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ABSTRACT

Video quality assessment in mobile devices, for instances
smart phones and tablets, raises unique challenges such as
unavailability of original videos, the limited computation
power of mobile devices and inherent characteristics of wire-
less networks (packet loss and delay). In this paper, we
present a metric, Temporal Variation Metric (TVM), to
measure the temporal information of videos. Despite its sim-
plicity, it shows a high correlation coefficient of 0.875 to op-
tical flow which captures all motion information in a video.
We use the TVM values to derive a reduced-reference tem-
poral quality assessment metric, Temporal Variation Index
(TVI), which quantifies the quality degradation incurred in
network transmission. Subjective assessments demonstrate
that TVI is a very good predictor of users’ Quality of Ex-
perience (QoE). Its prediction shows a 92.5% of correlation
to subjective Mean Opinion Score (MOS) ratings. Through
video streaming experiments, we show that TVI can also es-
timate the network conditions such as packet loss and delay.
It depicts an accuracy of almost 95% in extensive tests on
183 video traces.

Categories and Subject Descriptors

H.5.1 [Multimedia Information Systems]: Video

General Terms

Performance
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1. INTRODUCTION
In 2011, video traffic has accounted for more than 50% of

the total traffic in mobile networks [4]. Quality of Experi-
ence (QoE) of watching videos over mobile devices, such as
smart phones and tablets, has been attracting interest from
content providers and network service providers.
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Effective and efficient video quality metrics are highly de-
sirable for service providers. The metric can help them to
extract quick feedback from end-users and can enable them
to “turn knob” at their end (if possible) to enhance the
quality of service. Many tools have evolved for evaluating
video quality delivered to end users. Most of them re-use
the techniques in image quality measurements which evalu-
ate the spatial quality, such as Peak Signal to Noise Ratio
(PSNR [10]) and Structural SIMilarity index (SSIM [25]) of
each video frame. However, video quality comprises of both
spatial and temporal quality.

Unfortunately, unlike its counterpart, the temporal qual-
ity assessment cannot re-use the existing static image qual-
ity measurement techniques. Videos over mobile devices
(e.g. smart phones & tablets) are usually delivered through
wireless such as Wi-Fi or cellular networks. This includes
a host of applications including interactive multimedia ap-
plications, video-on-demand (VOD), video chat & HDTV
streaming. We call these videos as “mobile videos”. Tem-
poral quality degradation due to packet loss and delay is
more pervasive in wireless networks than in wired scenarios.
Mobile devices also pose unique constraints such as limited
computation power, small memory, short battery life and
low video resolution. Existing temporal quality assessment
schemes tend to depend on the availability of the original
video (i.e. full-reference metrics) [16] or incur heavy compu-
tational cost in computing motion information [23], neither
of which is possible in mobile context.

In this paper, we present a novel scheme for temporal
quality assessment. We first measure the motion informa-
tion of a video by comparing the consecutive frames of a
video. Considering both the accuracy and the low compu-
tational cost, we design a temporal information metric, we
call it Temporal Variation Metric (TVM). TVM evaluates
the difference of the corresponding pixel values in the two
neighboring frames to estimate the motion of objects in the
video. Compared to other frame comparison techniques pro-
posed in video quality research community, TVM has the
shortest running time and a relatively low memory usage.
Such properties make it suitable for using in mobile videos.
Despite its simplicity, TVM shows an average Pearson cor-
relation coefficient of 0.875 with the optical flow, while the
optical flow is widely used to measure the actual temporal
motion in a video.

From TVM, we also design a new reduced-reference tem-
poral quality metric, Temporal Variation Index (TVI). TVI
measures the temporal quality degradation between the source
(original) and the received videos. From subjective video



quality tests, we find that TVI strongly correlates with Mean
Opinion Score (MOS) of a pool of human observers watch-
ing the video. It is worth noting that TVI evaluates the
temporal quality of the received video without the original
copy of the video. TVI can quantify the perceived video
quality degradation caused by coding or communication im-
pairments.

In addition to the correlation between TVI and MOS,
through extensive experiments, we also find that the corre-
lation between TVI and network impairments, in particular
packet loss rate and end-to-end delay. With such correlation,
by measuring TVI in the video application layer at the user
end, we can estimate the packet loss rate and delay in the
wireless networks. This information will be extremely useful
to network service providers to improve the video streaming
quality (and thus Quality of Experience (QoE)) by adjusting
video coding and allocating network resources.

The main contributions of this paper are as follows:

1. We propose Temporal Variation Metric (TVM) to mea-
sure the temporal information of mobile videos. TVM
has low computation and memory requirements to suit
the mobile devices and it closely relates to motion in-
formation in videos.

2. From TVM, we derive a new temporal quality met-
ric, Temporal Video Index (TVI). TVI quantifies the
perceived quality degradation between the source and
received videos.

3. Subjective tests demonstrate the strong correlation be-
tween TVI and end-user QoE.

4. We also show that TVI can estimate the network im-
pairments, in particular packet loss rate and end-to-
end delay.

Although TVM and TVI are video quality metrics, they
can help facilitate many other technologies and applications.
For example, TVM and TVI are very useful for content dis-
tribution in multicast groups to maximize users’ QoE. They
are also useful in scalable video delivery for quality-oriented
bandwidth allocation in wireless networks. Mobile videos
in surveillance applications can also be monitored to guard
against network impairments. TVI and TVM can be used to
monitor video quality, to benchmark video processing sys-
tems and to be embedded in communication systems to opti-
mize algorithms and parameter settings for content delivery.

The rest of paper is organized as follows: Section 2 gives
the motivation for developing a new temporal metric. We
propose TVM in Section 3. To show the advantages of TVM,
we also discusses other potential candidate metrics for esti-
mating the motion information of a video. In Section 4, we
derive TVI from TVM. We show that TVI demonstrates a
strong correlation to the MOS values obtained from subjec-
tive tests. In Section 5, we further explore the relationship
between TVI and network metrics in particular packet loss
rate and end-to-end delay. Section 6 concludes the paper.

2. MOTIVATION
The most accurate way to obtain the end-user Quality

of Experience (QoE), such as Mean Opinion Score (MOS)
ratings [12] or Crowdsourcing [3], is to conduct subjective
tests involving human subjects. Such experiments have to

be conducted offline and incurs huge cost in terms of labor
and time. More importantly, we cannot use the subjective
measurement for real-time monitoring to guarantee the qual-
ity of video delivery. Therefore, an objective measurement
of QoE is necessary to feedback and maintain the quality of
delivered video over mobile devices.

2.1 Getting Video Temporal Information
A video is composed of both spatial and temporal infor-

mation. The spatial information comprises of appearance
of objects, resolution, smoothness, etc. The degradation
of spatial quality in videos causes blocking and blurring.
A number of metrics derived from static image quality as-
sessment can be re-used to measure spatial quality across
a video. Such examples include Peak Signal-to-Noise Ratio
(PSNR), Structural SIMilarity index (SSIM [25]), VQM [29],
and Blocking[14].

Temporal information is the measure of the motion of ob-
jects in a video or movement of background including scene
changes. Temporal quality measurement needs motion in-
formation in a video, so existing static image quality eval-
uation metrics cannot be re-used for this purpose. Motion
information is formally obtained by calculating optical flow.
It is based on the movement of an object in a video frame
caused by a relative motion between an observer and the
scene [27]. Optical flow field is represented by vectors of
the object points. The length of the vectors represents the
magnitude of the motion while the direction of the vectors
represents the direction of the motion [9]. Motion vectors,
which are widely used for motion estimation in video coding,
are a special case of optical flow when vectors are computed
in a macro block basis [13]. Calculating the optical flow or
motion vectors is a computationally intensive task which is
unsuitable for embedded devices. Pauwels and Hulle [20] re-
ported that a GPU (GeForce FX 5800) and CPU (Pentium-4
2.8 GHz) implementation of optical flow calculation for low
resolution 256x256 images take around 13 ms and 35 ms of
dedicated computation time respectively.

Unfortunately, most existing temporal quality assessments [23,
30] still depend on measuring temporal information by op-
tical flows and motion vectors. To reduce the computation
cost of extracting optical flow or motion vectors, the authors
in [16] assume that the motion vectors during video encod-
ing can be re-used in temporal quality assessment. However,
such assumption is not always valid. In many cases, the
codecs may be closed source (consider for example Skype
video). Furthermore, it may be very difficult to account
for optical flow information from the codec. Take Scalable
Video Coding (SVC) codec as an example. There are tiers of
encoding/decoding done to achieve scalability, so it is very
difficult to assess how motion vectors in different layers are
to be assimilated and compared. Thus, it is desirable to
build a temporal quality metric for videos which can pro-
vide measurements without using motion vectors nor being
dependent on the underlying video codecs.

2.2 Desired Properties of a Video QualityMet-
ric

The degradation of temporal quality is primarily observed
as delay, freezing(stop-motion), blockiness and blackout. A
desired temporal quality metric should be able to capture
these effects alongside with motion information.

There is a gap between the temporal quality evaluation



and end-user QoE which is how people actually perceive
the video quality. There has been little effort to quantify
the correlation between end-user QoE and temporal quality
metric measurements. Therefore, a desired temporal quality
metric, in addition of capturing the video temporal quality
degradation, should also have a great correlation to the end-
user QoE.

Although the optical flow gives the accurate temporal
information of a video, mobile devices are computational
power limited, making them impossible to re-compute the
optical flow from reconstructed frames. Therefore, a de-
sired video temporal quality metric should have low compu-
tational cost.

To make the video temporal quality metric be readily ap-
plied to the end-user mobile devices, the metric should be
video codec independent. Of course, video content providers
can always customize the metric to their own codecs for the
optimized use.

In some wireless networks, for example Wi-Fi, the net-
work impairments such as the packet loss rate and the delay
are easily measured. (These network impairments are only
the measurement of Quality of Service (QoS) of the network
not the QoE of the end users.) In service providers’ point of
view, it is also interesting to know the network impairments
so that they can “tune” the parameters, for example net-
work bandwidth allocation, to increase QoS and QoE. The
bad news is in mobile networks these network impairments
are not always easily available. For instance, to measure
the packet loss rate in video streaming over cellular net-
works, we require packet transmission information from the
base station. Comparing how many packets sent from the
base station, and how many packets received in the mobile
device, we can calculate the packet loss rate. More impor-
tantly, to access the network layer metrics in mobile devices,
e.g. smart phones, we need the root access privilege which
is usually not open to general public, such as application
developers.

Therefore, it is desirable if an application-layer video qual-
ity metric can also be an indication of network impairments
which lead to quality degradation. The network metrics such
as packet loss and delay can be estimated using the video
quality metric obtained at the end user, allowing the ser-
vice providers to modify the channel resources allocation or
video coding to guarantee the quality of videos delivered.

In addition, existing temporal quality metric tend to de-
pend on the availability of the original video (i.e. full-
reference metrics) [16]. This is not feasible for on-line com-
putations where it is not possible to have original video for
referencing.

In summary, a video temporal quality metric should have
the following desired features:

• Captures the degradation of the temporal quality;

• Correlates with user QoE;

• Low computational cost;

• Codec independent;

• Estimates the network impairments such as packet loss
and delay; and

• Does not require the original copy of the video.

2.3 Related Work
There is a large amount of existing efforts on video spa-

tial quality assessments [5, 26]. However, there are few
works about video temporal quality which becomes impor-
tant when video applications move to wireless context. MOVIE
index [23] integrates both spatial and temporal aspects of
distortion assessment using a full-reference technique which
requires the original copy of the video. The metric is de-
signed based on modeling of human visual system. It shows
a good performance but also incurs a high computational
cost.

Moorthy and Bovik [16] present a video quality assess-
ment algorithm and enable the motion vector re-use in the
decoding stage to reduce the computational complexity. But
the drawback is that not all video codecs have the motion
vectors reusable during the decoding process. The metric is
also full-reference.

Yang et al. [30] consider various factors such as frame
dropping, scene boundary, motion activity and motion map-
ping in the video to estimate the temporal quality. It reuses
motion activity and motion mapping information from video
codec and packet loss information from network. Again, it
depends on the reusability of motion information during the
decoding process. It also requires a cross-layer design to get
the packet loss information from the network layer.

Vidal and Gicquel [19] presents a no-reference quality met-
ric for detecting fluidity impairments due to frame losses
in video. This mainly accounts for frame dropping in the
video. The subjective experiments by [11] suggest that con-
tent, motion magnitude and frame rate are some factors
affecting perception of temporal artefacts. This motivates
us to develop a new metric, which quantifies the end user
perception of the video and accounts for these factors.

2.4 Our Approach
Considering the large number of video codecs and service

providers, we look for a codec independent solution for tem-
poral quality assessment. We compare the similarity of two
neighboring (consecutive) frames of video to estimate the
motion in video. A large similarity between two frames in-
dicates a slow motion of objects during the time period of
these two frames. Instead of recording the difference of each
pixel, we propose only record the average similarity score
of a whole frame. This decreases the complexity compared
to those in optical flow or motion vector calculations. Fur-
thermore, consecutive frames comparison can be done in a
no-reference manner without a copy of source video at the
receiver.

We call our metric measuring the motion of objects in the
video as Temporal Variation Metric (TVM). TVM is suit-
able for mobile devices because of low computational power
requirement and small memory overhead. Based on TVM
values between the source and the received videos, we de-
sign a reduced-reference temporal quality metric, Temporal
Variation Index (TVI). TVI measures the temporal quality
degradation in mobile video streaming. It is worth noting
TVI only needs the TVM of the original video but not the
whole copy of the original video. This makes it easy to be
deployed in mobile devices and services.

We conduct extensive subjective tests to demonstrate the
correlation between TVI and the subjective user experience.
Based on the subjective tests, we related the TVI and the
Mean Opinion Score (MOS) which is the end-user QoE.



With the linear regression technique, we derive the equations
to estimate MOS from TVI. In addition, we find a strong
correlation between TVI and network packet loss. We also
derive equations to estimate the packet loss rate from TVI.
By feeding back TVI to the source, the content providers
and network services providers can adjust the video coding
or network resources to improve the end-user experience of
video streaming.

3. MEASURINGTEMPORAL INFORMATION
To develop a temporal quality metric, accurately measur-

ing the temporal information of a video is important. We
design Temporal Variation Metric (TVM) to measure such
information.

3.1 Temporal Variation Metric (TVM)
Temporal Variation Metric (TVM) measures temporal in-

formation of a video by comparing the content amongst con-
secutive frames in a video. Two successive frames are com-
pared to obtain a single score by calculating the Peak Signal
to Error Ratio in the consecutive frames. This is analogous
to Peak Signal-to-Noise Ratio (PSNR) measurement used in
comparing reconstruction quality of images and videos. Dif-
ferent from PSNR, we do not use any original video frame,
but instead use previous frame of the video as a reference
and calculate temporal motion in the video. Unlike PSNR
which is an indicator of noise introduced in the image due to
communication, TVM is an indicator of motion or temporal
variation in the current frame as compared with previous
frame.

TVM only uses the two neighboring frames for measuring
temporal variation, so if any temporal distortion happens in
the current frame will only be recorded by the current and
the next TVM calculations. This effect in the current and
the next TVM values will not propagate to the subsequent
TVM calculations.

Numerically, TVM is calculated as log of mean square
value of difference between two consecutive frames (Fp−1

and Fp) of the video (measured in dB).

TVMp = 10 log
10

(

k2

d

)

(1)

where k is a constant for a video with a particular color
depth. It is the maximum pixel value of the video frame. For
example, if the color depth of the video is 8-bit, k = 255. d
is the mean square difference of the corresponding pixels in
two frames, Fp−1 and Fp. Logarithm is used to compensate
the non-linearity of human visual system.

d =
1

MN

M−1
∑

i=0

N−1
∑

j=0

(Fp(i, j)− Fp−1(i, j))
2

where Fp(i, j) is the value of the pixel in ith row and in jth

column in the pth frame. Each frame is of size M×N pixels.

3.2 Consecutive Frames Comparison
Besides the peak signal-to-error ratio which we used in

TVM, there are other spatial quality metrics which can
be modified to measure the difference between two frames.
Thus, they can also be potential candidates for measuring
temporal information. In this section, we compare other

candidates with TVM to evaluate their appropriateness to
be a measurement of the temporal information in mobile
videos. We select three representative candidates from the
research literature: Structural Similarity Index (SSIM), Edge
Similarity Score (ESS) and Visual Signal-to-Noise Ratio (VSNR).
These three metrics represent a wide choice amongst exist-
ing research. Instead of using them directly, we apply these
metrics on consecutive frames of a same video to measure
the motion in the video. Thus, the derived three potential
temporal metrics are respectively called TSSIM, TESS and
TVSNR.
TSSIM (Temporal Structure Similarity Index) - [24]
proposes SSIM to measure the structural similarity of two
frames. SSIM first measure the luminance which is the inten-
sity of the pixel values of the frames. Then, the luminance is
removed from the frames and the contrast which is the stan-
dard deviation between two frames is obtained. Then the
contrast measure is also removed to measure the structural
similarity between two frames. We derive TSSIM to measure
the SSIM of the two consecutive frames. It is robust to com-
mon spatial artifacts such as mean-shifts, contrast-stretch,
compression (codec) losses, blurring and salt-pepper noise.
TESS (Temporal Edge Similarity Score) - [28] pro-
poses ESS to reflect the way that human perceives visual
information. The important information extracted by hu-
man visual system includes spatial-luminance information,
edge and contour information [7]. TESS measures the edge
and contour change information of the consecutive frames to
evaluate the motion. The frames are first partitioned into
macro blocks and then Sobel’s mask is applied to get the
edge information along each pixel along both horizontal and
vertical directions. Edge direction information is obtained
from these values and quantizing it into one of the eight
representative directions that are equally spaced by π/8 ra-
dians (from −π/2 to π/2). The dominant edge direction for
each macroblock is computed and the average cosine of the
difference in edge directions measures the consecutive edge
similarity score of the consecutive frames.
TVSNR (Temporal Visual Signal to Noise Ratio) -
VSNR metric is proposed in [2] to capture the human visual
system properties. It operates in two stages. (1) It com-
putes the contrast thresholds for the detection of distortions
via wavelet-based models of visual masking and visual sum-
mation. Then it determines the visibility of distortions in
an image. If the distortions are below the threshold, the
distorted image is deemed to be of perfect visual fidelity
(VSNR = infinite) and no further analysis is required. (2)
To measure supra-threshold distortions, the low-level visual
property of the perceived contrast and the mid-level visual
property of global precedence are used. These two proper-
ties are modeled as Euclidean distances in the distortion-
contrast space using a multi-scale wavelet decomposition.
Linear sum of these distances is computed for consecutive
frames in our case to get TVSNR value.

3.3 Testing with Videos
To evaluate whether the proposed TVM is a good met-

ric to measure the temporal information of videos, we test
it with six different videos and compared the result with
TSSIM, TESS and TVSNR. The videos we used are listed
in Table 1. They have different resolutions, lengths and de-
grees of motion. A long video will constitute a combination
of scenes of all degrees of motion. Therefore, by separately
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Figure 1: Plot showing the correlation of TVM,
TESS, TSSIM and TVSNR with Optical Flow (dB)

Table 1: Details of sample videos

Name Length Resolution Motion
Old Woman 30 sec 1920 × 1080 1(relatively slow)

Cows 60 sec 1920 × 1080 2
Foreman 10 sec 352× 288 3
Duck 10 sec 1920 × 1080 4
Park 10 sec 1920 × 1080 5

Intersection 60 sec 352× 288 6(relatively fast)

considering these scenes of different motion degrees, we have
actually considered the variety in existence. These few video
clips are the representative video sequences chosen. In the
experiments presented later, we have used hundreds of traces
with varying network conditions.

For each video, we calculate TVM, TSSIM, TESS TVSNR
and the optical flow. Figure 1 shows the variation of the op-
tical flow and different temporal information measurements
for the video sequence Duck. In this video, TESS has low
correlation while the other metrics show high correlation.
TSSIM curve shows many uncorrelated high frequency com-
ponents. Table 2 shows the Pearson Correlation Coefficients
of the different temporal information measurements with the
optical flow. We find that both TVSNR and TVM have the
highest correlation coefficients with the optical flow.

Then we evaluate the computation time and memory over-
head required by different temporal information measure-
ments. Table 3 gives the details of computation time re-
quired by those metrics on a 12GB 12-core Intel Xeon (dual-
core) processor running Matlab release 2011. TVM gives the
shortest running time which shows its low computational
cost. As expected, due to its huge computational cost, the
optical flow calculation requires the longest time.

In memory overhead measurements, we exclude the opti-

Table 2: Pearson Correlation Coefficients of Tempo-
ral Information Measurements with Optical Flow

Video TVM TSSIM TESS TVSNR
Old Woman 0.7719 0.8033 0.7500 0.8054

Cows 0.8679 0.7476 0.7408 0.9153

Foreman 0.8598 0.7720 0.7390 0.9156

Duck 0.9106 0.9183 -0.2461 0.7477
Park 0.6072 0.7828 0.7200 0.9178

Intersection 0.9241 0.5706 0.6107 0.9230

Table 3: Running Time (in seconds in 3 significant
figures) of Different Temporal Information Measure-
ments in Matlab

Video OP TVM TSSIM TESS TVSNR
Old Woman 46600 9.65 99.9 6230 45.8

Cows 83100 11.6 129 11700 84.5
Foreman 16700 0.983 8.38 1980 13.6
Duck 29700 3.70 21.5 3280 23.9
Park 29600 2.97 20.0 3290 24.6

Intersection 84000 12.7 117 11500 84.5

OP - optical flow.

Table 4: Memory Overhead (in KB in 3 significant
figures) of Different Temporal Information Measure-
ments

Resolution TVM TSSIM TESS TVSNR
Low (352x288) 428 23300 315 3240

Medium (960x640) 1930 129000 1120 19000
High (1920x1080) 6200 428000 3440 67800

cal flow and only focus on the four different temporal infor-
mation measurements. We find that different video content
or degree of motion has no obvious effect on the memory re-
quirements. Instead, the resolution of the video greatly in-
fluences the memory overhead of temporal information mea-
surements. Table 4 shows the memory overhead of tempo-
ral information measurements. We scale the video sequence
Park into three different resolutions for comparison. We find
that TVM and TESS have the smallest memory overhead in
operation.

From the above tests and comparisons, we have shown
that TVM is the most suitable candidate for measuring tem-
poral information considering its accuracy and suitability for
mobile devices.

4. ESTIMATINGVIDEOTEMPORALQUAL-

ITY
With the help of TVM, we derive a new reduced-reference

temporal quality metric, Temporal Variation Index (TVI).
We then show that TVI has a strong linear relationship with
end-users’ quality of experience (QoE). We can use TVI to
accurately predict QoE.

4.1 Temporal Variation Index (TVI)
TVM is a measure of temporal information between two

neighboring frames in a video. TVM of the original video
measures the motion of the objects in the video. In addi-
tion to the motion, TVM of the received video in the end
user also indicates the temporal quality degradation. For
example, a large TVM value can imply either the objects
in the video scene moves very fast or there are some losses
in the video frame sequence. But by comparing the tempo-
ral information of the received video with that of the origi-
nal video, we can measure the temporal information change.
Such temporal information change is due to a degradation of
temporal quality in video processing, such as wireless video
streaming. Therefore, we design a reduced-reference tem-
poral quality metric, Temporal Variation Index (TVI), to
estimate the temporal quality degradation. TVI removes
the “motion” part which is in the TVM values.

TVI of a video at time t, TV I(t), is defined as follows.



(a) Slow Motion (Old Woman)

(b) Moderate Motion (Park).

(c) Fast Motion (Football).

Figure 2: Linear fits of all three video categories for
MOS prediction.

TV I(t) =
|TVMs(t)− TVMr(t)|

TVMs(t)
(2)

where TVMr(t) is the TVM value for the received frame at
current time, t. For every received video frame, the mobile
device records its time stamp, t. It then calculates TVM,
TVMr(t), of the received video at time t by comparing frame
at that time, ft, with the preceding frame ft−δ. δ = 1

fps
,

where fps is the frame per second of the video. The receiver
will search the corresponding TVM value TVMs(t) of the
source video from the control data, and calculate TV I(t).

In case the original video itself has some temporal noise
or distortion, TVI would not indicate such temporal distor-
tion. Therefore, TVI merely measures the temporal distor-
tion or noise incurred in the transmission, such as streaming,
process. Generally speaking, TVI can measure the tempo-
ral distortion incurred in any video processing procedure,
for example, video transcoding. In this paper, we focus on
wireless video transmission.

It is worth noting that TVI does not require the copy
of the original video, but TVM of the original video. We
assumed that the sender computes the TVM values of the
original video and sends them to the receiver through the
control channel during the streaming. This assumption is
reasonable as TVM calculation has low computation and
storage requirement. For each pair of video frames, a TVM
value is represented by a 32-bit float number. So, the size of

the temporal information of a 2-hour movie with 25 frame-
per-second (fps) is only around 0.7MB. If we compress it
(zip), the size is merely a few KB. Therefore, the overhead
for adding the TVM values into the video during streaming
is very small. In a typical video streaming, this temporal in-
formation can be sent through out-of-band control channel,
such as Real-Time Control Protocol (RTCP) sender report
(SR) [22], so that the receiver can get this information for
every pair of neighboring frames.

Although TVI only captures the temporal quality degra-
dation of the received video, it is a very good predictor for
the end-users’ QoE. In the next subsections, we carry out
subjective tests and show that TVI accurately predict the
Mean Opinion Score (MOS) of different videos.

4.2 Subjective Experiments
To test the TVI with videos having different degrees of

motion, we add another video sequence, Football, into our
video samples. Football has scenes with very fast motion.
We select three videos with different degrees of motion for
the experiments. They are Old Woman, Park and Football,
where Old Woman has the slowest motion while Football has
the fastest motion.

We first stream these three videos over our wireless testbeds
with different channel conditions. We collect a total of 50
samples of these videos with different quality. There are 17
samples of Old Woman, 17 samples of Park and 16 samples
of Football. We then write an Android application on Nexus
S smartphone and load the collected sample videos on the
phone. We engaged 17 volunteers as subjects to watch the
videos on the smartphone 1.

The Android app asked each subject to score the watched
video on a standard five-grade scale [12]. Score 1 is for a
video with the worst quality and it means the impairment
in the video is very obvious and very annoying. Score 5 is
for a video with the best quality and it means the video is
perfect.

When a subject rates video quality while viewing a video,
his/her rating changes as the video plays. In a long video,
the subject would give several different quality scores to the
different portions of the video. Basically, it is same as watch-
ing several short clips of video, and the subject gives one
score for each clip. Therefore, in these subjective tests and
the subsequent experiments in Section 5, we use short video
clips, each plays around 10 seconds, which respectively con-
tain slow, moderate and fast motion scenes. It simplifies our
experimental settings and procedures.

Our test was performed according to the ITU single-stimulus
(SS) method [12]. The standard videos with the five differ-
ent scores were shown to the viewer at the beginning of the
test. During the test, only the videos to be scored were
shown without any display of the standard videos. For each
video, the android app records the quality scores given by
the subjects and obtain a mean score that is the Mean Opin-
ion Score (MOS).

4.3 Estimating QoE
After the tests, we group the video samples according to

their content. i.e. there are three groups, Old Woman, Park
and Football. They respectively correspond to three motion

1According to ITU-R BT.500-11 subjective assessment stan-
dard [12], 15 subjects would be enough for subjective quality
evaluation



Table 5: Estimation of the linear model for each
video category.

Predicted Linear Model 95% Confidence
ρMOS

MOS (β̂0, β̂1) Interval of β̂1

̂TMOSslow (5.1, -0.28) [-0.346 -0.205] 0.8708
̂TMOSmoderate (3.9, -0.25) [-0.345 -0.161] 0.9396
̂TMOSfast (4.2, -0.21) [-0.268 -0.146] 0.9655

categories, slow, moderate and fast. We also measure TVI
for each video sample. For each category, we will predict the
MOS with TVI measurement.

For each category, we randomly select four samples and
separate them from the others. These four samples will serve
as a validation set. The remaining samples are used to derive
an equation to predict the MOS with TVI. We use the linear
model in the derivation. We propose a two-parameter linear
model to predict MOS of each video category.

TMOSmd = β0 + β1TVI (3)

for some constants β0 and β1. In this linear model, we use
the average TVI, TVI of the video as the predictor variable.
TMOS is the predicted MOS, not the actual MOS that is
evaluated from the human subjects. Hence, TMOS is an
objective video quality metric based on TVI . We use a
subscript md to indicate the motion degree of the video. In
our categorization, md can be slow, moderate or fast.

It is interesting to note that during the TVI measurement,
TVI values for some frames in the video are infinite. It is
because that the TVM values of the corresponding frames in
the received video are infinite. When there are frames lost
and delay, the receiver playback mechanism will duplicate
the last received frame. Therefore, the TVM value evaluated
goes to infinite. We will explain this phenomenon in more
detail in Section 5. For MOS prediction, we take infinite
TVI value as 1. In fact, most TVI values are smaller than
1.

If we predict a quality score, Y , given by a particular user,
we have

Y = β0 + β1X + ǫ E[ǫ] = 0 (4)

whereX can be any predictor variable. There is also an error
term, ǫ, added in the regression analysis. But, we are only
interested in predicting the mean value of Y that is TMOS,
hence we ignore the error term [15]. The same principle is
also applied to the prediction of network impairment that
we will discuss in Section 5.

Figure 2 shows the linear fits of the estimated TMOS,

T̂MOS , for each video category. We use the linear model

package of the statistics tool, R [21], to derive β̂0 and β̂1,
that are respectively the estimates of β0 and β1 in Equa-
tion (3). We have the following general equation for the
linear model estimation.

̂TMOSmd = β̂0 + β̂1TVI (5)

The resultant ̂TMOSmd , β̂0 and β̂1 for each video category
are shown in Table 5.

The results shows that TVI has a very strong linear rela-
tion with MOS which is the users’ QoE. Take slow -motion
video as an example, its 95% confidence interval for β̂1 is (-
0.346, -0.205). The small interval indicates that the sample

size (number of videos) in the training set is large enough

for a good estimation. Mean of β̂1 (-0.28) is significant to
TMOS prediction. This justifies our decision of including
TVI in our linear model for predicting MOS.

With β̂0 and β̂1 in Table 5, we then use the TVI of the
video samples in the validation set to estimate TMOS of each
sample. Comparing the estimated TMOS and the actual
MOS we measured from the subjective experiments, we cal-
culate the Pearson Correlation Coefficient between TMOS
and MOS. Table 5 also shows such correlation coefficients
(ρMOS). We find that across the different video categories,
TMOS is highly correlated with MOS with an average cor-
relation coefficient of 0.925. It shows TVI is a very good
predictor of QoE.

5. NETWORK EVALUATION
A good video quality metric for mobile videos should not

only estimate QoE accurately but also predict the network
impairments, such as packet loss and delay. With exten-
sive video streaming experiments, we demonstrate how TVI
computations can be used to accurately estimate delay and
packet loss.

5.1 Experimental Setup
We set up a single-hop wireless testbed. The WLAN con-

figuration for the testbed is IEEE802.11n and the average
minimum end-to-end delay is 0.604 milliseconds. Like in
Section 4, we use three representative videos, one for each
motion degree (slow, moderate and fast), for this set of ex-
periments. We use FFmpeg [6] for video coding and Vide-
oLan [18] for video streaming.

During the streaming, we use IPFireWall tool [8] to delib-
erately introduce packet loss and delay into the wireless link.
Packet loss is injected as uniform distributed or as bursty
pattern or a combination of both. Delays are injected ran-
domly. Details of packet loss rate and delay are specified
in each subsection below. Packet loss and delay in the net-
work lead to the loss of temporal quality in the video. We
see different extent of blocking, blurring and freezing in the
receiver end when the packet loss rate and delay change.

For each streaming, both the sender and receiver calcu-
late the TVM values of the video it sends and receives. The
receiver also calculates the TVI values by matching the cor-
responding TVM values in received video with source video.
TVI, TVM, packet loss rate and delay values are collected
for each video streaming session. We then analyse the col-
lected data sets with Matlab and R software.

5.2 Detecting Packet Loss
We first conduct experiments to observe the variation in

TVM and TVI values with packet losses in the network.
We vary the packet loss rate (PLR) from 0.1% to 3% for
high-resolution videos and from 5% to 50% for low-resolution
videos.

A low uniform PLR causes more significant distortions in
high-resolution videos than in low-resolution ones. We can
see an example in Figure 3. In Figure 3, Old Woman is
an high-resolution video while Foreman is a low-resolution
video. Old Woman with 3% PLR seems to have the same
distortion as Foreman with 50% PLR. This is because high-
resolution videos have larger spatial coding interdependen-
cies than low-resolution videos. The frame size is large in a
high-resolution video. If the frame size is larger than Maxi-



(a) 0.5% Loss; Old Woman (b) 3% Loss; Old Woman

(c) 5% Loss; Foreman (d) 5% Loss; Foreman

Figure 3: Comparing low and high resolution videos with different network packet loss effects

Figure 4: TVM and TVI computations for Video
Old Woman

mum Transmission Unit (MTU), the frame is split into sev-
eral packets during streaming. A packet lost in the network
will cause incomplete reconstruction of the frame in the re-
ceiver, leading to display distortion. However, if the video
resolution is low, a frame can be represented by a single
packet during streaming. A packet loss results in a whole
frame loss. In the perspective of human visual system, an
occasional single frame loss is not as obvious to visual arti-
facts. Therefore, low-resolution videos are more “immune”
to packet loss.

From TVI measurements, we find that increasing PLR
leads to higher TVI values, indicating larger temporal qual-

ity degradation. Figure 4 shows the variation of TVM and
TVI values for a high resolution video (Old Woman) when
PLR is 0.1% and 3%. Figure 5 shows those values for a low
resolution video (Foreman) when PLR is 5% and 50%. The
variation of TVI of Old Woman with 3% PLR looks even
greater than the variation of TVI of Foreman with 50% PLR
due to visual distortions introduced by packet loss.

If we look at Figure 4 and Figure 5 more closely, we find
there are many unconnected dots in Figure 5. This is due
the infinite (INF) values of TVM and TVI. When we com-
pute TVM, the current frame ft becomes exactly the same
as the preceding frame, ft−δ, where δ = 1

fps
, so the value

of TVMr(t) goes to INF according to Equation (1). When
TVMr(t) is INF, according to Equation (2), TVI also be-
comes INF. These “INF”values are represented by breaks or
discontinuity in Figure 5.

If the original video has some stationary scenes, TVMs(t)
during those scenes will be recorded as INF. If there is no
impairment in the streaming process, the received video will
also have the stationary scenes, so TVMr(t) will also have
corresponding INF values. It creates subtlety in arithmetic
in Equation (2). To avoid that, we treat INF as a symbolic
arithmetic variable in Equation (2). If there are two INFs in
the numerator, they will cancel each other. In this way, any
INF values in TVI indicate freezing due to packet losses.

Uniform and burst losses

Uniform and burst losses have different effect on temporal
video quality. We demonstrate such effect by introducing
uniform packet loss and burst packet loss in the same video
streaming session but in different times. The uniform packet
loss was applied from 1 second to 3.5 second of the video at
PLR of 30%. In this uniform loss period, the packets are
dropped randomly with a probability of 30%. The dropped



Figure 5: TVM and TVI computations for Video
Foreman

Figure 6: TVM and TVI values at PLR(30%)
Types:Uniform and Burst(dense);

packets are not necessary adjacent to each other. Burst
packet loss happens from 5 second to 7 second. Within the
burst loss period, the system drops the packets with an av-
erage probability of 30%. But once a packet is selected to be
dropped, its neighboring packets will also be dropped with
a probability of 90% to 95%.

Figure 6 shows the TVM and TVI values for a sample
video. It can be clearly observed that there are more INF
values (discontinuities) for burst loss period than that in uni-
form loss period. This is attributed to the fact that burst
losses cause more frame losses while a uniform loss may only
impair the quality of frame without frame loss. That is for
burst loss period, there will be more freezing of the video.
An end-user gets a very annoying experience with subse-
quent freezing of video frames (number of INF values in our
case).

5.3 Predicting Packet Loss Rate
In Section 5.2, we discuss how to use TVI to detect packet

loss in a video streaming. Generally, when TVI value in-
creases (including the number of INF increases), the packet
loss rate also increases. Therefore, we expect there is a lin-

(a) Slow-Motion videos.

(b) Moderate-Motion videos.

(c) Fast-Motion videos.

Figure 7: Linear fits of all three video categories for
PLR prediction.

ear relationship between TVI and packet loss rate (PLR). To
confirm this relationship, we carried out an extensive video
streaming experiments. In the experiment, different videos
are streamed over our wireless testbed (refer to Section 5.1)
and different PLR are introduced during streaming. The
received videos are collected and their TVI are measured.

We choose three videos for the experiment: the videos old
woman has slow-motion, park has moderate-motion, and
football is in the fast-motion category. For slow-motion
video, we collect 60 samples from the experiment, among
them 40 are for linear regression model while 20 are for vali-
dation. For moderate-motioned video, we collect 78 samples:
42 are for regression model and 36 are for validation. We
collect 45 samples for fast motion video: 30 are for regression
model while 15 are for validation.

We propose to have have following linear model for TVI
to predict PLR.

TPLRmd = β0 + β1TVI (6)

for some constants β0 and β1. In this linear model, we use
the average TVI, TVI of the video as the predictor vari-
able. TPLR is the predicted PLR, not the actual PRL that
is measured from the network metrics 2. Similarly to the
derivation of TMOS, we use a subscript md to indicate the

2In our case, PLR is predefined as a system input



Table 6: Reliablilty to expect actual packet loss; Val-
idation with linear regression models.

Predicted Linear Model 95% Confidence
ρPLR

PLR (β̂0, β̂1) Interval of β̂1

̂TPLRslow (-1.091, 0.277) [0.234 0.319] 0.9655
̂TPLRmoderate (-0.002, 0.287) [0.236 0.343] 0.9498
̂TPLRfast (-0.104, 0.271) [0.224, 0.318] 0.9046

motion degree of the video. Again, md can be slow, mod-

erate or fast. Like the TMOS derivation, we take TVI INF
value as 1 if there is any.

Figure 7 shows the linear fits of the estimated TPLR,

T̂PLR, for each video category. We use the linear model

package of the statistics tool, R [21], to derive β̂0 and β̂1,
that are respectively the estimates of β0 and β1 in Equa-
tion (6). We have the following general equation for the
linear model estimation.

̂TPLRmd = β̂0 + β̂1TVI (7)

The resultant ̂TPLRmd , β̂0 and β̂1 for each video category
are shown in Table 6.

The results shows that TVI has a very strong linear rela-
tion with PLR. Take slow -motion video as an example, its
95% confidence interval for β̂1 is (0.234, 0.319). The small
interval indicates that the sample size (number of videos)
in the training set is large enough for a good estimation.
Mean of β̂1 (0.28) is significant to TPLR prediction. This
justifies our decision of including TVI in our linear model
for predicting PLR.

With β̂0 and β̂1 in Table 6, we then use the TVI of the
video samples in the validation set to estimate TPLR of
each sample. Comparing the estimated TPLR and the ac-
tual PLR we measured from the streaming experiments, we
calculate the Pearson Correlation Coefficient between TPLR
and PLR. In Table 6, ρPLR indicates the Pearson’s Corre-
lation Coefficient from the validation data. We find that
across the different video categories, TPLR is highly cor-
related with PLR with an average correlation coefficient of
0.940. It shows TVI is a very good predictor of PLR.

5.4 Detecting and Predicting Delay
Delay causes freezing in streaming video services. In this

section, we discuss the relationship between end-to-end de-
lay and TVI. We first describe the impairment of the video
quality caused by delay.

The frames transmitted by the source are split into pack-
ets and transmitted into the network. The packets received
in the client are reconstructed into frames and played by
decoder. Any delay introduced in the network will lead to
delay in packets being received by the receiver and subse-
quently in freezing of frames. Figure 8 shows this effect. The
delay in network causes modifications in TVI computations
and INF values are generated in the TVI measurements at
receiver. Unlike the INF values generated by packet losses,
these INF values are followed by a lagged version of TVM
values. The receiver estimates the best match for TVM val-
ues at receiver to the values at source (using a sequence
alignment like algorithm, see [1, 17] for details).

In order to predict the delay effect, TVM values are cal-
culated first in the receiver end. In the bottom of figure 8,

Figure 9: TVM values of Video Foreman with a delay
of 3 seconds

Table 7: Estimation of Network Delay using TVI
computations

Video fps D(actual) # INF D̂ Error(%)
Duck 50 2.00 99 1.98 1

Foreman 25 3.00 75 3.00 0
Park 50 2.00 99 1.98 1

Oldwoman 30 4.50 155 5.17 15

after the first two frames, there is delay between frame f2
and frame f3. After f2 arrived well, decoder cannot play
the very next frame on time so it has to wait until it receives
next frame. This brings freezing or stop-motion in the dis-
play. Therefore, INF are produced during the delay because
there is no frame to be calculated so it processes with the
previous one. This does not necessary mean that another
f2 is made to calculate the corresponding TVM.

Based on the TVM values of the receiver side, The TVM
values are compared with TVM of source video to get TVI
values. There are two delays in the figure 8. The first delay
causes 3 INFs and the second one brings 2 INFs in this
example.

Figure 9 shows TVM values of original and delayed video
foreman. The dotted circle indicates vacant part of the
graph, which are INFs in TVM computations of the delayed
video. The TVM values of received video are shifted to right
and INFs appear in between. An prediction of end-to-end
delay (D) can be obtained by counting these INFs.

D̂ =
I

fps
(8)

where fps denotes the frame rate of the video. I is the num-
ber of INFs in between two non-INF TVMs at the receiver
end.

Table 7 shows average results for the four videos we se-
lected to test the accuracy of end-to-end delay prediction.
As only number of INFs in TVM is counted, unlike MOS
and PLR prediction, the delay prediction is video motion
independent. Therefore, we just randomly choose the four
different video contents from our video pool. The inaccuracy
of the delay prediction mainly come from the inaccuracy of
TVM matching (the application of sequence alignment al-
gorithm).

In Table 7, # INF means the total number of INFs (per-
taining to delay) in the whole playing time. The estimation
has the accuracy of over 95%.

In practical scenarios, we calculate TVI as the video stream-
ing is ongoing. We will first detect the delay by applying
existing sequence alignment methodologies [1, 17]. After



Figure 8: TVM/ TVI computations in presence of network delay

excluding those delay-caused INFs, we detect and predict
the packet loss rate based on TVI values.

6. CONCLUSIONS
Accurately evaluating video streaming quality over net-

works always attracts great attention from content providers
and network service providers. However, video quality eval-
uation itself is a challenging topic as users’ QoE cannot be
measured with low cost. When the video applications move
to mobile devices, evaluating video quality becomes even
more challenging. Wireless networks cause packet loss and
delay to the video streaming while mobile devices have lim-
ited computation power and memory. In this paper, we have
proposed a novel reduced-reference temporal quality metric,
Temporal Variation Index (TVI) for mobile videos. Despite
its simplicity, it shows strong linear relationship with users’
Mean Opinion Score (MOS). Therefore, it is a very good
predictor for users’ QoE on mobile videos. Its prediction of
MOS has a correlation coefficient of 0.925 with the actual
MOS measured from subjective tests. TVI also predicts net-
work impairments, such as packet loss and end-to-end delay.
From our extensive experiments of video streaming over a
wireless network testbed, we find that the packet loss rate
predicted by TVI has a correlation coefficient of 0.94 with
the measured loss rate. During the computation of TVI,
we can also predict the end-to-end delay with an accuracy
of around 95%. These appealing features make TVI a very
useful tool for content and network service providers to offer
the future high quality video streaming services.

Although temporal quality is a unique and important as-
pect for video, it is also very interesting to integrate TVI
with other spatial quality metrics. We believe that such
integration will provide a comprehensive video quality eval-
uation metric for the future use.
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