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Abstract—Adaptive modulation and coding is an important
characteristic of OFDMA based wireless networks. A group of
subcarriers and symbols (which we refer to as “allocation unit”)
can be assigned to an user equipment (UE) based on its channel
conditions. The “allocation units” can have different bandwidths
for different UEs depending on the current channel conditions
of the UEs. The UEs typically have a minimum throughput
requirement. In this article our goal is to design a scheduler
that maximizes the number of scheduled UEs while meeting their
minimum throughput requirements. First we define an analytical
model for scheduling and then propose three algorithms for the
optimization problem. We show that, given the sets of “allocation
units”, maximizing the number of UEs is equivalent to finding
the maximum independent set of a bounded degree graph. We
also define the set allocation problem that minimizes the number
of intersecting sets subject to certain constraints.

I. INTRODUCTION

One of the most important features of Orthogonal Frequency
Multiple Access (OFDMA) based wireless networks is adap-
tive modulation and coding. OFDMA divides the frequency
into a number of subcarriers and divides time into symbols.
The subcarriers may be combined into subchannels. Adaptive
modulation and coding enables the different subcarriers to
have different modulation and coding parameters for different
user equipments (UEs) based on channel conditions. In IEEE
802.16 and IEEE 802.22 networks a slot is the smallest unit
that can be allocated to any UE and it is identified by a
symbol and subchannel combination. In 3GPP LTE the unit of
allocation is a resource block that consists of 12 subcarriers.
In this article we use the term “allocation unit”(AU) that can
be a slot in IEEE 802.16 and IEEE 802.22 networks and a
resource block in LTE networks.

We consider a centralized network model where there is
a central entity and the UEs are connected to the central
entity. We refer to this central entity as the base station
(BS) from now on. The BS performs scheduling and assigns
the “allocation units” to the UEs for a certain amount of
time. Typically in wireless broadband networks, the UEs send
a throughput request to the BS. The UEs also report the
channel conditions periodically, which is used to determine
the modulation and coding parameters. The UEs send channel
quality indicator (CQI), which is an estimate of the downlink
channel, to the BS. Based on these CQI reports, the base

station assigns modulation and coding parameters to each
of the “allocation units” for each UE. The BS then assigns
the allocation units to the UEs based on their throughput
requirement. An important goal of scheduling is to assign the
allocation units in such a way that the maximum number of
UEs can be scheduled. Note that this problem can be easily
translated into an equivalent problem where applications have
minimum rate requirements and hence the allocation units
are assigned to applications instead of UEs. We use the term
“UE” in this article that can be equally applied to applications
instead.

Another emerging technology in wireless networks is the
use of Multiple Input Multiple Output (MIMO) antennas.
Single-user MIMO (SU-MIMO) allows only one UE to be
scheduled over the same allocation unit in two possible modes.
Multi-user MIMO (MU-MIMO) allows different UEs to be
scheduled on different spatial streams over the same alloca-
tion unit. This allows the channel scheduler to have greater
flexibility in scheduling.

The main contributions of our paper can be stated as
follows:

• We formulate an analytical model of the problem of
assigning “allocation units” to UEs such that the max-
imum number of UEs can be scheduled while satisfying
the throughput requirements of the UEs. We extend this
problem for SU-MIMO and MU-MIMO systems.

• We show the above problem is NP-hard by proving it is
equivalent to the maximum independent set problem.

• We develop the “Greedy”, “Min Links” and “Min Links
with Set Allocation” algorithms for this problem.

The rest of the paper is organized as follows. Section II
describes related work that has been done in this area. In
Section III, we show that the problem is equivalent to the
problem of finding the maximum independent set in a graph.
We give a mathematical formulation of the problem in Section
IV. We describe the “Greedy”, the “MinLinks” and the “Min
Links with Set Allocation” algorithms in Section V. Section
VI presents some simulation results. Finally we conclude with
a discussion of our work in Section VII.
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II. RELATED WORK

Adoption of proportional fair (PF) algorithm to LTE net-
works is studied in [1] and [2]. The authors in [3] describe
two approximation algorithms for frequency-domain packet
scheduling in LTE uplink. The first algorithm is based on a
greedy strategy whereas the second algorithm is based on the
local ratio technique. The authors in [4] propose the clock-
time proportional fairness (C-T PF) algorithm for the downlink
of a multi-user MIMO system.

None of the above studies provide any guarantees on
bandwidth. However [5] describes the Gradient algorithm with
Minimum/Maximum Rate constraints (GMR) that optimizes
a concave utility function

∑
i Hi(Ri) of UE throughputs

Ri, subject to certain lower and upper throughput bounds:
Rmin

i ≤ Ri ≤ Rmax
i .

Tao, Liang and Zhang [8] investigate the resource allocation
problem in a heterogenous multi-user OFDM system with both
delay-constrained (DC) and non-delay-constrained (NDC) traf-
fic.

Our work proposes a scheduler that provides minimum
throughput guarantee in a time-varying and frequency-varying
wireless network where multiple antennas might be present,
whereas [5] considers only a time-varying channel. Note that
our scheduler can be easily extended to provide a maximum
throughput guarantee.

III. PROBLEM ANALYSIS

In this section, we show that the problem of maximizing the
total number of scheduled UEs while satisfying their through-
put requirements is equivalent to the maximum independent
set problem.

A. Independent Set
An independent set is a set of non-adjacent vertices in a

graph. Thus an independent set consists of l vertices such that
there is no edge connecting any two vertices. A maximum
independent set is a largest independent set for a given graph
G. Finding the maximum independent set of a graph is an
NP-hard optimization problem. Approximation algorithms for
finding maximum independent sets are described in [10] and
[11].

B. Equivalence of the Maximum Independent Set and the
Maximum UE Assignment Problem

The maximum UE assignment problem assigns allocation
units to UEs in such a way that

1) The throughput requirements of the UEs are satisfied.
2) No allocation unit is assigned simultaneously to more

than one interfering UE using the same antenna.
3) The maximum number of UEs can be scheduled.
We first compute the Power Set of the set of allocation

units A. Thus every element of the Power Set that satisfy
the throughput requirement of a UE is a potential candidate
for that UE. We construct a graph G = (V, E) where V
is identified by u, Au where u identifies the UE and Au =
a1, a2, . . . ai, . . . an is a set of AUs that satisfies the throughput

requirement of u. Thus if UE i has ni sets that satisfy the
throughput requirements, then there are n i vertices in the graph
G associated with UE i. Each vertex has edges connecting
it to all vertices that are labelled with the same UE and all
vertices that have a common allocation unit and are labelled
with an interfering UE label. By our construction, a set of AUs
corresponding to a vertex satisfies the throughput requirement
of the UE corresponding to that vertex. Also, if two vertices do
not have an edge connecting them, it means that they do not
have any common AU or they belong to noninterfering UEs.
Thus, finding out the maximum independent set of this graph
gives us the maximum number of UEs that can be scheduled
simultaneously.

The maximum independent set is a NP-hard optimization
problem [12]. Hence no exact solution can be found in
polynomial time. Our goal here is to develop approximation
algorithms for this problem.

If a is the number of allocation units, the number of
elements in a Power Set becomes 2a. It is thus computationally
prohibitive to find all the elements of a Power Set and hence
our algorithms use a different approach to find the sets of AUs
that satisfy the throughput requirements of the UEs.

IV. MATHEMATICAL FORMULATION

A. Model

Our system consists of a central entity (Base Station in
IEEE 802.16 and IEEE 802.22 networks and eNB in LTE).
UEs periodically report the current channel conditions to the
central scheduling entity. As the channel conditions may be
different for different UEs, each allocation unit has a different
bandwidth for each UE depending on the modulation and
coding paramaters. Let there be N UEs, where UE i is denoted
by ui. There are A allocation units, where aj denotes the jth
allocation unit. There are m antennas(modes). The bandwidth
of each allocation unit varies from UE to UE and ba

im denotes
the bandwidth of allocation unit a for UE i and mode m. Each
UE has a minimum throughput requirement denoted by R i.
Xa

im is an indicator variable that indicates whether allocation
unit a is assigned to UE i using mode m. BWi denotes the
bandwidth actually allocated to UE i. Ii indicates whether UE
i is scheduled or not. NE(i) is the set of interfering neighbors
of UE i.

B. Integer Linear Program

The optimization problem where each UE has m antennas
is presented below. The optimization problem with only 1
antenna is similar and not shown here due to space constraints.
We assume a UE will use the same MIMO mode m for all the
allocation units for a scheduling period. This restriction can
be easily removed.



maximize
∑

i

Ii

subject to the following constraints
Ri ∗ Ii ≤ BWi∀i

BWi ∗ Ii =
∑

a

(Xa
im ∗ ba

im)∀i, m

Xa
im + Xa

jm ≤ 1∀a, ∀i, ∀j ∈ NE(i)
Xa

im + Xa
jḿ ≤ M∀a, ∀i, ∀j ∈ NE(i), ∀ḿ %= m

Xa
im + X á

iḿ ≤ 1∀á %= a, ∀ḿ %= m, ∀i

Xa
im ∈ 0, 1∀a, i

Ii ∈ 0, 1∀i

We omit the time dimension in all the constraints. The
first constraint says that the bandwidth allocated to a UE
should be at least equal to the throughput request. The second
constraint says the bandwidth allocated to a UE is the sum of
the bandwidths of all the allocation units assigned to that unit.
The third constraint states that if an allocation unit with mode
m is assigned to UE i, it cannot be simultaneously assigned
to any interfering UEs. The fourth constraint states maximum
number of interfering UEs that can be assigned simultaneously
to the same AU is equal to the number of MIMO modes. The
fifth constraint states only one MIMO mode can be used per
UE across all the allocation units.

V. APPROXIMATION ALGORITHMS

As mentioned earlier, the maximum UE assignment problem
is a NP-hard problem and hence we cannot find exact solution.
We describe three solutions here - a “Greedy” algorithm , “Min
Links” algorithm and the “Min Links with Set Allocation”
algorithm. All the algorithms construct a graph G = (V, E).
A vertex v is represented by u, Au tuple where u identifies
the UE and Au is a set of AUs that satisfy the throughput
requirement of u.

A. Graph Construction
The graph construction process starts by sorting the AUs for

each UE by decreasing bandwidth. The AUs are then assigned
to an UE until the throughput requirement of UE is met. That
is , Si = Si ∪ AU until bw(Si) ≥ Ri where Si is a set of
AUs associated with UE i, bw(Si) is the total bandwidth of
all the AUs in Si and Ri is the throughput requirement of UE
i. This i, Si combination becomes a vertex in the graph G.
We form edges between vertices that have the same UE label
or vertices that share an AU in common between interfering
UEs. Thus vertices vi and vj has an edge eij between them if
UE(vi) = UE(vj) or S(vi) ∩ S(vj) %= Φ and vj ∈ NE(vi)
where UE(v) gives the UE label of vertex v, S(v) denotes
the set of AUs of vertex v and NE(v) is a set of all users
that interfere with v.

In case of systems with only one antenna, if we choose to
include only one set per UE, edges will be formed between
vertices with interfering UE labels and intersecting AU sets.

In case of MU-MIMO systems, there are m sets correspond-
ing to m antennas (modes). We sort the allocation units for

each UE and mode. Then we assign the allocation units to UEs
as before. Thus the graph will have m∗n vertices, where m is
the number of MIMO modes and n is the number of UEs. Each
vertex is labelled with the corresponding UE and the MIMO
mode. All vertices having the same UE label are connected to
each other. Edges will be formed between vertices belonging
to interfering users that use the same antenna and have at least
one common element in their AU sets.

B. “Greedy” Algorithm
The “Greedy” algorithm orders the UE in increasing order

of throughput requirement. It then assigns the first UE to a
AU set and makes this UE, set a vertex in a graph G. It
keeps on doing this for all the UEs. When scheduling the UEs,
the algorithm schedules the UE with the minimum throughput
requirement. The algorithm deletes all the adjacent vertices in
G. The scheduling process goes on until there are no remaining
unscheduled vertices in the graph. The pseudocode is shown
below in Algorithm 1. The time complexity of this algorithm is
O(n2m2) where n is the number of UEs and m is the number
of AUs. This is the time required to find the adjacent vertices
of a vertex v and build the edges between the vertices.

for each UE u do
Let Au be a sorted list of allocation units in order of
decreasing bandwidth;

end
for each UE u do

Sum = 0;
Su = Φ;
while Sum < bwu do

Su = Su ∪ a;
Au = Au − a;
Sum = Sum + bwa;

end
Append vertex (u, Su) to Graph G

end
for each vertex v do

ADJv = FormAdjacencies( v);
end
for each UE u do

assignedF lagu = FALSE;
end
totalUsers = 0;
Let Lu be a sorted list of UEs in order of increasing
bandwidth/throughput requirement;
for each UE u in Lu do

if assignedF lagu = FALSE then
if UE u is the UE label of any vertex v in Graph G
then

totalUsers = totalUsers + 1;
Delete all the vertices that are included in ADJv;

end
end

end
Output totalUsers and assigned allocation units;

Algorithm 1: “Greedy” algorithm

C. “Min Links” Algorithm
The “Min Links” algorithm uses the concept of maxi-

mum independent set. Our algorithm is based on a simple



approximate algorithm proposed by Halldorsson and Rad-
hakrishnan( [10]) for bounded degree graphs that has an
approximation bound of (δ +2)/3 where δ is the maximum
degree of any vertex.

The “Min Links” algorithm uses the graph construction
process described earlier and then schedules the UE whose
corresponding vertex has the least number of edges. The
adjacent vertices are then deleted and the process continues
until no more vertices are left in the graph. The output of the
algorithm gives the total UEs assigned and the corresponding
vertices gives us the allocation units assigned to each UE.
Claim - The “Greedy” algorithm has a ratio bound of n.
Proof - The maximum optimal solution is n, the maximum

number of UEs. The “Greedy” algorithm selects at least one
UE, assuming that the total bandwidth of the network is at
least equal to the maximum bandwidth requested by a UE.
Hence the ratio bound of the algorithm is n.
Claim - The “Min Links” algorithm has a ratio bound of n.
Proof - The maximum value of the Optimal solution is

n. Let δ be the maximum degree of the graph. By our
construction δ is no more than n − 1. The minimum number
of UEs found by the “Min Links” algorithm will be n

δ+1 if n
is divisible by δ + 1. If n is not divisible by δ + 1 then the
minimum number of UEs will be n

δ+1 + 1. Hence the ratio
bound of “Min Links” algorithm is δ + 1 or n.

D. Solution to MIMO problem
In a system with MU-MIMO technology, a UE can have

multiple antennas (modes). We assume that a UE uses only
one antenna in a scheduling period. The algorithms construct
graphs using the technique discussed in Section V-A.

The MimoGreedy algorithm orders the UEs in order of
increasing throughput requirement. At each iteration, the
algorithm schedules an unassigned UE with the minimum
throughput requirement. Among all the vertices corresponding
to that UE, it chooses the vertex with the least number of
edges, which automatically selects the mode. The adjacent
vertices are then deleted.

The “Min Links” algorithm for MU-MIMO is similar to the
“Greedy” algorithm. The only difference with the “Greedy”
algorithm is that the “Min Links” algorithm always chooses
the UE corresponding to the vertex with the minimum number
of edges when scheduling. The mode is chosen automatically
as a result of choosing the vertex.

We can show that the Greedy algorithm has a ratio bound
of n/m and the Min Links algorithm has a ratio bound of δ+1

m
where δ is the maximum degree of the graph.

E. “Min Links with Set Allocation” algorithm
From the above discussion of the “Min Links” algorithm,

we see that its performance depends on the maximum degree
of the graph G. By our construction, this in turn depends on
the number of intersecting sets, that is, what is the maximum
number of vertices with interfering UEs and sets that has some
AU in common. The number of interfering UEs depend on the
network topology. Hence, if we can minimize the maximum

number of sets that have some AU in common, our graph will
have the lowest degree and perform best.
Instance - N UEs, the throughput requirement of each UE

Ru, A allocation units and the bandwidth of each AU for each
UE bwi

u.
Problem - Let ci be the number of times an AU i is included

in a set. Our goal is to

min(maxici)

such that ∑

i

bwi
u ≥ Ru∀u

The “Min Links with Set Allocation” algorithm tries to
minimize the number of times an AU is included in a UE-
set combination by associating a count with each Allocation
Unit. The count keeps track of how many times an AU occurs
in an UE-set combination. Initially the count is 0 for all the
AUs. When an AU is included in the set of a UE, the count is
incremented by one. In this algorithm, we first sort the AUs
by increasing count and then by decreasing bandwidth. Thus,
within the sorted list, AUs with count 0 will appear first and
then AUs with count 1 and so on. For all AUs with a specific
count, the AUs will be sorted by decreasing bandwidth. Then
the algorithm assigns the consecutive AUs to the UE concerned
until the throughput requirement of the UE is met. We started
assigning AUs to UEs starting from the first UE. Other ways to
assign AUs might improve the performance such as assigning
AUs to UE with least throughput requirement or UE with least
number of high bandwidth AUs.

F. Profit Assignment
Our goal in this article is to maximize the total number

of scheduled UEs. In many cases, UEs might have a profit
associated with them. For example, higher paying UEs can
have a higher profit associated with them than lower paying
UEs or UEs with already existing real-time applications can be
assigned a higher profit than UEs with best-effort applications.

Adaptive modulation and coding in different “allocation
units” enables OFDMA to deal with the variable nature of
wireless networks as each UE can be assigned a different rate
depending on the channel conditions. A fundamental physical
layer characteristic of OFDMA is that the channel conditions
are correlated in both time and frequency. Hence if an UE i
has good channel conditions in AU a in frame f , it is likely
to have good channel conditions in the neighboring AUs. Our
Maximum UE Allocation problem where all the profits are set
to 1, tries to take advantage of this characteristic of wireless
networks as when the number of UEs are maximized for a
frame, the UEs with the best channel conditions are most likely
to be selected.

However if the channel conditions are fairly stable for a
number of frames, some UEs might get starved. To deal
with that, we can use some fairness measure. One of the
most common fairness measure used in wireless networks is
proportional fairness. In proportional fairness, UEs with the
largest di(t)

Ti(t)
is chosen at each time instant where di(t) is
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Fig. 1. Performance of ILP and Min Links with Set Allocation (1 antenna)
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Fig. 2. Performance of ILP and Min Links with Set Allocation (2 antennas)

the data rate achievable by this UE at time t and T i(t) is
the throughput of UE till t. Thus proportional fairness gives
priority to UEs with high channel rate and low current average
service rate. Another way to incorporate fairness is to make
the profit wi

Fi
where wi is the weight associated with the UE

and Fi = 1+ the number of frames where this UE has been
already scheduled.
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active UEs with increasing antennas

VI. SIMULATIONS

In order to evaluate the performance of the proposed algo-
rithms, we conducted simulations based on 3GPP LTE Model.
A 3GPP LTE network consists of a central entity called eNB
that assigns resource blocks (RBs) to UEs. A RB is comprised
of a certain number of subcarriers. We assumed that the system

bandwidth is 20 MHz, the subcarriers per RB is 12 and the
RB bandwidth is 180 kHz. The number of RBs is 96. There
are three different modulation/coding rate settings.

We use ILOG CPLEX 10.0 for modeling and solving
the mathematical formulation of the problem. Although we
performed simulations where UEs have varying throughput
requirements, due to space constraints, we only show results
where all the UEs have same throughput requirements here.
We implement the algorithms using a custom simulator written
in C. We varied the number of UEs from 10 to 50. We
assume that the UEs are uniformly distributed in the cell. The
modulation and coding parameters for each UE and AU pair is
generated randomly. The scenarios shown here are for clique
network topologies where all the nodes interfere with each
other so that the simulation results depend only on how the
AUs are selected.

We compare the algorithms based on ’Scheduling Effi-
ciency’ metric where ’Scheduling Efficiency’ (SE) is the ratio
of scheduled users to active users.

Figure 1 shows the results from the “Greedy”, the “Min
Links” algorithm with Set Allocation and the ILP for UEs
with only 1 antenna. When the number of UEs is less (10),
both the ILP and Min Links with Set Allocation are able to
schedule all the UEs, that is, scheduling efficiency (SE) is 1.
The SE for all the algorithms decrease with the increase in
the number of active users, as the throughput requirements
of more number of UEs cannot be satisfied. Note that the
bandwidth of the RBs and the throughput requirements of the
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Fig. 5. Number of scheduled UEs vs. number of active UEs

UEs are generated randomly for each case. Hence, we can only
compare the relative performance of the different algorithms at
each point in the X axis. The ILP performs slightly better than
the Min Links algorithm in the 1 antenna case; but, it performs
considerably better than Min Links with Set Allocation when
the number of antennas increases as can be seen fron Figure 2.
The SE is 1 for the ILP when the number of UEs is less than
20 and the SE decreases to 0.65 for 50 UEs. In case of Min
Links, the SE is 0.38 for 50 users.

Figure 3 shows the difference in the number of scheduled
UEs when the number of antennas increases from 1 to 3. We
only show results for “Min Links” algorithm as the results are
similar in all the cases. Figure 4 compares the total profit of
scheduled UEs for the ILP and the Greedy algorithm. Here,
each UE has a weight that corresponds to the profit associated
with the UE. The weight for each UE is chosen randomly from
the set of integers 1 to 5.

As we see, the ILP performs significantly better than the
Greedy algorithm. The answer can be found by examining
Figure 5. The ILP schedules far more UEs than the Greedy
algorithm. This is because when scheduling the Greedy algo-
rithm just schedules the UE with the maximum profit without
taking into consideration the number of neighbors of the UE.
However, the ILP takes a very long time to produce the result
and hence we omitted the result for 50 UEs. The ILP schedules

roughly the same number of UEs for both the non-weight
and weighted cases, because the total system bandwidth and
the throughput requirements of the UEs are approximately the
same in both the non-weight and weighted cases.

We do not show any results for Min Links algorithm for
the weighted cases as a PTAS for the maximum weight
independent set does not exist unless the weights are generated
identically and independently distributed from a common
distribution.

VII. CONCLUSION

In this article, we showed that the optimal assignment of
throughput constrained UEs in OFDMA wireless networks is
a NP-hard problem. We formulated an ILP for this problem
and presented three algorithms. We did the same for OFDMA
networks with MIMO with 2 or more antennas. However, our
results show that the ILP performs better than the proposed
algorithms whereas the running time of the ILP can be several
hours. Our future work will focus on trying to find better
approximation algorithms for this problem.
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