segment-by-segment trace of video resolution, rebuffering
and instantaneous QoE for a streaming session. DASH ini-
tializes with 360p resolution settings, but Vsync chooses
lower resolution (205∼225p) so that it can transmit the first
segment as soon as possible to minimize the startup latency.
For subsequent 2-3 segments, there is a dip in network
bandwidth. Vsync chooses shorter resolution than DASH and
thus reduces rebuffering. In this short duration, VSync Ct has
similar QoE as DASH while Vsync Ĉt has slightly higher
QoE.

Performance under varied network conditions : We
tested the performance of Vsync under four network condi-
tions. The average mobile network connection speed in 2014
was 1,683 kbps [2]. Thus, to make realistic assumptions we
model four network bandwidth processes around this range.



The network bandwidth at any time instance follows a uniform
distribution with mean avg and standard deviation std and
is i.i.d. over time, where avg and std are given parameters.
Case A has average speed of 2.6Mbps while cases B,C
and D have average speeds of 65%, 55% and 35% of A’s
speed. Figure 7 gives a plot of video quality under different
scenarios. Although all scheme perform well under good
network conditions, we can see that DASH has a very high
rebuffering for low network bandwidths, leading to poorer
performance than Vsync. Moreover, we can observe that Ĉt
has lower rebuffering and slightly higher resolution than Ct.
Figure 8 shows the performance of the schemes when multiple
users and a single video streaming receiver are contending the
network at receiver end. In this case, we adopt the network
dynamics model suggested in [29]. At any time instance, there
are n user accessing the network together where n follows
the Poisson distribution (i.i.d. over time) with mean equal to
3, 5, or 10. The bandwidth for a single user then follows a
uniform distribution with mean avg/n and standard deviation
std/n, where avg and std are given parameters. We observe
that DASH provides similar average resolution like the other
two schemes, but has a higher rebuffering time for all the
three cases. Vsync Ĉt shows stable performance and lower
rebuffering time than the other two, leading to higher QoE
values. Vsync Ct has higher average resolution at 5 users than
the case of 3 users, but there is no noticeable increments in
QoE due to more rebuffering time.

Next, we test the performance for video clips of different
duration. We set these experiments in a real-world scenario
where the client and server are on different networks and
connected via Internet and physically separated over 3 miles.
Figure 9 shows the average results for video clips of duration
1, 5 and 10 minute each. For 10 minute clips we observed low
network bandwidth, hence the QoE is lower. Although Vsync
Ĉt has lower avg. resolution than VSync Ct in Figure 9(a),
Vsync Ĉt achieves better performance in rebuffering. This is
because Vsync Ct selected higher video bitrates according to
instant network bandwidth, but it suffers from the fluctuating
network conditions, leading to more rebuffering events. This
finally brings lower QoE than Vsync Ĉt. In the Figure 9(a),
VSync Ĉt has net lower resolution than DASH for 10min.
However, DASH has lower QoE values due to large amount
of buffering (see Figure 9(b-c)).

VII. CONCLUSION

This work proposed VSync, a video streaming service for
delivering video files in personal cloud. VSync uses real-
time video transcoding on top of video streaming model to
maximize user QoE. Experimental results indicate that the
streaming model outperforms DASH , giving significant im-
provements in poor network conditions. Using Start-Segments
can further improve the QoE (over 100% in poor network
conditions). VSync is a promising protocol, for use by Per-
sonal Cloud providers such as Dropbox, OneDrive and Box
to provide smooth video delivery to mobile users, without
wasting loads of network bandwidth for pre-caching entire
content.
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