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Abstract— With the explosive use of Internet, contemporary
web servers are susceptible to overloads and their services dete-
riorate drastically and often cause denial of services. In this pa-
per, we proposed two methods to prevent and control overloads in
web servers by utilizing session-based relationship among HTTP
requests. We first exploited the dependence among session-based
requests by analyzing and predicting the reference patterns. Using
the dependency relationships, we have derived traffic conforma-
tion functions that can be used for capacity planning and overload
prevention in web servers. Second, we have proposed a dynamic
weighted fairing sharing (DWFS) scheduling algorithm to con-
trol overloads in web servers. DWFS is distinguished from other
scheduling algorithms in the sense that it aims to avoid processing
of requests that belong to sessions that are likely to be aborted in
the near future. The experimental results demonstrate that DWFS
can improve server responsiveness by as high as 50% while pro-
viding QoS support through service differentiation for a class of
application environment.

Index Terms—Capacity planning, Dynamic weighted fair shar-
ing, Overload control, Quality of service, Scheduling algorithm,
Service differentiation, Session-based control, Web server.

I. INTRODUCTION

As the wide spread usage of web service grows, the number
of accesses to many popular web sites is ever increasing and oc-
casionally reaches the limit of their capacity and consequently
causes the servers to be overloaded. As a result, end users either
receive busy signal or nothing at all before the browser indicates
a time-out error or the user aborts (stops) the request. Subse-
quently, the server may get choked or crash causing denial of
services. Such abnormality is often regarded as the servers’
poor quality and compromises their long term survivability. In
e-commerce applications, such server behavior could translate
to sizable revenue losses.

Research on overload prevention and control has been lim-
ited compared to the other issues such as web caching, replica-
tion etc., which addresses the performance improvement of web
servers. These performance enhancement techniques, however,
are inadequate in ensuring a busy web server from being over-
loaded due to the fact that the web traffic is highly volatile
and bursty [10], [15]. Proper capacity planning and forecast-
ing methods can prevent servers from being overloaded under
controlled traffic conditions.

In many web sites, especially in e-commerce, online bro-
kers, and supply chain sites, majority of the requests in the
web traffic are session-based. A session contains temporally
and logically related request sequences from the same client.
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Sessions can be identified either by HTTP/1.1 persistent con-
nections [12] or from the state information within the presence
of cookies [14]. Sessions exhibit distinguishable features from
individual requests. For example, session integrity requires that
once admitted for processing, all the following requests within
a session should be honored. Similarly, session affinity would
require that requests belonging to the same session are handled
by the same front-end server for security and locality reasons.
These features may complicate or contradict the research con-
clusions of the performance studies on web servers where the
number of request completions have been considered as the pri-
mary performance measure. For example, admission control
on per request basis may lead to a large number of broken or
incomplete sessions when the system is overloaded. Capacity
planning schemes based on individual requests also have the
same deficiency.

Session integrity is a critical metric for commercial web ser-
vice. For an online retailer, the more the number of sessions
completed, the more revenue that is likely to be generated. The
same statement cannot be made about the individual request
completions. Sessions that are broken or delayed at some criti-
cal stages, like checkout and shipping, could mean loss of rev-
enue to the web site. From the end users’ perspective, this
means poor service availability. Therefore, it is more useful
to use session integrity to evaluate the service availability of
servers, especially during high-load periods.

In this paper, we explore the session characteristics and their
potential in overload control and prevention. A workload char-
acterization study is done first to gain an insight to the load
patterns in web servers. The workload characterization study
was based on the server log from a popular online retailer. We
found that, despite the seemingly complication of session se-
quences, some statistical results can used in simplifying the
session-based traffic model. Based on these results, the ses-
sion logic can be utilized for capacity planning of QoS-aware
servers and request scheduling, which improves server’s pro-
ductivity. We have done an experimental study by modifying
the scheduling scheme of the Apache web server. The proposed
dynamic weight fair sharing (DWFS) scheme provides a perfor-
mance improvement of about 50% in terms of response delay
and significantly reduces the session abortion rate for the work-
load and system configuration used in the experimentation.

The rest of the paper is organized in the way. Section II char-
acterizes session-based HTTP requests. Section III provides
capacity planning tools to prevent server overload. Section IV
proposes a request scheduling algorithm to control server over-
load and improve server performance followed by the experi-
mental results in Section V. The related works are discussed in



Section VI followed by the concluding remarks in Section VII.

II. SESSION-BASED WEB TRAFFIC CHARACTERIZATION

A session during web accesses can be represented as a finite
state machine with each state representing a stage that a request
is undergoing. Figure 1 depicts an example of such representa-
tion. The directed arc (A,B) represents a transition from state
A to state B with a probability P(A,B). The four states A, B,
C, D could be representing states corresponding to main menu,
checkout, browsing and search in an e-commerce site.

A B C D

P(A,D)

P(A,B) P(B,C)

P(B,A) P(C,A)

P(A,D)

P(B,D)

P(C,D)

Fig. 1. An example of a web session represented as a state machine.

In web service, a stage can be a single URL or a group of
URL’s that have the same reference pattern and resource claim
profile. A session can be compulsory or voluntary. A com-
pulsory session refers to the situation in which the descendant
requests are generated by the browsers instead of clients. The
requests for embedded image files within an HTML page is
an example of this case. We call the page that has embedded
files as the main page. In voluntary sessions, the descendant
requests are generated by the clients explicitly. For example,
the client clicks a link within the current main page to browse
another page. In current web server architecture, most of the
image files are served by edge servers [2] or dedicated image
servers which are physically separated from those serving the
main pages. Therefore, the performance of these servers is
largely affected by the service of main pages. Thus, the fol-
lowing discussion is focused on voluntary sessions.

During our research, we obtained the trace of accesses to a
server from a popular online retailer1. Based on the reference
traces, we characterized the basic behavior of session-based
traffic.

The characterization are derived from a typical daily traffic
trace. Previous studies [10] have characterized the web traffic
as very bursty, which is also observed in our result shown in
Figure 2. From Figure 2, it is observed that the traffic load is
highest during the period of 17:00 to 23:00 hours, which ac-
counts for over 50% of the daily traffic. The traffic volume
peaked at 20:00-21:00, where nearly 10% of overall requests
were initiated. So the server is presumably more heavily loaded
during this period (during evening hours), which was confirmed
from the server side performance data recorded by the MS Per-
formance Monitor.

We further investigate the relationship between request queue
length (the waiting requests and those being served) and the re-
quest processing time under heavy server load. Since the pro-
cessing time for individual URL’s varies, for fair comparison,
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We refrain from mentioning the name of the retailer honoring a non-
disclosure agreement.
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Fig. 2. Traffic histogram of the server trace for a day.

we adopt the stretch factor from [23], which refers to the quo-
tient between the current processing time and the processing
time of the same URL under normal load. The stretch fac-
tor reflects the current server load. Figure 3 depicts the queue
length and stretch factor during the 20:00-21:00 period. It is
observed that the two curves show similar pattern, indicating
that the server load is proportional to the queue length. While
the queue length is a good indication of server load, the na-
ture of the jobs in the queue also has a great impact on server
performance. Servers whose workload is dominated by static
files (like HTML pages, images) generally perform better than
the ones with high proportion of dynamic files (like CGI, ASP,
etc). Therefore, unless the composition of workload is compa-
rable, using the queue length as an indicator of server load is
incorrect.
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Fig. 3. Queue length and stretch factor.

We sorted the requests into different queues according to
their nature (main menu, checkout, search, browsing) and ana-
lyzed the composition of workload at each time period. These
queues usually have different resource consumption profiles.
For main menu queues, the major task is static HTML and im-
age files rendering, and the update frequency is relatively low.
For checkout queues, the process is SSL-secured and thus is
very CPU intensive. For search queues, the back-end database



is queried and the server only receives the query results and as-
sembles them in HTML format. Browsing queue is like main
menu queue except that more image files are rendered. Figure
4 presents the nature of the workload composition during the
period 20:00-21:00, which is observed to be relatively stable.

It has been realized that the requests within a session reveal
statistically dependent relationship[7][17]. Conclusions from
these studies show that historic reference patterns can be ex-
ploited to predict the subsequent requests. Prediction method
of subsequent requests within a session are different. In this
study, we use the transition probability for prediction, which
derives the subsequent URL from the current one. This method
requires no sophisticated mathematical modeling and uses less
computation power in practice. The probability is obtained ei-
ther from offline historic records like server logs or from online
statistics. The work in this paper is based on this method, how-
ever other methods can also be applied in a similar way. We
will later show that even with this simple prediction method,
the performance improvement is significant.
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Fig. 4. Queue composition for the 1 hour duration.

Figure 5 shows the transition probability (in percentage) ma-
trix among the stage vector components: main menu(MM),
checkout(CO), search(SR), browsing(BR) from the online re-
tailer’s server log. The row vectors show the transition from
one stage to another. For example, the second row indicates
that the transition possibility from CO to MM, CO, SR, and BR
is 13.5%, 44.9%, 40.2%, and 1.4%, respectively. The server log
file format follows W3C extended logging [18]. Each request
entry contains a user ID for the login user which facilitates the
identification of session owners. Session integrity is maintained
by the IIS server (Microsoft Internet Information Server).
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Fig. 5. State transition matrix.

Another issue related to the session behavior is the user
thinking time between consecutive requests within a session.

It is random in nature and varies for different web sites. In our
server trace, the thinking time was usually short and less than
60 seconds. Characterization of other traces reveals similar re-
sults. When the traffic is high, which is the case for heavily
loaded servers, the long term effect of the thinking time can be
ignored.

Finally, when evaluating the relationship between the num-
ber of outstanding requests and the number of active sessions,
we found that the ratio between the two is stable. Though each
session can fork several requests simultaneously, the fact that
others do not send any requests offsets it, which makes the over-
all behavior as stable. Figure 6 shows this ratio for the trace of
the period 20:00-21:00. In this figure, the average value is 0.526
with standard deviation of 0.017, which means the variation is
small and the ratio is stable. This result is useful in estima-
tion of the request arrival rate based on the number of active
sessions.
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Fig. 6. Ratio of request arrival rate to session generation rate.

Obtaining server traces from e-commerce sites has been dif-
ficult due to security and propriety reason. We could manage
to get the traces from one corporation. Although our analysis
and results use only this set of trace, the proposed methodology
is applicable for any other server trace. So we have laid em-
phasis on the methodology, the trends, and relativeness of the
results, rather than the absolute numbers (which are specific for
the trace).

III. SESSION-BASED CAPACITY PLANNING

We have considered QoS-aware web servers for our study, in
which requests are served based on their priority levels. The
basis of priority assignment is actively discussed in [11] and
is beyond the scope of this study. In QoS-aware web servers,
an important and interesting performance metric is the delay
bound, which is the maximum response delay a request en-
counters. Besides the processing time of each request, there
are other latencies associated with the service of a request, such
as queuing delay and network transmission delay. In this pa-
per, we only consider the delay at the server side. The study
of network delay is not within the scope of this paper and be-
ing extensively studies in literature [11]. We assume that the
service level agreement (SLA) that can be provided by a web



server would consist of a bounded delay for each QoS level if
the request arrival rate does not exceed an agreed amount. From
the web server perspective, QoS attributes are defined in terms
of the maximum rate of request arrival and the latency bound of
each request. An SLA can thus be stated in terms of ���������	��
 ,
where � is the maximum rate of arrival, � is the delay bound,
and � is the proportion of requests that meet the delay bound.
In a QoS-aware web server, overload is said to occur when the
SLA is violated for an extended period of time. Thus, we for-
mally define overload as follows.

Consider a predefined SLA for a specific QoS level is ���������
��
 .
If for an extended period of time � , while the arrival rate is less
than � , the proportion of requests that meet the delay bound stay
less than � , the web server is said to be overloaded. It is implicit
in this definition that the SLA negotiation was done considering
the server capacity and current conditions.

The following analysis focuses on the worst case where re-
quests compete for CPU resources. The QoS rules are defined
for each of the URL’s or for URL groups. The SLA specifies
the delay bound of the QoS groups when the request arrival rate
is below some threshold.

Notations Description����� �
state transition probability from � to�

���� request arrival rate of session class�
to state �� � � request departure rate of session

class
�

from state �� � � delay bound of class
�

at stage �� � processing time at stage �� � session generation rate of class
����	� ratio between the number of re-

quests and the number of sessions

TABLE I
NOTATIONS USED FOR THE ANALYSIS.

We only consider a steady-state system because a transient
model is mathematically intractable and may be of little prac-
tical use. In a steady-state system, the number of requests ar-
riving at and departing from the server must be equal. Thus,
the arrival rate �! � is equal to the departure rate �  � under the
steady-state assumption.

The turnaround time at each stage is less than the lower limit,
which is the sum of the delay bound and the processing time.
Thus, �  � "

�

� �$# �  �
�

Consider that the input to each stage is the output from the
other stages with certain transition probability. Excluding the
source and sink stages, we then have

�% &('*) �  �,+ � � � & ' �  .- � &

where �  and
� & are the vector forms of �  � and

� � � & and the
second expression is the dot product.

With a preemptive priority scheduling discipline, the high
priority requests are scheduled before the low priority ones.
Thus the departure rate of a priority group is less than the ser-
vice rate of higher priority groups.

�

� �$# �  �
/ �  � / �% �0  &�132 � & � + � � (1)

Using the steady-state assumption,
�

� �$# �  �
/ �% � /54 �% 60  &�1�2 � & 6 + � 6$7 -

� � (2)

Finally, using inequation 2 for all the stages and presenting
in a matrix form, we get:

4 �

� �$# �  � 798;:=<
/54 �% � 798;:=< /54 �! 60  &�132 � & 6 + � 6 798;:=< +

4 � 7><?:=< (3)

where @ is the number of priority groups and A is the number
of stages. We call this expression as the traffic conformation
inequation.

Inequation 3 reveals the the relationship between delay and
traffic volume of the QoS priority groups. To infer the SLA
from this function, we can work in a stepwise manner. It is
obvious that for the highest priority, the request arrival rate at
stage i is constrained by

�

� �$# � 2�
/ � 2�

In practice, the � 2� can be set to its lower bound so that they
will not cause excessive delay for the lower priority groups and
maximize system utilization by allowing more requests into the
system. Thus the arrival rate of the next immediate priority
group is bounded by

�

� �$# �%B�
/ � B� /C4 � B60 B&�132 � & 6 + � 6 7 +

� �
Similarly, the arrival rate of other priority groups can be ob-

tained.
After obtaining the request arrival threshold, it is easy to de-

fine the session generation rate using ratio ����� . As discussed in
Section 2, ����� is more or less stable when the traffic volume is
high. Thus the session generation rate of class

�
is given by

� � ' ���	� ) � �& (4)

IV. PRODUCTIVE SCHEDULING ALGORITHM

Several factors are responsible for causing the server out-
put to degrade. Apart from the intrinsic mismatch of operat-
ing system entities, scheduling of requests is another critical
factor. For example, queues consisting of time-consuming re-
quests have a good chance of getting accumulated. As a result,



they could dominate in controlling CPU resources in a round
robin scheduling mode. Consequently, more time is spent on
these queues and the effective overall output is degraded. Intu-
itively a conservative admission control can prevent the server
from being overloaded. But such conservativeness is not easy to
realize because of the burstiness of traffic and the likely-hood of
the server under-utilization. We believe a relatively relaxed ad-
mission control assisted by an efficient scheduling algorithm is
a better alternative. The admission control admits as many ses-
sions as possible so long as the server is not overloaded. Our
previous work on admission control based on predictable ser-
vice time [8] could serve this purpose. In addition, the schedul-
ing algorithm takes care of the situation when the admitted ses-
sions are beyond the server’s capacity. It seeks the best schedul-
ing that produces as many completed sessions (not necessarily
requests) as possible.

In the context of sessions, each of the waiting queue repre-
sents a particular task of the session sequence and its output
serves as input to the other queues. So proper shaping of these
queues by means of priority scheduling among different queues
can alleviate overload conditions. This is the basic idea of our
scheduling algorithm.

Another phenomenon that is frequently observed in web
servers is that during overload, more number of tasks gets
aborted. Before abortion, these tasks consume excessive system
resources during the crunch period. To resolve this ill-effect we
use a scheme of scheduling where the portion of sessions that
have a higher probability of getting completed are scheduled
first.

A. Scheduling Algorithms Comparison

The popular scheduling algorithms that are used in web
servers include round robin (RR), earliest deadline first (EDF)
and weighted fair sharing (WFS). RR and EDF do not con-
sider the relationship of inter-session request transition thus
they cannot help in session-based overload control. WFS pro-
vides higher levels of service to the tasks that have higher pri-
ority. Thus the queue length accumulation at some stages can
reach a steady-state by lowering the request injection rate and
raising the service rate. However, this discrimination increase
request accumulation at other queues, which in turn would re-
sult in request drops because of timeout. This domino effect
disrupts the normal request transition flow into other queues
and eventually leads to lower throughput in terms of the num-
ber of completed sessions.

We introduce a measure called server’s productivity, which
is defined as a function of request completion and request error
rate for a server, and can be formally expressed as follows.

Server’s productivity during time interval � :
If the number of requests completed within � is � , and the num-
ber of requests aborted during this time is � , then the server’s
productivity during � is ��������
 .

A request abortion occurs either because of some of the inter-
nal problems at the server side or due to the processing timeout
imposed by the script language like ASP and PHP. A request

could also be aborted by the user because of the impatience.
Ignoring the internal problems of the server, we use request
timeout to represent all the server processing failures. To il-
lustrate how the weight assignment could affect server produc-
tivity, we simulated a round robin scheduler and collected the
results under different weight assignments. The simulator has 4
queues corresponding the four states (MM, CO, SR, BR) with
the same transition probability as was listed in Figure 5. The
processing time of the stages is 0.5, 1, 1.5, and 2, respectively.
The timeout duration was assumed 20 time units and the simu-
lation duration was set to 10,000 time units. The more weight
a queues is assigned, the more CPU time it can use. Table II
displays the different server productivity. It is observed that
proper weight assignment can significantly improve the overall
performance by increasing the number of completed requests
and reducing the number of timeouts. In this set of results, the
best case performance is nearly 8 times better than the worst
case. This inference inspires to seek productivity improvement
through appropriate weight assignment.

Weight as-
signment

requests
completed

requests
timed out

server’s
productiv-
ity

(1,1,1,1) 3077 747 2330
(5,1,1,1) 3930 616 3314
(1,5,1,1) 1585 826 759
(1,1,5,1) 2520 880 1640
(1,1,1,5) 1685 879 806
(5,1,5,1) 3463 477 2986
(1,5,1,5) 1161 767 394

TABLE II
SERVER’S PRODUCTIVITY COMPARISON.

Next we propose a dynamic weighted fair sharing (DWFS)
scheme based on the temporal relationship in web session in
such a manner that the weight distribution is not static all the
time. Instead, it depends on the accumulation at the queue and
the output rate with the goal to improve the server productivity.
Unlike the traditional algorithms that seek short term through-
put improvement, DWFS tries to smooth the domino effect of
overloads in pursuit of sustained throughput.

B. Dynamic Weighted Fair Sharing (DWFS)

The objective of DWFS is to improve the server’s produc-
tivity through dynamic weight assignment for scheduling pur-
pose. In an overloaded server, processing at one queue is not
productive when it overwhelms other queues. For example, in
an e-commerce server, the merchandise browsing and checkout
are two queues. If the browsing queue is processed faster than
the checkout queue, then the clients proceed to check out only
to be jammed, and most of the requests get timed-out. In this
case the browsing queue is unproductive. On the other hand, if
the server distributes more weight on check out queue such that
the requests in the browsing queue will experience longer but
tolerable service time, then the input to the downstream check-
out queue is reduced and their probability of receiving service



is increased, consequently the end user can perceive a faster
service.

The other aspect of DWFS is that, if a server knows a priori
that the request it is serving is unproductive, it can stop or delay
processing the current request queue and transfer the weight to
serve other queues to improve the server’s productivity.

The modeling tool used for DWFS is a queuing network with
limited waiting room. A k-waiting room queue can accommo-
date at most k entries waiting for service and the new arrivals
are simply dropped. More specifically, as a measure to allow
dynamic weighing, k is defined to be the quotient of service
time and session timeout period. Each output from a queue
produces a credit if the output goes to a queue that is not yet
full (productive queues). The credit reflects the productiveness
of the service. If service to a queue is known to be unproduc-
tive, then its weight is transferred to handle other queues. This
conflicts with philosophies behind some other scheduling algo-
rithms who seek maximal throughput from the server in all sit-
uations. In DWFS, some jobs may be dropped or delayed even
though they could have been served before deadline if more
weight were assigned to them. However, for the long run, more
incoming requests can meet their service expectation thus the
overall throughput increases. If the drop rate is not high to over-
shadow the throughput, the server’s productivity improves.

Productivity function:

� � A 
 ' <) � 132
<)&�132 � � � & + � ��� & + �

&
� &�� � � @ �����
	 
 (5)

where � & is the normalized weight assigned to queue � and � &
is the queue length.

� �
� 
 ' �
if � is true,

�
otherwise.

The productivity function defined in equation 5 states that if
the output from a queue is served before the deadline, then it
is considered productive. The productiveness of the output is
determined by the destination it leaves for; if the destination
queue is full, then no credit is earned but a penalty is imposed,
otherwise a credit is added. The credit can also be inversely pro-
portional to the queue length to avoid filling up the queue. Since
there are more than one possible destinations for the output, the
credit is reflected by multiplying it with the transition probabil-
ity. The capacity of the waiting room depends on the service
weight; the more weight assigned to the queue, the less time
a request takes to complete, and more requests can be served
before the timeout period expires.

The objective of the productivity function is to distribute the
weight to maximize the function

� � A 
 . One can solve the above
function and obtain the optimal weight assignment at any par-
ticular moment. We have written a solver program as we did in
the implementation of the web server’s scheduling code.

It is inferred from the productivity function that, when other
parameters are fixed, the timeout value determines the urgency
of the session. Later in the section V, we will discuss the impact
of quality differentiation based on the timeout value.

V. EXPERIMENTAL PERFORMANCE EVALUATION

From the above discussion, we can see that the DWFS’s ap-
proach to relieve an overloaded server is to add weights on those
requests whose descendant requests within the same session can
be honored. Those requests whose descendant requests are pre-
dicted to miss their delay bound are delayed for later process-
ing. To verify the feasibility of this scheme, we implemented
the algorithm in an Apache web server and evaluated its perfor-
mance.

A. Experimental Setup

The test-bed contains a web server and several clients. The
server has an Intel PIII 733MHZ CPU and 128MB RAM, run-
ning Apache 1.3.19 for MS Windows 2000. Apache [3] is an
open source, widely used web server. At runtime, the Apache
server consists of worker processes (or threads in some sys-
tems like MS Windows) and controllers. Each of the worker
processes handles one connection from a job pool that the con-
troller process keeps feeding into. This working mechanism
does not fit to DWFS in the sense that the worker processes
have no control over the job queues. We have changed the
way new jobs are added by modifying the Apache code. As
shown in Figure 7, instead of connections, in our modification,
the jobs are HTTP requests and the parser sorts them into differ-
ent queues based on their URL’s and records the timestamp they
are added into the queue. Then the priority assigner assigns dif-
ferent priority to the requests based on their IP addresses. The
DWFS module exercises the DWFS algorithm to assign jobs to
the worker processes and drops the requests that have timed out.
Since Apache server itself has no control over the CPU time
slot, the weights are assigned as the requests from the queues
are dispatched to the ready queue. At this time, the request that
exceed the timeout are dropped. Finally the processor handles
the requests within the ready queue.

HTTP
request

 parser

stage 1

stage 2

stage 3

stage 4 

priority

assigner
DWFS

ready

queue

processor

HTTP 
response

request timeout

Fig. 7. Implementation paradigm.

The clients used in the test-bed are several Sun UltraSparc
10 workstations running Solaris 2.8. The benchmarking tools
used in the experiment is our modified version of WebStone 2.5.
WebStone [22] is also open source. The request distribution
in the original WebStone benchmark is not adequate for our
purpose. The way a client picks a URL is randomized and the
URL array size is too small. We modified the source so that the
each client sequentially picks a URL from the array to simulate
a session and all the clients together replay the request trace of
the online retailer that we have characterized earlier.

The working mechanism of the experiment is as follows. A
master process instructs a configurable number of clients to



send HTTP requests to a web server for a specified time pe-
riod. During the test, the clients choose a URL from an array
and keep track of the connection time, response time, and other
parameters. After the test finishes, the clients send the statis-
tics to the web master and the latter reports the test results after
collecting all the clients’ data. The final results contain infor-
mation such as server connection rate (the number of connec-
tions the server accepts; the higher the better), average response
time (the average timespan the client receives the whole re-
sponse; the smaller the better), average throughput (the server’
throughput during the test time; the higher the better). There
are other HTTP benchmarking tools available like httperf[16],
SpecWeb99[20], SURGE[6], etc. But WebStone’s ability to
control the number of clients and URL array and its excellent
result reporting tools was appropriate and the modified version
was adequate for our experiment.

We created over 4,000 files in the web server and divided
them into 4 queues as stated in the previous section. The av-
erage processing time of URL’s in each queue under normal
server load is 0.5s, 20s, 10s and 5s respectively. In the test, the
WebStone clients were instructed to replay the trace of the on-
line retailer’s server collected during the period 20:00 - 21:00.

B. Experimental Results

From the test, we found that some of the performance pa-
rameters such as server connection rate, number of completed
requests and server throughput (in terms of the number of re-
quests served) were more or less the same, while the average
response time varied significantly. For better comparison, we
have chosen the response time as the primary performance mea-
sure for our analysis. We also analyzed parameters such as re-
quest timeout rate due to DWFS, the queueing time, and the
processing time of each request from the server log at the web
server side. We observed that the web server was overloaded
when the number of clients reached 40 and essentially became
saturated after being requested by 60 clients, so the following
results and discussions are focused on the results with the num-
ber of clients as 40, 50, and 60.

The experiments were conducted under different DWFS ses-
sion timeout settings and the results were compared to the orig-
inal Apache server with the same configurations. In the DWFS
tests, the clients were evenly divided into 3 priority classes.
Each priority class has a scheduling timeout, the shorter time-
out a request is assigned, the higher is its priority and thus it
gets better service. In WebStone, the webmaster process al-
ways tries to evenly divide the number of total processes on the
client workstations, making the number of processes in each of
the priority class approximately equal.

Tables III, IV, and V show the DWFS results with differ-
ent timeout values, and Table VI shows the results from the
unmodified Apache server with the same configuration Figure
8 depicts the response time comparison of the four configura-
tions. In Tables III, IV and V, the values in Number of Clients
is represented as an fraction because the number of processes
in each priority class varies in each test iteration but is approxi-
mately one-third of the total number of clients. Since the orig-
inal Apache server does not drop requests because of timeout,
only the average response time is listed in Table VI.

Number of
Clients

Average Re-
sponse Time(s)

Request time-
out rate(%)

40/3 6.902 0.16
50/3 7.152 0.28
60/3 6.968 0.44

TABLE III
DWFS WITH SESSION TIMEOUT 10 SECONDS

Number of
Clients

Average Re-
sponse Time(s)

Request time-
out rate (%)

40/3 8.537 0.11
50/3 8.357 0.20
60/3 8.772 0.35

TABLE IV
DWFS WITH SESSION TIMEOUT 15 SECONDS

It is observed from the tables that, DWFS can significantly
improve server performance by reducing the response time up
to 52%. The smaller the session timeout, the shorter is the re-
sponse time and thus better is the service. DWFS incurs ad-
ditional request timeout. The timeout rate rises significantly
with regards to the number of clients and the timeout value.
But such occurrence is less than 0.5%, the impact of which
is insignificant on the service availability provided by an over-
loaded server. This observation also distinguishes DWFS from
the shortest-job-first scheduling in the sense that the shortest-
job-first scheduling starves long jobs which may lead to more
request timeouts. Finally, the relatively steep slope of the origi-
nal Apache server curve compared to DWFS curves reveals that
the server performance using DWFS is more scalable when the
number of the clients increases.

To investigate the underlying factors of the response time dif-
ference, we further analyzed the anatomy of the response time.
We divided the response time into queueing time and process-
ing time. Queueing time is the period a request is being queued

Number of
Clients

Average Re-
sponse Time(s)

Request time-
out rate(%)

40/3 9.512 0.01
50/3 9.864 0.16
60/3 10.584 0.24

TABLE V
DWFS WITH SESSION TIMEOUT 20 SECONDS

Number of Clients Average Response Time(s)

40 9.623
50 11.885
60 14.267

TABLE VI
ORIGINAL APACHE SERVER.
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Fig. 8. Response time comparison.

and processing time is the interval between when the request
was read and the time when the HTTP response sent. In Apache
architecture, the queueing time starts when a job is accepted
and ends at the point when the request starts getting processed
by a worker thread; its processing time starts at that point. For
a DWFS enabled Apache server, however, since every request
line is read immediately after it has been accepted, the queue-
ing time spans from the time the request is read to the moment
when a worker thread begins to process it. Figure 9 presents the
anatomy of the response time under different configurations.
The x-axis label specifies server type/timeout value/number of
clients. The timeout value is zero for the original Apache server
because it has no scheduling restraints.

From Figure 9, it is observed that the queueing time of
the original Apache server is dependent on the number of the
clients. The more the number of clients, the longer is the queue-
ing time. We believe this effect is a direct result of its best
effort scheduling discipline, where requests are queued on a
first-come-first-serve manner and short requests have to wait
for the completion of long requests even if these long requests’
turnaround time may exceed the delay bound and be aborted by
the impatient clients. For the DWFS’s case, the queueing time
also varies for different timeout settings but is much shorter
than those of the original Apache server. Under the same time-
out setting (thus the same priority class), the queueing time re-
mains stable, which in turn means that the session level service-
ability is maintained. This is due to the preemptive scheduling
and the early dropping of those requests whose pre-assigned
service time cannot be guaranteed for the descendant requests
within the same sessions.

Finally, we compared the session abortion rate under dif-
ferent configurations. We assume that a session is aborted if
one of the requests within it does not receive service before
its delay bound. In the real world, when this occurs, the end
users get impatient and abort the session. In DWFS, a session
gets aborted when the request has not been processed before its
timeout value. While there is no timeout restraint in Apache,
we assume that every session has a timeout value of 15 sec-
onds. Figure 10 depicts the comparison. It is observed that for
DWFS, the aborted session rate is relatively small and the pri-

Fig. 9. Anatomy of the average response time.

ority class with longer timeout value usually has lower abortion
rate. For Apache server, the aborted session rate is sensitive to
the number of clients which means more and more sessions get
aborted as the server load increases.
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Fig. 10. Session abortion rate comparison.

VI. RELATED WORK

A limited number of work has been reported on sessions
characterization in web servers. In [4], the authors provide
parameters based on the World Cup 98 server log, which in-
clude session length, inter-session time, and their implication
on server performance. Our characterization work provide
complementary results on workload composition, session stage
transition, and the ratio of request arrival rate to session genera-
tion rate. These empirical results can be exploited to recognize
user browsing behavior and capacity planning.

In the context of capacity planning, [13] provides a model
based on bandwidth demands for memory, processors data bus,
NIC and I/O buses. It is practical for server configuration. Our
capacity planning model is targeted towards session level SLA
specification and overload prevention.

Although a plethora of work on web servers have addressed
performance issues in web servers, the studies on overload con-
trol has been limited. An approach for overload control by con-
tent adaptation has been proposed in [1]. Under high load the



servers resorts to low fidelity images that consume less sys-
tem resources, thus reducing the load. Content adaptation is
applicable mainly to static web content. Overload control us-
ing operating system support has been studied in [15], [21],
[5]. The server behavior under overload has been analyzed in
[15] and three solutions are proposed to help relieve an over-
loaded server. These solutions include direct control over kernel
timeouts and resource limits, resource introspection, and disas-
ter management. Three kernel-based mechanims that prevent
server from being overloaded by admission control and service
differentiation are presented in [21]. Their mechanisms include
TCP SYN policing that control the TCP connection rate, pri-
oritized listen queue and HTTP header-based connection con-
trol that provides service differentiation. A new kernel facility
called resource container which can effectively audit overall re-
source usage by each process is presented in [5]. This scheme
is useful for service differentation as well as overload control.
In [19], the authors have studied web server overload control
through three different schemes. The first approach is based
on the network interface level request dropping. The second
approach refers to a feedback machanism from the application
level to throttle the traffic volume. The third approach is a hy-
brid of the other two schemes. These schemes significantly im-
prove server throughput under high load. All these solutions
have not considered the session integrity and hence have lim-
ited applications for session-based web traffic.

Most of the prior work on overload control are evaluated on
a per request basis, which may not be adequate for many ap-
plication enhancement that may require session-based overload
control. A session-based admission control scheme has been
reported in [9], which prevents overload by efficient admission
control. They monitor the server load periodically and estimate
the load in near future. If the predicted load is higher than a pre-
defined threshold, no new requests are admitted. This situation
may lead to denial of services. The proposed DWFS scheme is
targeted for efficient scheduling of requests and complements
the work reported in [9] in maintaining long term server avail-
ability.

VII. CONCLUSION

Overload control ensures service availability in varying
workload and is an indispensable part of network server en-
gineering. This paper presents QoS capacity planning and
scheduling algorithm for overload control based on character-
ization of a commercial web server log. The main idea of the
proposed scheme is to use session-based overload control. Per-
formance measures of web services in terms of sessions is more
meaningful than the measures based on individual requests. We
have targeted QoS-aware web servers that provide guaranteed
QoS based on the requirement of sessions. The traffic confor-
mation function provides quantitative solution for SLA speci-
fication and can be used in commercial servers. We have pro-
posed and evaluated a new scheduling algorithm called DWFS,
which discriminates the scheduling of requests on the basis of
the probability of completion of the session that the requests
belong to. The proposed scheduling algorithm improves server
productivity under heavy load by more than 50% in the config-

uration studied in this paper. This work can be used as a frame-
work for further development and deployment of session-based
overload control techniques.
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