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Abstract—With the proliferation of sensor-embedded mo-

bile computing devices, mobile sensing is becoming a popular

paradigm to collect information from participating mobile users.

Unlike the well-calibrated and well-tested sensor networks, mo-

bile sensing relies on participants with unknown reliability. Data

collected from mobile users may be untrustworthy. There are

various solutions proposed in the literature for assessing the

trustworthiness of the sensing data that describe an individual

event or observation. In addition to single-event based trust

models, we propose the concept of Provenance Logic, to reason

about the logical relations between multiple events by jointly rec-

ognizing and linking events from successive sensing observations.

We propose an approach that combines logical reasoning and

statistical learning techniques. To the best of our knowledge, our

work is the first attempt for trust evaluation based on the logical

relation among multiple events in the mobile sensing context. We

motivate and illustrate our approach with a use case of traffic

monitoring mobile sensing. Performance validation has shown

that improved trust assessment can be achieved efficiently and

effectively on top of single-event based analysis.

I. INTRODUCTION

We have seen the massive prevalence of mobile computing
devices such as smartphones and tablet computers in recent
years. These devices usually come with multiple embedded
sensors, such as camera, microphone, GPS, accelerometer,
digital compass and gyroscope. Such advancements have made
mobile sensing become an extremely popular data collection
paradigm, where people use their personal mobile devices
to perform sensory data collection tasks. A notable number
of mobile sensing applications have emerged for collecting
specific data such as traffic [1], noise pollution [2], cyclist
experiences [3], and consumer pricing information [4]. Un-
like traditional well-calibrated and well-tested wireless sensor
networks (WSN), mobile sensing relies on participants of
unknown trustworthiness. Therefore, a challenge in mobile
sensing applications lies in the unreliability of data sources.
Mishandling of uncertainty in the data may result in a wrong
perception of the situation. Therefore, we need schemes to
analyze the trust of sensing data streams about events in order
to combine data from multiple sources and derive reliable
conclusions from them.

Prior literature have studied trust or credibility assessment
of information from potentially unreliable sources in social
networks [5], [6], traditional WSN [7]–[9] and mobile sensing
networks [10], [11]. Provenance, i.e., the derivation history,
of the sensing data has been considered a key element
to reason about trust of data. Particularly, researchers have
looked at provenance data from three different dimensions:
node provenance (who processed the data), spatio-temporal
provenance (where and when the data were originated and

processed) and social provenance (the social relationship of the
nodes who processed the data). With provenance information
available, various algorithms have been proposed to evaluate
the trustworthiness of sensing data describing an individual
sensing event.

Mobile sensing applications with different purposes may
work under completely different system models and may
have very different requirements. In this work, we focus on
mobile sensing applications that collect data that describe
events that are likely to be in progress in a target envi-
ronment, with a purpose of performing situation assessment
or hazard detection. A category of such applications would
be traffic sensing applications, where users share their real-
time observations about traffic events/situations like accidents,
traffic jam, road hazards, etc. One such application is Waze
[12], a GPS navigation application available on the iOS App
Store. In such an application scenario, it is common that a
sequence of events in the physical world is reported within a
short period of time by either the same set or different sets
of participants. For example, observations at time t1 claim
that “a major accident happened at location l” and subsequent
observations at time t2 claim “a heavy traffic jam is observed
at location l”. Events observed within a short period of time
or at the same location often possess logical relations in
terms of time, location and other contextual factors. With the
observation description and the associated provenance data, we
can correlate against different events and identify the logical
support or conflicts among them, which allows us to further
reason about the trust of the sensing data in addition to only
looking at single events.

In this work, we propose the concept of Provenance Logic,
to reason about the logical relations between multiple events
with the available provenance information, which provides the
foundation for another level of information trust evaluation on
top of single-event based trust evaluation. In other words, we
are trying to answer the question that, by jointly recognizing
and linking events from successive sensing observations, how
one can determine the probability that a given observation is
true with a higher accuracy than only looking at individual
events. To the best of our knowledge, our work is the first
attempt to evaluate information trust in mobile sensing based
on the logical relation among multiple events.

With the information in the provenance data associated
with the sensing reports, we aim to reason about the logical
relations between events from three dimensions: spatial, tem-
poral, contextual as well as the inter-correlation between them.
Violation of provenance logic, e.g., different events indicate
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that the same entity was at different locations at the same
time, will degrade our trust towards the sensing data. It is also
possible that mutually supporting provenance makes us trust
the sensing data more. Event Calculus [13] is adopted and
extended in order to represent and analyze the logical relation
among multiple events. We then transform such logical relation
into a probabilistic graphic representation based on Markov
Logic Network (MLN) [14], which enables us to infer the
probability of one event given the probability of others.

The main contributions of this paper can be summarized as:

1) An event logic module to extract sensing observations
that possess logical relations and translate them with
their provenance information to first order predicates.

2) A logical semantic model extending Event Calculus to
represent the provenance logic of sensing observations
from three dimensions: temporal logic, spatial logic and
contextual logic.

3) An MLN based mechanism to perform logic-based trust
reasoning for a sensing observation given the other
related observations and their pre-computed trust.

The rest of the paper is organized as follows. We highlight
the related work in Section II. In Section III, we describe
our system model and give a brief overview of how our entire
framework works. We then present our proposed framework in
Section IV. The performance evaluations based on simulation
experiments and a case study are presented in Section V. We
give a discussion and talk about our future work in Section
VI. Finally, Section VII concludes the paper.

II. RELATED WORK

To assess the trust of reports in mobile sensing, a rel-
evant body of work in machine learning and data mining
communities performs trust analysis. Yin et. al. introduced
TruthFinder as an unsupervised fact-finder for trust analysis
on a providers-facts network [15]. Wang et. al. proposed
a maximum likelihood estimator to directly and optimally
quantify the accuracy of conclusions obtained from credibility
analysis in mobile sensing [10].

In the networking community, trust analysis of sensing
data in both traditional WSN and mobile sensing has been
studied. Raya et. al. [16] developed the notion of data trust
in ephemeral networks. They evaluate data reports with cor-
responding trust levels using several decision logics, namely
weighted voting, Bayesian inference, and Dempster Shafer
Theory. Several recent efforts [7]–[9], [17] studied the in-
formation trust analysis based on node-level provenance in
multi-hop sensor networks. The ARTSense [11] is a scheme
where data trust is evaluated anonymously in mobile sensing
applications. None of these trust analysis schemes has con-
sidered the possible logical relation among multiple events or
observations. To the best of our knowledge, our work is the
first attempt to look at the data trust analysis problem at a
multi-event level in the mobile sensing context.

To model and analyze the ordering, concurrency and other
logical relations between situations and events, A variety
of logical formalisms, e.g., Situation Calculus [18], Event
Calculus [13] and Event Logic [19] have been proposed and
studied in the artificial intelligence community. They have
been widely explored in the field of event recognition from

surveillance videos. However, none of the techniques has been
applied in analyzing trust of data in the field of mobile sensing.
In this work, we employ Event Calculus as the basis of our
provenance logical reasoning.

Probabilistic graphical models, e.g., Dynamic Bayesian Net-
works (DBN) [20], Markov Random Field (MRF) [21] and
Markov Logic Networks (MLN) [14] have been applied to
a variety of event recognition tasks where uncertainty exists.
To analyze the amount of uncertainty, i.e., trustworthiness, in
the sensing reports, we adopt MLN as our trust computation
framework because it is a new and powerful approach that
combines both uncertainty and logic language to tackle the
relation among multiple events.

III. PRELIMINARIES

A. System Overview

We consider a mobile sensing application model where
a group of participants make individual observations. Each
observation describes an event or situation in the physical
world at the observation time. We assume there is a finite
domain of states that a participant could report.

The provenance information is attached to the sensing
reports as meta-data, where each piece of provenance in-
formation is a property-value annotation. The provenance
annotations include time, location and a list of contextual
provenance (e.g. weather condition) required by the specific
application. We assume that sensing reports with the same
observation and similar provenance information are grouped
and consolidated as a claim. Each claim’s initial trust can
be evaluated based on an existing single-event trust analysis
scheme. Such an initial trust is denoted as T (0).

A sliding window of N claims C1, C2, . . . , CN

are recorded
and ordered by their reporting time. We assume each of the
N claims has been assessed by our scheme at least once and
assigned with an updated trust value T (x), where x denotes
the number of rounds of trust updates that have been done
by our system. We name this sliding window as the evidence
window since each claim is considered a potential evidence.

Suppose we received a claim C 0 based on some newly
arrived sensing reports, we first obtain its initial trust T 0(0).
After that, C1, C2, . . . , CN

, C 0, together with their provenance
annotations and current trust values are fed into our system as
the input. The goal of our system is to (1) find the claims
in C1, C2, . . . , CN

that have logical relations with C 0 based
on the logic relation definitions in our knowledge base; (2)
construct an MLN based on the logical relations and pre-
defined rules; (3) update each of the related claims’ (including
C 0) trust based on the MLN probability inference.

After the above steps, the original C1 is replaced with C 0

to maintain the size of the evidence window. Not all of the
claims in the evidence window are necessarily related to a
newly arrived claim. Therefore, only those that have a logical
relation with the new claim will get a trust update. However,
for clarity purpose, we increase x in the T (x) notation for
every claim after a round of trust update. Ultimately, when
a claim exits the evidence window, its trust value should be
updated as T (N+1). We expect T (N+1) to be more accurate
than the corresponding T (0) of the same claim. The size of
the evidence window N can be adjusted based on the real-time
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Fig. 1: An overview of multi-event trust analysis

needs of the application.
Figure 1 provides an illustration of a round of multi-event

based trust update by our system. The Logic Module and MLN
Module are the main focus of our work.

B. Event Calculus

The Event Calculus, originally introduced by Kowalski and
Sergot [13], is a first-order logical language for representing
and reasoning about events and their effects. The basic compo-
nents of the Event Calculus are time points, events and fluents.
A fluent is a state whose value may vary over time. When
an event occurs, it may change the value of a fluent. Table
I summarizes the domain-independent predicates of the Event
Calculus. The core domain-independent axioms define whether
a fluent holds or not at a specific time-point. Moreover,
the axioms incorporate the common sense law of inertia,
according to which fluents persist over time, unless they are
affected by the occurrence of some event. A knowledge base
of Event Calculus axioms is defined by a set of first-order
logic formulas.

TABLE I: The Event Calculus predicates
Predicates Meaning

initiallyP (F ) Fluent F holds at time-point 0
initiallyN (F ) Fluent F does not hold at time-point 0
holdsAt(F, T ) Fluent F holds at time-point T
happens(E, T ) Event E occurs at time-point T
initiates(E,F, T ) Event E initiates fluent F at time-point T
terminates(E,F, T ) Event E terminates fluent F at time-point T
clipped(F, T0, T1) Fluent F is terminated at some time-point

in the interval [T0, T1)
declipped(F, T0, T1) Fluent F is initiated at some time-point

in the interval [T0, T1)

C. Markov Logic Network

A knowledge base of Event Calculus axioms is defined by a
set of first-order logic formulas. Each formula imposes a hard
constraint over the set of possible worlds. This, however, does
not handle uncertainty adequately. We employ the framework
of Markov Logic Networks (MLN) [14] in order to soften the
constraints and perform probabilistic inference.

In contrast to the Event Logic, all worlds in MLN are
possible with a certain probability. An MLN consists of a
set of first-order logic formulas and a weight value (2 R)
associated with each formula. Formulas with weights impose
soft-constraints over the possible worlds, which enables imper-
fect knowledge in the domain to be captured and utilized for
inference. The stronger the constraint represented by a formula
F
i

, the higher the value of its weight w
i

.

Fig. 2: Reporting interface of Waze [12]

Formally, in our case, the knowledge base K consists of
Event Calculus formulas converted into clausal form. Together
with the associated weights and a finite domain of constants C
where C contains all the distinct values of events, fluents and
time. K is transformed into a ground Markov network M

K,C

,
which contains one binary node for each possible grounding
of each predicate appeared in K. The value of the node is 1
if the ground atom is true, and 0 otherwise. The predicates
of a grounded formula form a clique in M

K

, C. Each clique
is associated with a weight w

i

of the corresponding formula.
The ground MLN defines a probability distribution over the
possible worlds.

A Markov network is a model for the joint distribution of a
set of variables X = (X1, X2, · · · , Xn

) 2 X . The probability
distribution over possible worlds x is given by:

P (X = x) =
1

Z
exp

 
X

i

w
i

n
i

(x)

!
(1)

where n
i

(x) is the number of true groundings appeared in
each formula F

i

in x and w
i

is the weight associated with the
formula F

i

. Z is known as the partition function and is given
by Z =

P
x2X exp (

P
i

w
i

n
i

(x)).

D. Use Case: Traffic Sensing

To better motivate and explain the system model as well
as our entire scheme, we take a traffic sensing application
like Waze [12] as an illustrating example. Figure 2 shows the
interface of Waze on which users report their observations.
For illustration purpose, we consider a simplified case derived
based on Waze: the events/situations that a user can report
include traffic jam (major, minor), police, accident (moderate,
heavy, stand-still), and road hazards. The provenance informa-
tion of the observation report includes time, location and one
contextual property: traveling speed.

Table II shows a mapping of the sensing data (observation
and contextual provenance) to the Event Calculus elements
(events and fluents). The events and traffic fluents can be
extracted from the observations reported and the vehicle
fluents can be derived from the traveling speed property in
the contextual provenance.

TABLE II: Events and fluents in traffic sensing use case

Events

Fluents

Traffic Vehicles
Minor Accident
Major Accident

Police
Hazard

Moderate Jam
Heavy Jam
Standstill

High Speed
Low Speed

Stopped
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IV. THE SCHEME

A. Provenance Logic

To demonstrate how logical support and conflict may arise
in a traffic sensing scenario, let us assume that the following
four claims are received:

C1: A major accident is at Location X at

2:00pm (reported by 10 drivers).
C2: A heavy traffic jam is at Location X

at 2:15pm (reported by 30 drivers).
C3: A police is at Location X at 2:30pm

(reported by driver Alice with

traveling speed of 70 mph).
C4: A police is at Location Y (50 miles

away from X) at 2:45pm (reported by

Alice with traveling speed of 70 mph).

Clearly we can see the C1 and C2 support each other since
a major accident is likely to cause a heavy traffic jam. C3

seems to be reasonable at first glance since police usually
appears after an accident. However, there is also an obvious
contextual conflict between C2 and C3 since a car is unlikely
to be traveling at 70 mph when there is a heavy traffic jam.
In C4, we can observe that spatio-temporal constraints are
violated when comparing against C3 because it is a car could
hardly travel 50 miles in 15 mins.

The Event Calculus defines the logical semantics to model
the causal relation between events and fluents by integrating
the initiation and termination predicates for a particular fluent
of interest into formulas.

From the example given above, one can see the necessity
to have a way to analyze the logical support/conflict between
multiple claims with the available provenance information, in
addition to the causal relation modeled by the Event Calculus.
First of all, besides direct causal relations, other events or
fluents which do not directly initiate or terminate a particular
fluent may also impact the validity of the fluent. We define
that the fluent for which we intend to design an Event Calculus
formula is the primary fluent of the formula. The events which
have direct causal relations with the primary fluent are defined
as the primary events. The rest of the events and fluents which
may potentially affect the validity of the primary fluent and
thus are introduced in the fluent’s formula are defined as
secondary events and secondary fluents.

To enable the Provenance Logic reasoning of secondary
events and fluents to Event Calculus, we introduce the fol-
lowing three Provenance Logic dimensions:

1) Spatial constraint: The location where a secondary
event happens or a secondary fluent holds should not
impair the primary fluent’s validity.

2) Temporal constraint: The time when a secondary event
happens or a secondary fluent holds should not impair
the primary fluent’s validity.

3) Contextual constraint: None of primary/secondary
event’s or secondary fluent’s provenance properties
should impair the primary fluent’s validity.

To make our ideas generic and clear, we defined the above
types of constraint separately. However, to construct a fluent
formula, it is very common that more than one of them
need to be considered collectively in order to formulate an
adequate logic constraint. The conflict between C3 and C4 in
our above example illustrates a case where both spatial and
temporal provenance are jointly considered. Figure 3 gives
an illustration of how provenance-based logical reasoning is
added to the Event Calculus.

B. Location and Context Aware Event Calculus

The Event Calculus only defines a way to model temporal
relations between events and their fluents. However, the trust of
reported events cannot be fully judged with only the temporal
logic. Since we want to reason about the support and conflicts
between events in terms of spatial, temporal and contextual
relations, we need to add spacial and contextual semantics to
the current Event Calculus. Now we discuss an approach to
express spacial and contextual elements in the Event Calculus.

Location-awareness: An extension of Event Calculus,
spatio-Temporal Extended Event Language (STEEL) [22],
was proposed to address the issue of representing spatial
information in the Event Calculus. In STEEL, a new variable
L is introduced in every predicate to represent location, e.g.,
initially

P

(F,L) can be interpreted as fluent F holds at time-
point 0 at spatial region L and happens(E,< T,L >) can be
interpreted as event E occurs at time T in spatial region L.

Introducing an L variable in each predicate certainly makes
the Event Calculus capable of modeling various complicated
spatial relations between events. However, when we perform
logical reasoning of various situations (e.g., construction of the
ground Markov network), we need to have every predicates
grounded. In this case, an additional variable leads to clauses
with a large number of disjunctions and a combinatorial
explosion of the number of clauses that are generated.

Considering the fact that generally multiple events/fluents
possess logical relations because they happen at the same
location, if there is no secondary events or fluents at another
location having any logical impact on the primary fluent, we
do not necessarily introduce an additional variable to every
predicates in the fluent formula. We define such a location
of interest as the primary location. If there is a location
constraint triggered by a secondary event/fluent at a secondary
location, what really matters is the distance between the
secondary event/fluent and the primary fluent. Hence, instead
of introducing a new variable in each predicates, we introduce
the distance variable in two predicates as in Table III.

One thing to be noted is, adding the above predicates to
a formula generally does not introduce a complete secondary
spatial or temporal constraint. They need to be coupled with
additional predicates D < D0 or |T

s

�T
p

|< T 0 which describe
the time and distance bounds between primary and secondary
locations and time points.
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TABLE III: Predicates with a distance variable
Predicates Meaning

holdsAt(F, T,D) Fluent F holds at time-point T at
a location D distance away

happens(E, T,D) Event E occurs at time-point T at
a location D distance away

Context-awareness: Contextual information in the prove-
nance data is often expressed in the form of property-value
pairs, e.g., traveling speed = 70 mph. For each contextual
property, we can derive a requirement on it for the primary flu-
ent’s validity. Each contextual property can then be translated
to a contextual fluent predicate in the Event Calculus axioms.
However, since applications and the validity of fluents usually
have different requirements for the contextual conditions, it is
easy to image that the way the contextual fluent is defined
may vary when the application is different or even when
the primary fluent is different. There is no way to define
a generic contextual property to contextual fluent translation
process. For example, if we want to introduce a traveling speed
constraint for a formula of the heavy traffic jam fluent at time
T , we can add a predicate holdsAt(LowSpeed, T ) where
LowSpeed defines a contextual fluent where the traveling
speed of vehicles is low. However, when we translate the
traveling speed property when the primary fluent is Standstill,
we might add a different predicate holdsAt(Stopped, T ) since
moderate traffic jam and heavy traffic jam obviously put
different constraints to the contextual condition of vehicles’
traveling speeds.

We have now described the way we can add location and
context awareness to the Event Calculus. We will next define
a set of Event Calculus formulas related to the Heavy Traffic
fluent in the traffic sensing use case, as an illustrative example
of how the formulas are actually defined (we ignored the
distance attribute here for clarity).

holdsAt(HJ, T1)  initially
P

(HJ) ^
¬clipped(HJ, 0, T1) (2)

holdsAt(HJ, T2)  happens(MA,T1) ^
initiates(MA,HJ, T1) ^
¬clipped(HJ, T1, T2) ^
T1 < T2 (3)

holdsAt(HJ, T2)  happens(MI, T1) ^
initiates(MI,HJ, T1) ^
¬clipped(HJ, T1, T2) ^
T1 < T2 (4)

holdsAt(HJ, T2)  happens(HZ, T1) ^
initiates(HZ,HJ, T1) ^
¬clipped(HJ, T1, T2) ^
T1 < T2 (5)

clipped(HJ, T1, T2)  happens(P, T ) ^
terminates(P,HJ, T ) ^
T1 < T < T2 (6)

Formulas 2 - 6 are derived based on the Event Calculus
only. They cover the initiation and termination of the Heavy

Jam (HJ) fluent. Formula 2 specifies the condition when there
is a heavy traffic jam at the beginning point in time of the
analysis, i.e., time of the first claim in the evidence window
and nothing has terminated the HJ fluent. Formula 3 means
HJ holds if a Major Accident (MA) happens and nothing has
terminated the HJ fluent. Similarly, Formula 4 and 5 describe
the logic condition when HJ is caused by a Minor Accident
(MI) and Hazard (HZ) respectively. Formula 6 defines the
termination logic of a HJ fluent, where the occurrence of a
Police event at the same location will clear the HJ fluent.

Subsequently, we demonstrate how the spatio-temporal and
contextual constraints could be formulated and added into
the knowledge base. First of all, let us look at the simpler
contextual constraint in the use case. We would like to add a
constraint that “no car could be traveling at a high speed if
there is a heavy traffic jam”. This can be translated to a first
order logic formula as follows:

¬holdsAt(HS, T )  holdsAt(HJ, T ) (7)
and

¬holdsAt(HJ, T )  holdsAt(HS, T ) (8)
where HS denotes the High Speed fluent of a vehicle traveling
at a speed higher than a pre-defined speed threshold. Next, we
begin to take the distance attribute into consideration and add
the spatio-temporal constraint that “a car appeared at T2 can
neither be traveling (with high speed or low speed) or stopped
at time T1 at another location that is more than D distance
away if a feasible speed (a pre-defined speed constant S) could
enable it travel D distance from T1 to T2”. By translating this
to a formula, we have:

holdsAt(HS, T2) $ ¬{{holdsAt(HS, T1, D) _
holdsAt(LS, T1, D) _
holdsAt(ST, T1, D)} ^
(T2 � T1) ⇤ S < D} (9)

where LS denotes the Low Speed fluent of a vehicle traveling
at a speed lower than the speed threshold, and ST denotes
the Stopped fluent where a vehicle is stopped when reporting
an observation. One thing to be noted is, this formula is only
applicable when there is the same vehicle reporting multiple
observations. To simplify the formula so that the ground
Markov network does not become over-complicated, we do
not introduce a separate V ehicle entities in the axioms. Since
it is easy to give a pre-judgment of whether a same vehicle
reported multiple observations at multiple locations, we only
consider Formula 9 in a ground Markov network when such
conflicts arise and we make the vehicle entity implicit.

Due to space limitations, we only listed the above subset of
the formulas for our traffic sensing use case. These formulas
set the rules when the Heavy Jam traffic fluent and High Speed
vehicle fluent are the primary fluents. The logical formulas for
other fluents and events can be easily generalized.

C. MLN-based Trust Reasoning

In Section III-C, we introduced the basic MLN concepts. In
our mobile sensing context, we aim to evaluate the trust (i.e.
probability) of a target claim given the other claims in the
current evidence window as well as all of their trust values
computed based on single-event trust analysis. All the claims
are mapped to one or more predicates in MLN based on the



6

claim payload and provenance information.
The set of random variables in M

K,C

can be divided into
two subsets. One is the set of input ground predicates derived
from the other claims in the current evidence window and
preprocessed spatio-temporal constraints, which is referred to
as the evidence random variables X 2 X . The other subset
correspond to groundings of query predicates, as well as
groundings of any other hidden/unobserved predicates, which
is referred to as the query random variables Y 2 Y . The joint
probability distribution of a possible assignment of Y = y,
conditioned over a given assignment of X = x, is defined as
follows:

P (Y = y|X = x) =
1

Z(x)
exp

 
X

i

w
i

n
i

(x, y)

!
(10)

where n
i

(x, y) is the number of true groundings of the F
i

in x and y. Z(x) normalizes over all possible assignments
y0 2 Y of query/hidden variables given the assignment x, that
is, Z(x) =

P
y

02Y exp (
P

i

w
i

n
i

(x, y0)).
Exact inference by computing Equation 10 directly is in-

tractable in all but the smallest domains. In order to perform a
specific inference task, it is not necessary in general to ground
the whole network, as parts of it could have no influence on
the computation of the desired probability. Grounding only the
needed part of the network can allow significant savings both
in memory and in time to run the inference. Inference in the
partial ground network can be done by Gibbs sampling.

The inference with MLN is supposed to be done based
on past evidence whose value (1 or 0) has been determined.
In our context, all the evidence predicates derived from the
claims in the evidence window are supposed to be under trust
evaluation, too. Hence, each evident predicate does not have a
confirmed value. Instead, each is only associated with a trust
value in the range of [0, 1], which is obtained from either
the initial single-event based trust analysis or the multi-event
based trust analysis from the previous evidence window. This
trust value is defined as the prior trust. This makes it difficult
to determine whether a grounding of a given formula is true
or false. To solve this problem, we first classify the value of
each evidence predicate to 1 or 0 by comparing their prior trust
with a neutral trust threshold (0.5). A predicate with a prior
trust higher than the neutral trust threshold is considered true.
With this classification, all the evidence predicates are fed into
the MLN to obtain a probability value of the any particular
target predicate. This probability can then be used to update
the prior trust of a target predicate as follows:

T (x+ 1) = T (x) + � · (p� 0.5) (11)
where T (x) is the prior trust, T (x+1) is the updated trust, p is
the inferred probability obtain from MLN, and � is the logical
sensitive parameter which controls how much influence our
logical analysis has on the resulting trust value. The rationale
behind Eqn. 11 is that the trust of a claim (or predicate) should
increase if there is more support from other evidence claims
such that the MLN inference yields a probability higher than
0.5 and decrease otherwise.

V. EVALUATION

In this section, we aim to study the performance of our
scheme and understand how the dynamics and system pa-
rameters would affect the trust analysis results via simula-

TABLE IV: Default simulation settings
Total number of formulas in knowledge base 100
Number formulas relevant to target event 10
Number of evidence claims relevant to target event 10
Weight of relevant formulas 0.5

tion experiments. We tested two dimensions of performance:
effectiveness and efficiency. We assume the Event Calculus
knowledge base has been pre-established given a specific
application scenario and real time computation of the logic
module only involves mapping the claims to events and fluents
of the knowledge base. In terms of effectiveness, since we have
not seen another scheme which tries to add multi-event logical
analysis to the information trust analysis in the mobile sensing
context, we do not have a reference system to compare with.
Therefore, we first concentrate on studying the impact of the
dynamics and system parameters (e.g., the available relevant
claims in the evidence window and the weight assigned to
the formulas in the knowledge base) on the effectiveness of
trust analysis. There is no expensive computation before the
MLN inference. Therefore, for efficiency, we focus on the
delay caused by the MLN inference by running test cases
with different complexity of the knowledge base and different
number of available evidence claims.

In our simulation experiments, we define a complete Event
Calculus knowledge base for our traffic sensing use case in
accordant with the events and fluents defined in Table II. All
the simulations are under a closed-world assumption, i.e., all
relevant events are defined in the knowledge base. For each of
our experiments, we set one target claim (e.g., heavy jam) and
create different amounts of other claims as evidence claims
(e.g., major accident, hazard, high speed, etc.). We use the
open-source statistical relational AI framework Alchemy [23]
for executing MLN inference and our testings are carried out
on a Linux machine (Ubuntu 12.04 64-bit) with 2.26 GHz
Intel Core i5 processor and 6 GB 1333 MHz DDR3 memory.
Each of the data points in our evaluation results are obtained
based on 30 executions. Table IV lists our default simulation
settings. Each of the parameters is varied in our experiments
to study their impact on the performance.

A. Inferred Probability

The first performance metric we evaluate is the effectiveness
of MLN inference in our proposed framework, i.e., the inferred
probability p in Eqn 11. It is a determinative factor for the trust
adjustment. To understand if our scheme can really reduce
uncertainties, we need to investigate how the system dynamics
affect the inferred probability.

For a particular target claim, there could be both supporting
and conflicting evidence claims in the evidence window. For
the simulated experiments of inferred probability, we change
the ratio of the supporting and conflicting claims in order to
get a thorough understanding of its impact. Given the varied
supporting claim ratio, we then vary two other important
factors: the number relevant evidence claims (denoted as EN )
and the weight of the relevant formulas (denoted as WT ). The
results for the former are shown in Figure 4 and the results
for the later are shown in Figure 5.

As expected, the supporting claim ratio determines if the
inferred probability is higher or lower than 0.5, that is, if the



7

0 0.2 0.4 0.6 0.8 10
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Supporting claim ratio

In
fe

rr
ed

 p
ro

ba
bi

lit
y

 

 

EN=10
EN=20
EN=30
EN=40
EN=50

Fig. 4: Impact of supporting evidence ratio and number of
evidence claims on inferred probability
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Fig. 5: Impact of supporting evidence ratio and formula weight
on inferred probability

target claim gets positive or negative trust adjustment based
on Eqn. 11. In addition, both EN and WT have significant
influence on the actual inferred probability given a certain
supporting claim ration. Both Figure 4 and Figure 5 show
similar impact of EN and WT : higher EN or WT leads
to more diverged distribution of the inferred probability for
different supporting claim ratio. This is determined by the
nature of the MLN calculation. As we explained, the higher
the value of a formula’s weight, the stronger the constraint
the formula imposes over the possible worlds. It is thus
anticipated that higher WT pushes the inferred probability
to either 1 or 0 when there is a quantity difference between
the supporting claims and the conflicting claims. Furthermore,
each evidence claim represents the same level of constraint
given a certain weight to its associated formula. With the
same supporting claim ratio, the quantity difference between
the supporting claims and the conflicting claims becomes
larger when EN is larger. Hence, when WT is fixed, more
supporting claims also push the inferred probability towards
1 and more conflicting claims push the inferred probability to
0. This explains the sensitivity of the inferred probability to
both EN and WT . With the knowledge specific to the domain
under consideration, proper weights can be carefully assigned
and thus the inferred probability can provide useful constraints
and effectively reduce uncertainties and ambiguities in the trust
analysis of the sensing claims.
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Fig. 6: Execution time against total number of formulas
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Fig. 8: Execution time against number of evidence claims

B. Execution Time

Other than effectiveness evaluation, we also measure the
execution time of MLN inference with Alchemy by varying the
total number of formulas in the knowledge base, the number of
relevant formulas in the knowledge base as well as the number
of relevant claims in the evidence window.

Figure 6 shows our execution time measurement result when
we vary the total number of formulas. In this experiment, we
only increase the number of formulas that are irrelevant to the
target claim in order to see if they would affect the execution
time. From the results we can see that there is only a slight
increment of the execution time. Figure 7 shows the changes
of the execution time when we change the number of formulas
that are relevant to the target claim, i.e., those formulas that
defined the spatial, temporal or contextual relations between
the target claim (mapped to an event/fluent predicate) and
other events and/or fluents. We can observe a much more
dramatic increment of the execution time when we increase
the number of relevant formulas. Finally, Figure 8 shows the
changes of the execution time when we change the number of
evidence claims, i.e., the claims which have spatial, temporal
or contextual relations with the target claim in the evidence
window. Similar to Figure 7, the execution delay increases
quickly with the number of evidence claims.

From the above results, we can conclude that the major
factors that determine the delay of the MLN inference are
the number of relevant formulas and relevant evidence claims.
The irrelevant formulas in the knowledge base do not incur
significant delays. This is a great benefit from Gibbs sampling,
i.e., inference in a partial ground Markov network. To clearly
demonstrate the increased delay in Figure 7 and Figure 8, we
introduced “forged” formulas and evidence claims. In fact, for
one particular target claim, the number of relevant formulas
or evidence claims is less than 10 in most cases. Hence, the
MLN inference is generally rather efficient.

VI. DISCUSSION AND FUTURE WORK

Our proposed framework is designed with an objective
of serving as an add-on to single-event based trust analysis
schemes. Trust adjustments are made for each claim reported



8

by participating users based on the level of support or conflict
obtained from other relevant observations. The scale of such
adjustments can be controlled depending on the requirements
of the specific application. It, however, does not prevent our
scheme to be used independently without a single-event based
trust analysis scheme. Our scheme is general enough to be
applied to cases where logical relations among events is the
only determinative factor.

As a validation for the proposed framework, our perfor-
mance testing included evaluation for both efficiency and
effectiveness. As a first attempt to solve the multi-event based
trust problem in mobile sensing, we kept our evaluation
general via simulated scenarios. We did not explicitly compare
our result with a particular existing single-event based scheme
as our approach can be integrated on top of any of those
schemes. Without a real application scenario, there is no
easy way to evaluate the exact amount of improvement in
terms of trust analysis accuracy our approach can achieve
on top of a single-event based scheme. However, from our
effectiveness evaluation, we can see that our scheme lowers
the trust values the claims that have more conflicts with other
claims and increases the trust values of claims that have more
support from other claims as expected. The magnitude of
such adjustments is determined by the number of evidence
claims and the strength of the pre-defined logic constraints
(i.e., formula weights) between the claimed events. The actual
system designer has the control over the sensitivity of the
trust adjustments to these factors. This achieves our design
objectives of dynamically enhancing the accuracy of trust anal-
ysis by jointly recognizing and linking events from successive
sensing observations.

In the performance evaluation, we varied the formula weight
settings of MLN and tested the impact of different settings on
the trust evaluation. In fact, MLN has the capability of learning
the weights of formulas when a training data set is provided.
In this work, we focused on the inference with MLN and did
not consider its weight learning capability. As a part of our
future work, we will look into the different weight learning
mechanisms of MLN and carry out more measurements with
formula weights learned from real datasets.

VII. CONCLUSION

Data collected with the mobile sensing paradigm must
be assessed in terms of reliability or trustworthiness. We
believe that logical knowledge specific to an application do-
main under consideration can provide useful constraints to
reduce uncertainties and ambiguities in the trust evaluation.
In this paper, on top of the traditional single-event based trust
analysis, we propose a novel trust evaluation framework based
on the mutual logical support or conflict between successive
sensing claims. Our approach integrates logical reasoning via
an extended Even Calculus and the Markov Logic Network.
With an example traffic sensing use case, we illustrated how
to construct an Event Calculus knowledge base based on
commonsense knowledge of the domain and make it location
and context aware. In addition, we describe how the Markov
Logic Network is used in our scheme to infer the trust of a
particular event with other events as evidence. Performance
evaluation results have shown that our scheme can serve as
an efficient and effective add-on to single-event based trust
analysis.
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